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1. Introduction

The idea of setting up laboratory-based toy models for qumarfield theory has been dis-
cussed, at the very least, ever since Bill Unruh’s develaoyrimel1981 [43] of what are now known
as “dumb holes” or “acoustic black holes”. In that initiatiele, Unruh first indicated the analogy
between the motion of sound waves in a convergent fluid flowraadsless spin-zero particles
exposed to a black hole.

Gradually, the acoustic metric/analogue gravity / emergpacetime programme has been
extended to various media (e.g., for an electromagneticeguade [39], Bose—Einstein conden-
sates [2], and superfluid helium [46]). Emergent spacetimesiperfluids are of special interest
for experimental purposes. The extremely low backgroumdptratures for superfluids enable
us in principle to detect tiny quantum effects, such as Hagkadiation and “externally driven”
particle production. In addition, the experimental tecjueis to control superfluids, (for example
Bose—Einstein condensates), are already at a very saaltéstilevel and further progress in quasi-
particle detection mechanisms is expected [14, 38, 51]reTae plenty of technical problems that
have to be addressed before the experimental laboratdigatean of black holes, or cosmological
particle production, but the situation does not seem by aegnma to be hopeless.

In the following we will therefore focus on spacetimes enestgfrom an ultra-cold gas of
Bosons. It has been shown, see for example [3, 4, 11, 12, 142349], thain principleit is pos-
sible to manipulate the speed of sound through externakfiegddmimic the behavior of quantum
modes in Friedmann—Robertson—Walker-type (FRW) univaPseviously, in [23, 47], we argued
that before attacking specific problems involved with thpesknental set-up, one needs to care-
fully choose a suitable parameter regime for such an exgetinin the following we would like to
summarize and extend these ideas, and present an ingtrgaiite for experimental analogue cos-
mology via Bose—Einstein condensates, see boxed text in2S&cThese ideas will be presented
in the second half of our paper.

In the first half, we will comment on the phenomenology of egeet spacetimes, and address
its relevance for quantum gravity and quantum gravity phesalogy. Systematically, we ex-
plain why the particle production process in parametrycalcited condensates, corresponding to
emergent Friedmann—Robertson—Walker geometries, isi@rgenot robust against model-specific
deviations from “Lorentz invariance”. The modificationsthe collective regime originate in the
microscopic physics of the condensate, i.e., the fundeh®&udsons. These maodifications break
the Lorentz symmetry in the analogue model at ultraviolatex:[20]. A significant branch of so-
called “guantum gravity phenomenology” focusses on thesequences of Lorentz violations at
high energies, and thus the study of stability / robustnésemi-classical quantum gravity against
“Planck-scale modification” is of great theoretical inttrf20, ?, 44]. We also suggest an alter-
native approach to get a grasp on the momentum-dependeavibelof quantum modes in an
explicitly time-dependent external geometry, by usingrtbgon of rainbow spacetimes.

1.1 Emergent spacetime geometries from ultracold Bose gase

In the following we present a relatively simple and well-erstood system, that is — to some
extent, as we will show in this paper — capable of mimicking lehavior of quantum field modes
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exposed to an inflationary universe. The specific emergauetione geometry we are investigating
exhibits the following key features:

High temperature phase: Atthe most fundamental level we are dealing with non-heamiguan-
tum field operators representing the creatiphit, x), or destructiongi(t, x), of an individual
Boson at a particular point in time and space. The relatietaéen two field operators at
andx’ are given by three equal time commutators

[@(t,x), P(t,x)] =0, (1.1)
[@'(t,x),d"t.x)] =0, (1.2)
[@T(t,), P(t,x)] = 8(x—X). (1.3)

For our purposes we consider a gas of trapped, ultra-caitiyhdilute and weakly interact-
ing Bosons. Thus the Hamiltonian can be written as

A= o (-0 Ve + S8 00). (1.9

the sum of the kinetic energy of the Boson field and the tworg@kenergy contributions;
the external trapVex, and the particle interactiond,. Due to the extreme dilution of the gas
only two-particle interactions are taken into account, enithe weak-interaction regime the
inter-atomic potential can be approximated by a pseuddacopotential

_ 4mhfa
==

U (1.5)

Heremis identified with the single-Boson mass, amthe s-wave scattering length. For this
paper we only consider repulsiva,> 0, inter-atomic forces. Experimentally, both negative
and positive values faa are accessible (by tuning external magnetic fields), anegspond

to repulsive and attractive atomic interactions. It isiiegting to notice that the nature of the
microscopic interactions is related to the signature oftinergent spacetime. Repulsive (at-
tractive) atom-atom interactions can be connected withrartaian (Riemannian) spacetime
signature, see for example [9, 10, 19, 51].

