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Emergent spacetimes and experimental cosmology Silke Weinfurtner

1. Introduction

The idea of setting up laboratory-based toy models for quantum field theory has been dis-
cussed, at the very least, ever since Bill Unruh’s development in 1981 [43] of what are now known
as “dumb holes” or “acoustic black holes”. In that initial article, Unruh first indicated the analogy
between the motion of sound waves in a convergent fluid flow andmassless spin-zero particles
exposed to a black hole.

Gradually, the acoustic metric / analogue gravity / emergent spacetime programme has been
extended to various media (e.g., for an electromagnetic waveguide [39], Bose–Einstein conden-
sates [2], and superfluid helium [46]). Emergent spacetimesin superfluids are of special interest
for experimental purposes. The extremely low background temperatures for superfluids enable
us in principle to detect tiny quantum effects, such as Hawking radiation and “externally driven”
particle production. In addition, the experimental techniques to control superfluids, (for example
Bose–Einstein condensates), are already at a very sophisticated level and further progress in quasi-
particle detection mechanisms is expected [14, 38, 51]. There are plenty of technical problems that
have to be addressed before the experimental laboratory realization of black holes, or cosmological
particle production, but the situation does not seem by any means to be hopeless.

In the following we will therefore focus on spacetimes emergent from an ultra-cold gas of
Bosons. It has been shown, see for example [3, 4, 11, 12, 14, 37, 42, 49], thatin principle it is pos-
sible to manipulate the speed of sound through external fields to mimic the behavior of quantum
modes in Friedmann–Robertson–Walker-type (FRW) universe. Previously, in [23, 47], we argued
that before attacking specific problems involved with the experimental set-up, one needs to care-
fully choose a suitable parameter regime for such an experiment. In the following we would like to
summarize and extend these ideas, and present an instruction guide for experimental analogue cos-
mology via Bose–Einstein condensates, see boxed text in Sec. 2.2. These ideas will be presented
in the second half of our paper.

In the first half, we will comment on the phenomenology of emergent spacetimes, and address
its relevance for quantum gravity and quantum gravity phenomenology. Systematically, we ex-
plain why the particle production process in parametrically excited condensates, corresponding to
emergent Friedmann–Robertson–Walker geometries, is in general not robust against model-specific
deviations from “Lorentz invariance”. The modifications inthe collective regime originate in the
microscopic physics of the condensate, i.e., the fundamental Bosons. These modifications break
the Lorentz symmetry in the analogue model at ultraviolet scales [20]. A significant branch of so-
called “quantum gravity phenomenology” focusses on the consequences of Lorentz violations at
high energies, and thus the study of stability / robustness of semi-classical quantum gravity against
“Planck-scale modification” is of great theoretical interest [20,?, 44]. We also suggest an alter-
native approach to get a grasp on the momentum-dependent behavior of quantum modes in an
explicitly time-dependent external geometry, by using thenotion of rainbow spacetimes.

1.1 Emergent spacetime geometries from ultracold Bose gases

In the following we present a relatively simple and well-understood system, that is — to some
extent, as we will show in this paper — capable of mimicking the behavior of quantum field modes
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exposed to an inflationary universe. The specific emergent spacetime geometry we are investigating
exhibits the following key features:

High temperature phase: At the most fundamental level we are dealing with non-hermitian quan-
tum field operators representing the creation,ψ̂†(t,x), or destruction,ψ̂(t,x), of an individual
Boson at a particular point in time and space. The relations between two field operators atx
andx′ are given by three equal time commutators

[
ψ̂(t,x), ψ̂(t,x′)

]
= 0, (1.1)

[
ψ̂†(t,x), ψ̂†(t,x′)

]
= 0, (1.2)

[
ψ̂†(t,x), ψ̂(t,x′)

]
= δ (x−x′). (1.3)

For our purposes we consider a gas of trapped, ultra-cold, highly dilute and weakly interact-
ing Bosons. Thus the Hamiltonian can be written as

Ĥ =

∫
dx

(
−ψ̂† h̄2

2m
∇2ψ̂ + ψ̂†Vextψ̂ +

U
2

ψ̂†ψ̂†ψ̂ψ̂
)

, (1.4)

the sum of the kinetic energy of the Boson field and the two potential energy contributions;
the external trap,Vext, and the particle interactions,U . Due to the extreme dilution of the gas
only two-particle interactions are taken into account, andin the weak-interaction regime the
inter-atomic potential can be approximated by a pseudo-contact potential