Low temperature phase: This is a regime where the microscopic degrees of freedomwgay to
macroscopic variables, such that the creation and deistinuotld operators can be replaced
by classical mean fieldsp™ — (¢') = ¢* and  — () = @. For topologically trivial
regions, without zeros or singularities, the complex msoopic field may be written as

Y(t,x) =+/n(t,x) exp(ib(t,x)), (1.6)

a function depending on two collective real-valued vagabthe field amplitude as the square
root of the condensate densityt,x), and an arbitrary (but fixed) phas#(t,x). Therefore,
the single-particle Hamilitonian is no longer invariantden phase transformations of the
kind 8 — Bexp(ia). TheU (1) = SQ2) symmetry of the Bose gas is broken spontaneously
at the transition temperatuig. Below T a large fraction of the atoms collapse into the
lowest quantum state, and the gas undergoes a Bose—Eiostalansation. In this state of
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matter the quantum nature of the atoms becomes apparent @osoapic scales, and the
high and low temperature phases in our system are connduteugh a first-order phase
transition associated with a spontaneous symmetry brgakin

Semi-classical quantum geometry picture:In the hydrodynamic limit a geometrical rank two
tensor can be identified, dominating the evolution of lifest classical and quantum exci-
tations around the mean field,— 6y + 6 andn — ng+ . The dynamical equations are

1 A
— 3, (V]gg®a,0) =0, 1.7

and small density fluctuations are considered to be the gatgumomenta to small phase
perturbationsn = ﬁé = —/]9/¢"* 3,8, on the emergent/ analogue / acoustic spacetime,

_ /nR\e1 —(Z 3|V
gab=<m> [ — ‘5”.]. (1.8)

The conformal factor depends on the spatial dimensiondlifthe condensate. The back-
ground velocityv is given by

h

as the gradient of the condensate ph@seandc denotes the speed of sound. The transfor-
mations applied to the field operators preserve the inibelmutation relations (1.1-1.3):

[6(t,x),6(t,x)] =0, (1.10)
[Aa(t,x),M4(t,x)] =0, (1.11)
[6(t,%),M5(t,x)] =i8(x—x). (1.12)

From a field theory point of view, the present model is onlyatde of mimicking spin-zero
masslesscalar fields. However, it is also possible to develop anagyabetween multi-
component Bose—Einstein condensates raadsivespin-zero scalar fields. The addition of
extra fields is necessary, as the fundamental Hamiltonig) ¢hdergoes a spontaneous sym-
metry breaking afl;, predicting at least one massless field excitation; seetlregNambu—
Goldstone theorem in [52]. In amcomponent condensate we expeaxcitations, where
n—1 of them can have a non-zero mass. A full treatment of a 2-ocoet Bose—Einstein
condensate with respect to the analogue model programméedéound in [48, 49, 50]
and [26, 27].

Furthermore, there are also kinematical and dynamica¢rdifices between the emergent
metric tensor (1.8), and the gravitational metric tensactoentered in general relativity.
Firstly, the emergent spacetime components are functibriseomacroscopic mean field
variables, and thus possess only two degrees of freedonmefbhe in comparison with gen-
eral relativity — where we are dealing with six degrees oéfltem — the analogy is only
fully applicable in a limited number of (typically highly symetric) spacetimes.

The emergent spacetime picture is derived under the pretingdefield perturbations are
negligibly small,(6() = 0 and(5('") = 0, and therefore will not backreact with the classical
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mean field (Y + 0 ) ~ Y and(Y* + dJ*) ~ *. Within this approximation the systemiis
principle capable of mimicking quantum field effects, where the gedidnal field is retained
as a merely classical background insensitive to the ewsluf its quantum perturbations.
Beyond the validity of this approximation the analogy se¢misreak down, as the dynamics
of the emergent spacetime is governed by the second quétiamiltonian for a system of
Bosons. In general the Hamiltonian (1.4) is only in some saggpropriate to describe the
dynamics of the system, when three-body recombinatiortsffean be neglected; a thorough
treatment of higher-order terms involves a number-comsgrapproach as presented in [34,
16]. It can be shown that the dynamics of the emergent spaeeatescription, correlated to
the ground state of the system, is different from Einsteiiméry of gravity. This issue has
been investigated in [13].

As indicated in the previous paragraph, while the analogy sinciple capable of mimick-
ing quantum field theory effects in curved spacetime, angiBpenalogue model currently
known will exhibit some specific corrections thaightlead to significant modifications to
the particle production process. Surprisingly, the moget#ic alterations enter (to first or-
der) in a relatively simple manner, and should be viewed assaantial part of the emergent
spacetime picture.

All of the above is derived under the premise of thalrodynamic approximatigrwhere the so-
calledquantum pressuri the superfluid is negligible, that is:

U ng| > |(R%/2m) D2y (1.13)

This holds when the kinetic energy of density fluctuationthiacondensateh?/2m) D2ng/no, is
small compared to the atom-atom interaction strendthHereD,, a differential operator acting
onng, is defined as

~ 1 ((Ong)?— (2 O 1
Dzz—{( o) § nO)no—ﬂDJr—Dz}. (1.14)
2 o
As the differential operator depends on spatial derivatiitewill increasingly alter the behavior of
guantum field modes with higher wavenumbd¢s Luckily, all modifications are formally taken
into account by simply replacing the atom-atom interactidrby a differential operatdd:

- R

U=U-_——D,. 1.15

5 D2 (1.15)

This leads to modified hydrodynamic equations involving-tronal implications for the emergent
spacetime programme.

Non-perturbative ultra-violet corrections: Now setng(t,x) = np and 6y(t,x) = 6, so that the
emergent metric (1.8) is equivalent to that of Minkowski cgtame. Then the dispersion

1we would like to point out that our specific model captures sem but not all — relevant physical ingredients
necessary foquantum graphity31, 33, 32, 25, 24]. Generally, the analogue models/emeigEacetime programme
might also be of phenomenological value for alternativerapghes for quantum gravity involving some microstructure
dominant at very small scales.
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relation for small classical and quantum fluctuations adotims classical ground state is

given by
2
WE = K+ ok = 2K <1+ %) (1.16)
where it is useful to define the quantities
h c
=—, and K=—, 1.17
Yap m Ve ( )

such that we easily obtain the hydrodynamic limit, jgg — O, or alternativelyk — co. (For
a detailed derivation see for example [47, 23]).

Thus, the present system exhibits an emergent Lorentz symfaeinfrared quantum modes,
kr |k <K, (1.18)

where effectivelyy,, — 0, and the hydrodynamic limit is applicable. At small scales
relative to /K — this symmetry is broken, as model specific corrections imecapparent
for crossover and ultraviolet modes,

Kerossover : K| ~ K, kov |k >K, (1.19)

consequently we must kegg, # 0 in these regimes, and quantum pressure effects of the su-
perfluid significantly influence the behavior of small fludgtaas. In this spirit it is plausible
to introduce aranalogue Planck-length
Yo h 1
=—=_—=_. 1.20

EPIanck C ome K ( )
The reader may consider that in some sensethergent Lorentz invariance breakifigV)
scalehas to be correlated with “new physics” and we will furthevachte this point of view
below.

Summarizing the above, we see that emergent spacetimdegaaanodels exhibit an emer-
gent/ effective Lorentz symmetry for low-energy / infraredcitations around the macro-
scopic mean field. This symmetry will be broken in the higlergy / ultraviolet regime, that
is at scales where collective classical and quantum fluonsfirst experience effects from
the underlying microscopic theory. The present model fesum the boost subgroup that
supports CPT invariance and results in a momentum-depewésersion relation. These
corrections originate in the hydrodynamic fluid equatiars] hence are of non-perturbative
nature.

We trust that the above has provided readers unfamiliartwéfanalogue models programme with
the key features necessary to understand the parallelisralogue models are a generic tool for
probing the interface between gravity and quantum physigsn now on we would like to restrict
our toy model further, and focus on the possibility of miniickcosmological spacetimes.
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1.2 FRW-type spacetime geometries and degrees of freedom

In the hydrodynamic limit the speed of sound in a condensdteam explicit time-dependence,
but still “at rest” — zero background velocity,= 0 — can be expressed by

o 4mi? 2

c(t,x)c = Fn(t,x)a(t,x) — Co(X)“bn(t) ba(t). (1.21)
Both the scattering length(t) = agh,(t) and the condensate densitit,x) = no(x)b,(t) are al-
lowed to vary with respect to laboratory tirheThe initial condensate parameters, at the beginning
of the experiment = tp, are given byag and ng, such thath,(tg) = 1 andb,(tg) = 1. Without
any loss of generality we can sigt= 0. (Notice, that for the cases whemg exhibits a spatial
dependence, one has to give up on a uniform sound-conewtubroughout the condensate. In
these scenarios the notion of FRW spacetime has to be tedttic an area whenmay(X) ~ ng is
approximately constant.) Implementing this parametéidrainto the line-element (based on the
metric given in equation (1.8)) we have

(o L ba(t) | 7
dsz_<a> [cgbn (1)@ 1hy(t) dt2+<ba(t)> dle. (1.22)