U =
4πh̄2a

m
. (1.5)

Herem is identified with the single-Boson mass, anda thes-wave scattering length. For this
paper we only consider repulsive,a > 0, inter-atomic forces. Experimentally, both negative
and positive values fora are accessible (by tuning external magnetic fields), and correspond
to repulsive and attractive atomic interactions. It is interesting to notice that the nature of the
microscopic interactions is related to the signature of theemergent spacetime. Repulsive (at-
tractive) atom-atom interactions can be connected with a Lorentzian (Riemannian) spacetime
signature, see for example [9, 10, 19, 51].

Low temperature phase: This is a regime where the microscopic degrees of freedom give way to
macroscopic variables, such that the creation and destruction field operators can be replaced
by classical mean fields,̂ψ† → 〈ψ̂†〉 ≡ ψ∗ and ψ̂ → 〈ψ̂〉 ≡ ψ . For topologically trivial
regions, without zeros or singularities, the complex macroscopic field may be written as

ψ(t,x) =
√

n(t,x) exp(iθ(t,x)), (1.6)

a function depending on two collective real-valued variables; the field amplitude as the square
root of the condensate density,n(t,x), and an arbitrary (but fixed) phase,θ(t,x). Therefore,
the single-particle Hamilitonian is no longer invariant under phase transformations of the
kind θ → θ̃ exp(iα). TheU(1) ≡ SO(2) symmetry of the Bose gas is broken spontaneously
at the transition temperatureTc. Below Tc a large fraction of the atoms collapse into the
lowest quantum state, and the gas undergoes a Bose–Einsteincondensation. In this state of
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matter the quantum nature of the atoms becomes apparent on macroscopic scales, and the
high and low temperature phases in our system are connected through a first-order phase
transition associated with a spontaneous symmetry breaking.

Semi-classical quantum geometry picture:In the hydrodynamic limit a geometrical rank two
tensor can be identified, dominating the evolution of linearized classical and quantum exci-
tations around the mean field,θ → θ0 + θ̂ andn→ n0 + n̂. The dynamical equations are

1√
|g|

∂a

(√
|g|gab∂bθ̂

)
= 0, (1.7)

and small density fluctuations are considered to be the conjugate momenta to small phase
perturbations, ˆn = Π̂θ̂ = −

√
|g|gtb ∂bθ̂ , on the emergent / analogue / acoustic spacetime,

gab ≡
(

nh̄
cm

) 2
d−1

[
−(c2−v2) −v j

−vi δ i j

]
. (1.8)

The conformal factor depends on the spatial dimensionalityd of the condensate. The back-
ground velocityv is given by

v =
h̄
m

∇θ0 , (1.9)

as the gradient of the condensate phaseθ0, andc denotes the speed of sound. The transfor-
mations applied to the field operators preserve the initial commutation relations (1.1-1.3):

[
θ̂(t,x), θ̂ (t,x′)

]
= 0, (1.10)

[
Π̂θ̂ (t,x),Π̂θ̂ (t,x′)

]
= 0, (1.11)

[
θ̂(t,x),Π̂θ̂ (t,x′)

]
= iδ (x−x′). (1.12)

From a field theory point of view, the present model is only capable of mimicking spin-zero
masslessscalar fields. However, it is also possible to develop an analogy between multi-
component Bose–Einstein condensates andmassivespin-zero scalar fields. The addition of
extra fields is necessary, as the fundamental Hamiltonian (1.4) undergoes a spontaneous sym-
metry breaking atTc, predicting at least one massless field excitation; see e.g.the Nambu–
Goldstone theorem in [52]. In ann-component condensate we expectn excitations, where
n−1 of them can have a non-zero mass. A full treatment of a 2-component Bose–Einstein
condensate with respect to the analogue model programme canbe found in [48, 49, 50]
and [26, 27].

Furthermore, there are also kinematical and dynamical differences between the emergent
metric tensor (1.8), and the gravitational metric tensor encountered in general relativity.
Firstly, the emergent spacetime components are functions of the macroscopic mean field
variables, and thus possess only two degrees of freedom. Therefore in comparison with gen-
eral relativity — where we are dealing with six degrees of freedom — the analogy is only
fully applicable in a limited number of (typically highly symmetric) spacetimes.

The emergent spacetime picture is derived under the premisethat field perturbations are
negligibly small,〈δψ̂〉 ≡ 0 and〈δψ̂†〉 ≡ 0, and therefore will not backreact with the classical
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mean field,〈ψ +δψ̂〉 ≈ ψ and〈ψ∗+δψ̂∗〉 ≈ ψ∗. Within this approximation the system isin
principlecapable of mimicking quantum field effects, where the gravitational field is retained
as a merely classical background insensitive to the evolution of its quantum perturbations.
Beyond the validity of this approximation the analogy seemsto break down, as the dynamics
of the emergent spacetime is governed by the second quantized Hamiltonian for a system of
Bosons. In general the Hamiltonian (1.4) is only in some cases appropriate to describe the
dynamics of the system, when three-body recombination effects can be neglected; a thorough
treatment of higher-order terms involves a number-conserving approach as presented in [34,
16]. It can be shown that the dynamics of the emergent spacetime description, correlated to
the ground state of the system, is different from Einstein’stheory of gravity. This issue has
been investigated in [13].1

As indicated in the previous paragraph, while the analogy isin principle capable of mimick-
ing quantum field theory effects in curved spacetime, any specific analogue model currently
known will exhibit some specific corrections thatmight lead to significant modifications to
the particle production process. Surprisingly, the model specific alterations enter (to first or-
der) in a relatively simple manner, and should be viewed as anessential part of the emergent
spacetime picture.

All of the above is derived under the premise of thehydrodynamic approximation, where the so-
calledquantum pressurein the superfluid is negligible, that is:

|U n0| ≫ |(h̄2/2m)D̃2 n0|. (1.13)

This holds when the kinetic energy of density fluctuations inthe condensate,(h̄2/2m)D̃2 n0/n0, is
small compared to the atom-atom interaction strength,U . HereD̃2, a differential operator acting
on n0, is defined as

D̃2 =
1
2

{
(∇n0)

2− (∇2n0)n0

n3
0

− ∇n0

n2
0

∇+
1
n0

∇2
}

. (1.14)

As the differential operator depends on spatial derivatives, it will increasingly alter the behavior of
quantum field modes with higher wavenumbers,k. Luckily, all modifications are formally taken
into account by simply replacing the atom-atom interactionsU by a differential operator̃U :

Ũ = U − h̄2

2m
D̃2 . (1.15)

This leads to modified hydrodynamic equations involving non-trivial implications for the emergent
spacetime programme.

Non-perturbative ultra-violet corrections: Now setn0(t,x) ≡ n0 andθ0(t,x) ≡ θ0, so that the
emergent metric (1.8) is equivalent to that of Minkowski spacetime. Then the dispersion

1We would like to point out that our specific model captures some — but not all — relevant physical ingredients
necessary forquantum graphity[31, 33, 32, 25, 24]. Generally, the analogue models / emergent spacetime programme
might also be of phenomenological value for alternative approaches for quantum gravity involving some microstructure
dominant at very small scales.
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relation for small classical and quantum fluctuations around this classical ground state is
given by

ω2
k = c2k2 + γ2

qpk
4 ≡ c2k2

(
1+

k2

K2

)
, (1.16)

where it is useful to define the quantities

γqp =
h̄

2m
, and K =

c
γqp

, (1.17)

such that we easily obtain the hydrodynamic limit, forγqp → 0, or alternativelyK → ∞. (For
a detailed derivation see for example [47, 23]).

Thus, the present system exhibits an emergent Lorentz symmetry for infrared quantum modes,

kIR : |k| ≪ K, (1.18)

where effectivelyγqp → 0, and the hydrodynamic limit is applicable. At small scales—
relative to 1/K — this symmetry is broken, as model specific corrections become apparent
for crossover and ultraviolet modes,

kcrossover : |k| ∼ K, kUV : |k| ≫ K, (1.19)

consequently we must keepγqp 6= 0 in these regimes, and quantum pressure effects of the su-
perfluid significantly influence the behavior of small fluctuations. In this spirit it is plausible
to introduce ananalogue Planck-length,

ℓPlanck=
γqp

c
≡ h̄

2mc
≡ 1

K
. (1.20)

The reader may consider that in some sense theemergent Lorentz invariance breaking(LIV)
scalehas to be correlated with “new physics” and we will further advocate this point of view
below.