Let us implement a change of coordinata = bn(t)ag_lba(t)gi_idtz, such that

2= (%) o (20) o], 0z

where it is obvious that effectively — in this parameteii@atfor zero background velocity — we
are left with one degree of freedomy(1) = b,(7)/ba(7). By inspection this metric represents a
spatially flat K = 0) FRW cosmological spacetime with scale factor

1
bn(T)\ 2¢-D
)= . 1.24
aFRW( ) aFRW,O <ba(T)> ( )

However, in the specific analogue spacetime under curreasiigation the situation is a more
elaborate one as the applicability of this interpretatiomgls on the validity of the hydrodynamic
limit, or in the language of effective field theories on the tfhis particular case time-dependent)
effective Planck-length, given (in units of laboratorytdisce) by

EPIanck(t) — ﬁ — Yap _ EPIanckO . (1.25)
c(t)  coy/bn(t)ba(t) v/ bn(t)ba(t)

In addition, up to the present time we are lacking a thorouggittnent of the possible modifications
to the particle production process arising from, stricggaking, non-linear dispersion relations for
spin-zero massless scalar fields in time-dependent paiiaatigt excited analogue models. (This
is in contrast to several analyses of dumb hole evaporagond1,?, 44, 45] focusing on this
issue.) This raises the question of the “robustness” ofghanproduction in effective spacetimes
with time-dependent preferred-frame effects.




Emergent spacetimes and experimental cosmology Silke Weinfurtner

1.3 On the existence of geometry beyond the hydrodynamic liiin

Consider a classical / guantum mode with wavelerigthssuming that at a particular tinye
it is insensitive to quantum pressure effects in the coratenk < 271/ ¢pjanci(t1). Let us further
assume that as the system evolves, we can find atfiméth t, > t;, such thak > 271//pjanct2),
concluding that at, the analogy habroken downThere seems to be no caveat here, as long as one
tries to explore the intermediate regime, whigre t’ < t,, such that the wavenumber of the modes
gradually changes frotk < 271/ ¢pjanck(t1) t0 kK ~ 271/ Cpjanct’), and finally tok > 271/ ¢pjanci(t2)-
There is in this situation no such thing as Einstein dynarfucshe condensate parameters, nor is
it possible to uniquely separate the notion of spacetimmn fitee field equations, as in our model
both arise simultaneously. This leaves us with the podsilaf treating modifications resulting in
non-linear terms in the dispersion relation as part of thengsry.

Let us briefly map out the technical steps involved in obtegra geometrical interpretation for
the kinematical behavior for collective perturbationshe tondensate beyond the hydrodynamic
limit. For that we require the existence of:

() hydrodynamic fluid equations,
(i) the integral differential operatdf 1, and finally
(iii) a relation betweeri?® and g®.

Regarding(i), as mentioned previously quantum pressure effects arly ¢alsen into account by
formally replacing the atom-atom interaction variablehnah interaction differential operator—
U. In this spirit themodifiedhydrodynamic fluid equations for classical / quantum pétions are
given by,

(Continuity equation) &A+ O - [(%Dé) + (nov)} =0, (1.26)
(Euler equation) ¢ + v - Dé+gﬁ A=0. (1.27)

Notice the modifications only enter the Euler equation, gHile continuity equation remains un-
touched. The nomenclature “quantum pressure” originatea the fact that this modification is
adding terms involving gradients aft6 the fluid equation.

Regarding(ii), to extract the analogy between fluid mechanics and cld¢sjeantum field theory
beyond the hydrodynamic limit it is necessary to find an expénd tractable expression for the
differential operatot). Only then are we able to merge the Euler and continuity émpusinto the
form da(fabdbé) = 0. SinceD, andU are second-order linear differential operators, the swer
U1 always exists as an integral operator (that is, in the sefiseing a Green function).

Finally, (iii), thed + 1 dimensional matrix2® derived from the modified hydrodynamic equations
is contains inverse-differential-operator-valued edtri

-U? ‘ —U-1vi

fP=h|—— —
—VvU Ry VUi

(1.28)
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Notice that in general-U 1V £ —viU 1, and thus quantum pressure effects may at first glance
seem to introduce non-symmetric effects in the spacetinoengry. However these two objects
are Hermitian adjoints in the sense of integral operatard,sa f2° is formally self-adjoint when
acting on the appropriate function space, which (rathem tie@ive symmetry) is the key property
that one really wishes to preserve. In addition, we need tbdm(inverse) metric tensgg, such
that fab = \/—_ggab whereg is the determinant afzp. Only then is the connection formally made
to the field equation for a minimally coupled massless sdadlt in a curved spacetime. However,
this last step is by no means obvious,(ks! does not necessarily commute with t& and/or
No.

It goes without saying that only in the hydrodynamic limityenU ~1 is replaceable withJ,
do we fully recover a conventional spacetime geometry inamndensed matter system. Going
beyond the hydrodynamic limit, to some extent the so-cadikdnal limitis applicable, leading to
the notion ofrainbow spacetimes

1.3.1 The notion of rainbow spacetimes

In the eikonal limit the differential operatot can usefully be approximated by a function
U— Uk(t,x) =U (t,x) + ﬁ]—k;, which we shall conveniently abbreviate by writidg. Beyond the
hydrodynamic limit, but within the eikonal approximatiome obtain

fab_E _l‘ _Vj
" U | | Mg

(1.29)

Note that in the eikonal approximation tkelependence hiding ldyx will make this a momentum-
dependent quantity, leading to a so-caltathbow metric It is convenient to define a momentum
dependent speed of soundt)? = ngUx/mand so write

_ —vl
fab _ (”Lﬁ> oV ) (1.30)
cZm/ | _v ‘cﬁc‘i” v
The metric tensor is explicitly given by
2 .
_ (nof\ ¥ | (G —v)| V]
gab_<ckm) [ e (1.31)

where we observe thak(t)? = c(t)? + ya,k?. Before we move on and exemplify the usefulness of
the notion of rainbow spacetimes, we would like to point tnatttin the special case where the all
entries inf2 only depend on the laboratory tinhebut not on spatial coordinatesthen symmetry
and the existence @f is guaranteed.

The introduction of rainbow spacetimes might seem at fishgg merely to be an artificial
and unnecessary way to complicate the situation with théogna models. The standard route
to investigate the behavior of Lorentz symmetry breakirfgat$é at ultraviolet scales is to study
effective field theories. However, sometimes we are not abkolve the full problem, and that
is when rainbow spacetimes can play an important role — asdhe us an alternative insight
towards the understanding of particle production in a FiR&-$pacetime under the presence of
Planck-scale modifications.
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2. Experimental cosmology by way of illustration

In the following we will focus on a very simple, and in some seidealized realization of
laboratory cosmology. Here the novelty lies in the posisjbdf comparing our model presented
above with explicit numerical simulations [23, 47]; simtidas that are purely based on the par-
ticular condensed matter system, without imposing any @Bsumptions necessary to derive the
emergent spacetime picture.

The analogy we are interested in is quantum field theory itiagdpaflat k = 0 Friedmann—
Robertson—Walker geometries in two spatial dimensibas2,

ds? = gap X = —dr? +a(1)? i(dxi)z. (2.1)

This is technically imposed by assuming a uniform and conistandensate densitg(t,x) = no,
but allowing the scattering length to vary in time. Altogatiwe setb,(t) = 1 andb,(t) = b(t),
such that the effective line-element (1.22) reduces to

2
ds® = (%) [—cBdt? + by (t) ax?] . (2.2)

For two spatial dimensions laboratory tihand proper timea are of the same form, and for the
momentum-dependent FRW scale factor we obtain the verylsirafationshif?,

1

V() + (k/K)2

a(t) =by(t) Y2 = (2.3)

2.1 Emergent rainbow inflation

Perhaps the most interesting cosmological case to studyriemergent spacetime is tde
Sitter universe, where the scale factor is given by an exponent&dpanding (or contracting)
universe,a(t) = exp(HT1). The concept of cosmological inflation was introduced steméously
around 1981 and 1982 by Guth [17], Linde [28], and Albrectd &teinhardt [1] to explain the
homogeneity of the temperature observed in our univerg@nakcasually disconnected areas. Not
long after (see, e.g., Guth [17], Hawking [18], Bardeen [&irner [41] and Brandenburger [8]) it
was realized that inflation also accounts for the existeftigeqoerturbations in our universe today.

By now it should be clear that in order to simulate the behd@apguantum modes exposed to
an inflationary universe in our 2-dimensional superfluid sivall have to make some compromises.
In particular, we choose the scale factor for the atomicrautions to beb(t) = exp(—t/ts), such
that in the hydrodynamic limit the model is approaching teeSitter casegy(t) — a(t). Unfortu-
nately, that is the best one can do, one cannot make all momeambdes simultaneously see the
same de Sitter universe.

2A more detailed treatment can be found in [23, 47] and in [3M{ernatively in [11, 12, 14, 42, 43] the authors
kept the atom-atom interactions constagi(t) = 1, working instead with time- and space-dependent contiedsasity.
One then encounters non-uniformal sound-cone structut¢empecially for the cases of a freely expanding condensate
a destructive measurement set-up where back-reactioet®fféght turn out to be significant.