Summarizing the above, we see that emergent spacetimes / analogue models exhibit an emer-
gent / effective Lorentz symmetry for low-energy / infraredexcitations around the macro-
scopic mean field. This symmetry will be broken in the high-energy / ultraviolet regime, that
is at scales where collective classical and quantum fluctuations first experience effects from
the underlying microscopic theory. The present model focuses on the boost subgroup that
supports CPT invariance and results in a momentum-dependent dispersion relation. These
corrections originate in the hydrodynamic fluid equations,and hence are of non-perturbative
nature.

We trust that the above has provided readers unfamiliar withthe analogue models programme with
the key features necessary to understand the parallelism. Analogue models are a generic tool for
probing the interface between gravity and quantum physics.From now on we would like to restrict
our toy model further, and focus on the possibility of mimicking cosmological spacetimes.
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1.2 FRW-type spacetime geometries and degrees of freedom

In the hydrodynamic limit the speed of sound in a condensate with an explicit time-dependence,
but still “at rest” — zero background velocity,v = 0 — can be expressed by

c(t,x)2 =
4πh̄2

m2 n(t,x)a(t,x) → c0(x)2bn(t)ba(t). (1.21)

Both the scattering lengtha(t) = a0ba(t) and the condensate densityn(t,x) = n0(x)bn(t) are al-
lowed to vary with respect to laboratory timet. The initial condensate parameters, at the beginning
of the experimentt = t0, are given bya0 and n0, such thatba(t0) = 1 andbn(t0) = 1. Without
any loss of generality we can sett0 = 0. (Notice, that for the cases wheren0 exhibits a spatial
dependence, one has to give up on a uniform sound-cone structure throughout the condensate. In
these scenarios the notion of FRW spacetime has to be restricted to an area wheren0(x) ≈ n0 is
approximately constant.) Implementing this parameterization into the line-element (based on the
metric given in equation (1.8)) we have

ds2 =

(
n0

c0

) 2
d−1

[
−c2

0 bn(t)
d

d−1 ba(t)
d−2
d−1 dt2 +

(
bn(t)
ba(t)

) 1
d−1

dx2

]
. (1.22)

Let us implement a change of coordinatesdτ2 = bn(t)
d

d−1 ba(t)
d−2
d−1 dt2, such that

ds2 =

(
n0

c0

) 2
d−1

[
−c2

0dτ2 +

(
bn(τ)

ba(τ)

) 1
d−1

dx2

]
, (1.23)

where it is obvious that effectively — in this parameterization for zero background velocity — we
are left with one degree of freedom,g(τ) = bn(τ)/ba(τ). By inspection this metric represents a
spatially flat (k = 0) FRW cosmological spacetime with scale factor

aFRW(t) = aFRW,0

(
bn(τ)

ba(τ)

) 1
2(d−1)

. (1.24)

However, in the specific analogue spacetime under current investigation the situation is a more
elaborate one as the applicability of this interpretation hinges on the validity of the hydrodynamic
limit, or in the language of effective field theories on the (in this particular case time-dependent)
effective Planck-length, given (in units of laboratory distance) by

ℓPlanck(t) =
γqp

c(t)
=

γqp

c0
√

bn(t)ba(t)
=

ℓPlanck,0√
bn(t)ba(t)

. (1.25)

In addition, up to the present time we are lacking a thorough treatment of the possible modifications
to the particle production process arising from, strictly speaking, non-linear dispersion relations for
spin-zero massless scalar fields in time-dependent parametrically excited analogue models. (This
is in contrast to several analyses of dumb hole evaporation [20, 21,?, 44, 45] focusing on this
issue.) This raises the question of the “robustness” of particle production in effective spacetimes
with time-dependent preferred-frame effects.
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1.3 On the existence of geometry beyond the hydrodynamic limit

Consider a classical / quantum mode with wavelengthk, assuming that at a particular timet1
it is insensitive to quantum pressure effects in the condensate,k ≪ 2π/ℓPlanck(t1). Let us further
assume that as the system evolves, we can find a timet2, with t2 > t1, such thatk≫ 2π/ℓPlanck(t2),
concluding that att2 the analogy hasbroken down. There seems to be no caveat here, as long as one
tries to explore the intermediate regime, wheret1 < t ′ < t2, such that the wavenumber of the modes
gradually changes fromk≪ 2π/ℓPlanck(t1) to k∼ 2π/ℓPlanck(t ′), and finally tok≫ 2π/ℓPlanck(t2).
There is in this situation no such thing as Einstein dynamicsfor the condensate parameters, nor is
it possible to uniquely separate the notion of spacetime from the field equations, as in our model
both arise simultaneously. This leaves us with the possibility of treating modifications resulting in
non-linear terms in the dispersion relation as part of the geometry.