10
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(@) Scale factor including quantum pressure effecids) Scale factor including quantum pressure effects;
with timescalds = 1 x 107°. with timescalgg = 1 x 1075,

Figure 1: (Colors online only.) In this figure we plot the logarithm difet scale functiomy(t) for each
k-value — fork € [9,191 — in a different colour. The different colours encode therggef the modes:
Gradually changing from low-energy/infrared (dark redhigh-energy/ ultraviolet (dark blue). While the
rainbow-scale factor approaches that of the hydrodynamitfior low-energy modes, the ultraviolet modes
show strong deviations. Note, that in the infinite past alde®are phononic, and therefagt) — a(t).
The black dots indicate the time-dependent crossover @afiomo trans-phononic) in every qguantum mode.
Parameters a@y (t = 0) = 2 x 10°, Ng = 10" andX = 4 x 10P. (See [23, 47] for details of the simulations.)

The specific scale factor in the emergent line-elementydint quantum pressure effects) is

1
~ Jexp(—2H1) + (K/K)2

Thus the hydrodynamic, exp2Ht) > |k/K |2, crossover, exp-2Ht) ~ |k/K |2, and free particle,
exp(—2Ht) < |k/K|?, limits are a matter of dividing the spectrum into approfgrienergy regimes
at a particular time t It is interesting that for early times — when the interactidoetween the
atoms are strong — we naturally approach the hydrodynanse,dan_,_. ak(t) — a(t), in the
sense that most modes are phononic, and therefore largéargedk-ranges are covered by “con-
ventional” FRW-type quantum-field-theory.

Quite the contrary occurs after an infinitely long-lastingp&nsion, where all modes behave
as free particles, lim, ;. ax(t) — |K/k|, and the universe, as seen by a mode with the wavelength
k, will effectively approach a final finite fixed (momentum-éeplent) size.

Before we continue, we wish to illustrate — for the particytarameters used in our numer-
ical simulations for a de Sitter-like universe — where theagk rainbow spacetime comes from;
see Fig. 1. There we plot the emergent rainbow scale fagtoy for eachk mode using differ-
ent colours — gradually changing from dark red for infrareddes to dark blue for ultraviolet
modes. The resulting colour-spectrum is reminiscent ohercolour spectrum obtained from real
rainbows.

Due to this fundamental difference between our analogueeiraottl the “theory” we wish to
mimic, we know already that there will only be a finite timeripd — its length depends on the
existence of the phononic regime, and therefore on the temabal interaction strength (0) = Ug

a(t) (2.4)

11
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— beyond which the analogy breaks down. Note that the parpobduction process naturally
ceases when the expansion rate slows down to zero. Thus viacarg a significant mathematical
problem, one that cannot be treated in a fully analytical mearas we pointed out previously
in [23, 47]. Fortunately, the emergent rainbow spacetintupe is sufficient to provide good
estimates for the particle production.

2.2 Instruction guide for experimental cosmology

The process of cosmological particle production in an espayy collapsing universe can be
qualitatively understood in terms of a single parametepciieally, the frequency ratigz(t), see
box. Initially, as pointed out in [47], we derived this cortien between the qualitative behavior
of the particle production process and this frequency iatihe hydrodynamic limit, where exact
analytical studies are possible. We then extended theas tdedhe emergent rainbow metrics.

We propose a simple 3-step process to get a quantitativeagstiof the particle production i
our emergent spacetime, as a road map for experimental éogyno

=

1- Assign the initial condensate parameter, specifically speed of soundc; =
co(Uo, np, M), and the scaling functions for the scattering lengfttyts). For a de Sitter-
type universe the scaling tintgand the Hubble frequendy are related byd = 1/(2ts).

2— Using the modified scale factak(t), see equation (2.4), and the modified dispergion
relation, herewx(t) = wo\/exp(—2Ht) + (k/K)2, compare with equation (1.16), w
compute the rainbow Hubble paramelt&(t):

At exp(—2Ht)
U =20~ em—2nn (K2 (2:5)
Identify the ratio between the modified dispersion relatiod the effective Hubble pg
rameter as the significant parameter determining the f@pfoduction in our emergent
spacetime,

D

ax(t)  wo (exp(—2Ht) + (k/K)2)3/2
Hx(t) = m Ty exp(—2H 1) . (2.6)

Note that within the hydrodynamic limi#(t) — R(t) = $ exp(—Ht), andHy(t) —
H. As a rough rule of thumb we summarize: The smaller the frequeatio the higher
the final occupation number of the corresponding quantumemod

3 — Estimate particle production by analyzigg(t). A quantum mode with the wavenum
berk only experiences a significant amplifications wheg(t) < 1.