Let us briefly map out the technical steps involved in obtaining a geometrical interpretation for
the kinematical behavior for collective perturbations in the condensate beyond the hydrodynamic
limit. For that we require the existence of:

(i) hydrodynamic fluid equations,

(ii) the integral differential operator̃U−1, and finally

(iii) a relation betweenf ab and gab.

Regarding(i), as mentioned previously quantum pressure effects are easily taken into account by
formally replacing the atom-atom interaction variable with an interaction differential operatorU →
Ũ . In this spirit themodifiedhydrodynamic fluid equations for classical / quantum perturbations are
given by,

(Continuity equation) ∂t n̂+ ∇ ·
[(

n0h̄
m

∇θ̂
)

+(n0 v)

]
= 0, (1.26)

(Euler equation) ∂t θ̂ +v ·∇θ̂ +
Ũ
h̄

n̂ = 0. (1.27)

Notice the modifications only enter the Euler equation, while the continuity equation remains un-
touched. The nomenclature “quantum pressure” originates from the fact that this modification is
adding terms involving gradients of ˆn to the fluid equation.
Regarding(ii) , to extract the analogy between fluid mechanics and classical / quantum field theory
beyond the hydrodynamic limit it is necessary to find an explicit and tractable expression for the
differential operatorŨ . Only then are we able to merge the Euler and continuity equations into the
form ∂a( f ab∂bθ̂) = 0. SinceD̃2 andŨ are second-order linear differential operators, the inverse
Ũ−1 always exists as an integral operator (that is, in the sense of being a Green function).
Finally, (iii) , thed+1 dimensional matrixf ab derived from the modified hydrodynamic equations
is contains inverse-differential-operator-valued entries:

f ab = h̄


 −Ũ−1 −Ũ−1v j

−viŨ−1 n0
mδ i j −viŨ−1v j


 . (1.28)
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Notice that in general−Ũ−1vi 6= −viŨ−1, and thus quantum pressure effects may at first glance
seem to introduce non-symmetric effects in the spacetime geometry. However these two objects
are Hermitian adjoints in the sense of integral operators, and so f ab is formally self–adjoint when
acting on the appropriate function space, which (rather than naive symmetry) is the key property
that one really wishes to preserve. In addition, we need to find an (inverse) metric tensorgab such
that f ab ≡√−ggab whereg is the determinant ofgab. Only then is the connection formally made
to the field equation for a minimally coupled massless scalarfield in a curved spacetime. However,
this last step is by no means obvious, asŨ−1 does not necessarily commute with thev j ’s and / or
n0.

It goes without saying that only in the hydrodynamic limit, whenŨ−1 is replaceable withU ,
do we fully recover a conventional spacetime geometry in ourcondensed matter system. Going
beyond the hydrodynamic limit, to some extent the so-calledeikonal limit is applicable, leading to
the notion ofrainbow spacetimes.

1.3.1 The notion of rainbow spacetimes

In the eikonal limit, the differential operator̃U can usefully be approximated by a function
Ũ →Uk(t,x) = U(t,x)+ h̄2k2

4mn0
, which we shall conveniently abbreviate by writingUk. Beyond the

hydrodynamic limit, but within the eikonal approximation,we obtain

f ab =
h̄

Uk


 −1 −v j

−vi n0Uk
m δ i j −viv j


 . (1.29)

Note that in the eikonal approximation thek dependence hiding inUk will make this a momentum-
dependent quantity, leading to a so-calledrainbow metric. It is convenient to define a momentum
dependent speed of soundck(t)2 = n0Uk/mand so write

f ab =

(
n0h̄

c2
km

)
 −1 −v j

−vi c2
kδ i j −viv j


 . (1.30)

The metric tensor is explicitly given by

gab ≡
(

n0 h̄
ck m

) 2
d−1

[
−(c2

k −v2) −v j

−vi δ i j

]
, (1.31)

where we observe thatck(t)2 = c(t)2 + γ2
qpk

2. Before we move on and exemplify the usefulness of
the notion of rainbow spacetimes, we would like to point out that in the special case where the all
entries inf ab only depend on the laboratory timet, but not on spatial coordinatesx, then symmetry
and the existence ofgab is guaranteed.