It is a well-known result that the solutions for a spin-zerassiess scalar field exposed to
a de Sitter-type universe are a linear combination of firdepHankel functions of the first and
second kind [7, 15]. These mode functions are a functioneflimensionless ratiBy(t) = w/H,
and in the limit ofRx — o the mode functions approach “freely oscillating” positared negative
frequency modes, while fd®, — 0 the modes stop oscillating, and the modes exhibit expaignt
growing or exponentially decaying kinematics. The sitatis lightly more complicated in our
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specific rainbow spacetime, that we wish to use to mimic cdsgical inflation. However, we are
able to define a modified frequency ratio, see box, which nasnthie only significant parameter in
the system.

Ex antewe would like to maotivate this section by the remark that white frequency ratio
in the hydrodynamic limifR(t) is a monotonically decreasing function in time, the ratidhe
eikonal approximatiorZx(t) is not. Therefore there is some freedom to obtain resulfsrdifit
from the “conventional” particle production process. Wendastrate the correctness of this asser-
tion by referring to the numerical simulations reported28]|

To obtain a rough estimate on the different qualitativerresg of particle production, we use
the experience gained in the hydrodynamic limit, and singpighangeRy(t) — Z«k(t).

For early times, whef(t) > 1 the hydrodynamic and eikonal ratios are identical, ancethe
fore in both cases approach the adiabatic limit, where weabihe particle production process
to be negligibly small. Here quantum modes are approximatlelne waves, but their amplitude
and frequency change as a function of time. This ansatzesresf to as the WKB approximation,
which is valid within theadiabatic limit, when during one oscillation perio‘n‘] = 21/ ax(t) the

relative change in the frequency is small (see [3{5‘%% < 1. For de Sitter

spacetimes equates .[ (::K ‘Rk ‘ < 1, the condition that the ranﬁk( ) is much larger than
one, which verifies the consistency of adopting the adialzgtproximation.
As intimated, the overall slope of the eikonal ratio is not@tonically decreasing function,

2
smce,%’k changes its sign ag,m = W Fort < tym the slope of the ratio is negative, for

t = twm the ratio is given byZx (twum) = 3‘/§ qu k? , and fort > ty,m the ratio is positive. Therefore
the eikonal ratio has a minimum &§m, Wlth the maximal particle production around this point.
After this point the ratio starts to increase again, and ve#l slhon see that the particle production
process will slow down again.

To qualitatively describe the particle production prodessur specific rainbow spacetime, we
suggest the following terminology:

t — —oo: At early times almost all modes are “sub-Hubble-horizon"des, and the particle pro-
duction process is negligible. The modes oscillate with mhigher frequencies than their
corresponding Hubble frequencies, tha#g(t) > 1.

t ~twm: Astimes goes on the mode frequencies are decreasing, witile same time the rainbow
Hubble frequencies are decreasing as well. Neverthelassatio between them exhibits a
minimum atty,,, where the particle production process is expected to bemadx Even
if the particle production process is maximal, this doesneatessarily imply that the quan-
tity of particle production is noticeable; the modes alsech# be “super-Hubble-horizon”
modes, or in more accurate terminology, we requ#gtiym) < 1.

t ~terossing If there exists a time = terossing sUch thatRy(terossing ~ 1, where a modé& crosses
the “Hubble horizon”, then there will be secondtime t = te_entering Where the modé
re-enters the “Hubble horizon”, arRk(tre_entering ~ 1. We suggest that it is useful to adopt
the following terminology to describe the behavior of thedms: “freezing of the modk”

13
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3
%104

(c) Nk(t) projected onto the-Ni plane. (d) Z(t) projected onto the-Z plane.

Figure 2: (Colors online only.) In this figure we compare the quasipkerfproduction per quantum mode
(left column) with its frequency ratig(t) (right column), forts = 1 x 10~°. Parameters a@y (t = 0) =

2x 10°, No = 10" andX = 4 x 10°. (See [23, 47] for details of the simulations.) The bold fgdtdots on

the left hand side indicate that the frequency ratio is bedow, hence the quantum mode corresponds to a
super-Hubble horizon mode. On the right hand side we havedtet with the bold dots when a change
in the mode occupation number is above a certain thresholdere/AN, > 0.004 — roughly to filter out
guantum noise fluctuations.

occurs in the time periotdossing<t < twm, Whereas “melting of the mode occurs during

turn <t <tre_entering

Another novelty in our qualitative understanding of thetigde production process in our FRW
rainbow-spacetime, is the connection with the condensetemaoint of view: The minimum of
the ratioZx(twum) for a modek occurs at

exp(—2Ht) —2(k/K)>=0 — k= 1 (2.7)
\/égPlanck(t)
This quantity also appears in the context of conventionaldensed matter physics, where it is
defined as the crossover between the phonon and free-pagiibn. This borderline, the inverse
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of the healing, or coherence lengf{36], is given by

_2mnU(t)  14mP noU(t) 1
N A2 2 R m 2EPIanck(t)w

which indicates where each mode starts to decouple frompheetime. That is, each mode can
experience particle production, until it becomes fredigiarlike, and this behaviour starts to kick
on near the Planck scale. Hence, in terms of the microscdpisigs of a BEC we have a natural
understanding of(twm). For a detailed treatment of the numerical simulationsgaesee [23].

To show the quantitative correlation between the modifieddency ratioZx(t), with particle
production in our specific rainbow de Sitter spacetime, we lpdotted the ratio for severimodes
as a function of time, and compared them to number occup@liots, see Fig. 2. This figure
compares the change in the mode occupation number in eachondtie left side, with frequency
ratio Z(t) of the mode on the right side, for the scaling titge- x10~°. Each coloured line on
the left hand side indicates the occupation number in theerk@g a function of time. On the right
hand side we have plotted the frequency rafigt) for each of those modes with a different colour
(online only); gradually changing from infrared modes (diad), to ultraviolet modes (dark blue).

The black dots in the figures to the left indicate when the mamless over from phononic to
trans-phononic behavior, i.e., where each mode startsdougée from the emergent spacetime.
We can see that the black dots are located where the frequathcyas its minimum; see Figs. 2.

g2 (2.8)

It is also noteworthy that the commutation relation for tlegtprbations, in terms of the emer-
gent scalar field and its conjugate momentum with respedtdgteferred rest-frame — the lab-
oratory frame — exhibits an explicit momentum—dependelﬁd&k, ék] ~U +K2. (Heref is the
phase fluctuation operator in momentum-space.) Consdyuidneat size of the quantum fluctuation
is growing with the momentum of the quantum field mode. (Inr@sssgPlanck’s constant is being
generalized in a momentum-dependent manner.) That is,réoéspn with which you can mea-
sure the macroscopic field varia{lé) decreases as the momentum increases. While the emergent
spacetime picture is necessary to understand the timexdepecommutation relations — in terms
of the field operator and its conjugate momentum on a timexognt classical background — the
fact that particle production process tends to zero durirfigtion is naturally explained from a
condensed matter physics point of view, as it is related ¢octtossover between phononic and
trans-phononic quasi-particle excitations.

3. Conclusions

What have we learnt from the model presented above? Theasbgincere answer is, that we
have studied in depth a particular molecular system thaestsbme features with quantum field
theory in curved-spacetime. The viable regime, where tlaogy is sufficiently good to mimic
the behavior of quantum modes during an inflationary epachgther narrow. While we are able
to connect a certain parameter regime of the Bose—Einsteidensate model with semi-classical
quantum gravity there is no obvious evidence for its sigaifae for “full” quantum gravity. Any
sensible theory of quantum gravity has to accommodate digsdor the gravitational field which,
in the appropriate limit, should reduce to those of genaativity (or at least be sufficiently close
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to the latter, see modified theories of gravity such as [628230, 40]). Therefore the analogue
model investigated above is not a suitable candidate fdf ‘luantum gravity. Thankfully, how-
ever, the breakdown of the analogy is to a very good extentruglated with the applicability of
the linearization scheme, and (for questions of cosmoébgiarticle production that we are pri-
marily interested in) we are not picking-up deviations ealisy back-reaction effects.

For the sake of the argument let us go further by concengyatinthe relevance of our model
for the phenomenological side of quantum gravity. Quantuawity phenomenology is the attempt
to reduce quantum gravity to a series of high-precisiornceffmanifesting themselves in minor ex-
tensions of our currently known theories. (It is nothingeeisen, than an existentiafisapproach
towards quantum gravity.) One assumes that quantum gragtthe fundamental theory behind
guantum field theory and general relativity, cannot hide gletely, and will eventually reveal its
existence in terms of modifications to one or both of thesertes. Lacking a theory of quantum
gravity, we are left withphysically reasonablguesses about the phenomenological side of quan-
tum gravity. In this spirit analogue models for gravity/ egent spacetimes might be thought of as
an inspiration for quantum gravity phenomenology. Theyragd-life examples for the idea, that
independent of the actual system (e.g. electromagnetieguade, superfluid helium, condensed
Bosons, water) a notion of spacetime exists in the infrairad, lhiding its actual fundamental na-
ture. What is more, the first corrections accounting for fecgic substructure enter the quantum
field equations in a familiar manner, as expected in mang®ffefield theories. As to the sense or
nonsense of emergent rainbow spacetimes, there is no phesitiction in the present model that
would prevent us from considering the “Planck-modificagibas part of the geometry.

In conclusion, we can only hope that the "deja vu effect” ipngits is to some extent applicable
for quantum gravity, and to let nature decide what is phylsicaasonable.
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