The introduction of rainbow spacetimes might seem at first glance merely to be an artificial
and unnecessary way to complicate the situation with the analogue models. The standard route
to investigate the behavior of Lorentz symmetry breaking effects at ultraviolet scales is to study
effective field theories. However, sometimes we are not ableto solve the full problem, and that
is when rainbow spacetimes can play an important role — as they give us an alternative insight
towards the understanding of particle production in a FRW-like spacetime under the presence of
Planck-scale modifications.
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2. Experimental cosmology by way of illustration

In the following we will focus on a very simple, and in some sense idealized realization of
laboratory cosmology. Here the novelty lies in the possibility of comparing our model presented
above with explicit numerical simulations [23, 47]; simulations that are purely based on the par-
ticular condensed matter system, without imposing any of the assumptions necessary to derive the
emergent spacetime picture.

The analogy we are interested in is quantum field theory in spatially flat k = 0 Friedmann–
Robertson–Walker geometries in two spatial dimensionsd = 2,

ds2 = gab dxa dxb = −dτ2+a(τ)2
2

∑
i=1

(dxi)2. (2.1)

This is technically imposed by assuming a uniform and constant condensate density,n(t,x) ≡ n0,
but allowing the scattering length to vary in time. Altogether we setbn(t) = 1 andba(t) = b(t),
such that the effective line-element (1.22) reduces to

ds2 =

(
n0

c0

)2[
−c2

0dt2 +bk(t)
−1dx2] . (2.2)

For two spatial dimensions laboratory timet and proper timeτ are of the same form, and for the
momentum-dependent FRW scale factor we obtain the very simple relationship,2

ak(t) = bk(t)
−1/2 =

1√
b(t)+ (k/K)2

. (2.3)

2.1 Emergent rainbow inflation

Perhaps the most interesting cosmological case to study in our emergent spacetime is thede
Sitter universe, where the scale factor is given by an exponentially expanding (or contracting)
universe,a(τ) = exp(Hτ). The concept of cosmological inflation was introduced simultaneously
around 1981 and 1982 by Guth [17], Linde [28], and Albrecht and Steinhardt [1] to explain the
homogeneity of the temperature observed in our universe, beyond casually disconnected areas. Not
long after (see, e.g., Guth [17], Hawking [18], Bardeen [5],Turner [41] and Brandenburger [8]) it
was realized that inflation also accounts for the existence of the perturbations in our universe today.

By now it should be clear that in order to simulate the behavior for quantum modes exposed to
an inflationary universe in our 2-dimensional superfluid, weshall have to make some compromises.
In particular, we choose the scale factor for the atomic interactions to beb(t) = exp(−t/ts), such
that in the hydrodynamic limit the model is approaching the de Sitter case,ak(t) → a(t). Unfortu-
nately, that is the best one can do, one cannot make all momentum modes simultaneously see the
same de Sitter universe.

2A more detailed treatment can be found in [23, 47] and in [3, 4]. Alternatively in [11, 12, 14, 42, 43] the authors
kept the atom-atom interactions constantba(t) = 1, working instead with time- and space-dependent condensate density.
One then encounters non-uniformal sound-cone structure and (especially for the cases of a freely expanding condensate)
a destructive measurement set-up where back-reaction effects might turn out to be significant.
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(a) Scale factor including quantum pressure effects;
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(b) Scale factor including quantum pressure effects;
with timescalets = 1×10−5.

Figure 1: (Colors online only.) In this figure we plot the logarithm of the scale functionak(t) for each
k-value — fork ∈ [9,191] — in a different colour. The different colours encode the energy of the modes:
Gradually changing from low-energy / infrared (dark red) tohigh-energy/ ultraviolet (dark blue). While the
rainbow-scale factor approaches that of the hydrodynamic limit for low-energy modes, the ultraviolet modes
show strong deviations. Note, that in the infinite past all modes are phononic, and thereforeak(t) → a(t).
The black dots indicate the time-dependent crossover (phononic to trans-phononic) in every quantum mode.
Parameters areCNL(t̄ = 0) = 2×105, N0 = 107 andX = 4×106. (See [23, 47] for details of the simulations.)

The specific scale factor in the emergent line-element (including quantum pressure effects) is

ak(t) =
1√

exp(−2H t)+ (k/K)2
. (2.4)

Thus the hydrodynamic, exp(−2H t) ≫ |k/K|2, crossover, exp(−2H t) ∼ |k/K|2, and free particle,
exp(−2H t)≪ |k/K|2, limits are a matter of dividing the spectrum into appropriate energy regimes
at a particular time t. It is interesting that for early times — when the interactions between the
atoms are strong — we naturally approach the hydrodynamic case, limt→−∞ ak(t) → a(t), in the
sense that most modes are phononic, and therefore larger andlargerk-ranges are covered by “con-
ventional” FRW-type quantum-field-theory.

Quite the contrary occurs after an infinitely long-lasting expansion, where all modes behave
as free particles, limt→+∞ ak(t) → |K/k| , and the universe, as seen by a mode with the wavelength
k, will effectively approach a final finite fixed (momentum-dependent) size.

Before we continue, we wish to illustrate — for the particular parameters used in our numer-
ical simulations for a de Sitter-like universe — where the phrase rainbow spacetime comes from;
see Fig. 1. There we plot the emergent rainbow scale factorak(t) for eachk mode using differ-
ent colours — gradually changing from dark red for infrared modes to dark blue for ultraviolet
modes. The resulting colour-spectrum is reminiscent of on the colour spectrum obtained from real
rainbows.

Due to this fundamental difference between our analogue model and the “theory” we wish to
mimic, we know already that there will only be a finite time-period — its length depends on the
existence of the phononic regime, and therefore on the tunable initial interaction strengthU(0) =U0
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— beyond which the analogy breaks down. Note that the particle production process naturally
ceases when the expansion rate slows down to zero. Thus we arefacing a significant mathematical
problem, one that cannot be treated in a fully analytical manner as we pointed out previously
in [23, 47]. Fortunately, the emergent rainbow spacetime picture is sufficient to provide good
estimates for the particle production.

2.2 Instruction guide for experimental cosmology

The process of cosmological particle production in an expanding / collapsing universe can be
qualitatively understood in terms of a single parameter, sepcifically, the frequency ratioRk(t), see
box. Initially, as pointed out in [47], we derived this connection between the qualitative behavior
of the particle production process and this frequency ratioin the hydrodynamic limit, where exact
analytical studies are possible. We then extended these ideas to the emergent rainbow metrics.

We propose a simple 3-step process to get a quantitative estimate of the particle production in
our emergent spacetime, as a road map for experimental cosmology:

1 – Assign the initial condensate parameter, specifically thespeed of soundc0 =

c0(U0,n0,m), and the scaling functions for the scattering lengthb(t/ts). For a de Sitter-
type universe the scaling timets and the Hubble frequencyH are related byH = 1/(2ts).

2 – Using the modified scale factorak(t), see equation (2.4), and the modified dispersion
relation, hereωk(t) = ω0

√
exp(−2Ht)+ (k/K)2, compare with equation (1.16), we

compute the rainbow Hubble parameterHk(t):

Hk(t) :=
ȧk(t)
ak(t)

= H
exp(−2H t)

exp(−2H t)+ (k/K)2 . (2.5)

Identify the ratio between the modified dispersion relationand the effective Hubble pa-
rameter as the significant parameter determining the particle production in our emergent
spacetime,

Rk(t) =
ωk(t)
Hk(t)

=
ω0

H
(exp(−2H t)+ (k/K)2)3/2

exp(−2H t)
. (2.6)

Note that within the hydrodynamic limitRk(t) → Rk(t) = ω0
H exp(−H t), andHk(t) →

H. As a rough rule of thumb we summarize: The smaller the frequency ratio the higher
the final occupation number of the corresponding quantum mode.

3 – Estimate particle production by analyzingRk(t). A quantum mode with the wavenum-
berk only experiences a significant amplifications whenRk(t) ≪ 1.

It is a well-known result that the solutions for a spin-zero massless scalar field exposed to
a de Sitter-type universe are a linear combination of first order Hankel functions of the first and
second kind [7, 15]. These mode functions are a function of the dimensionless ratioRk(t) = ω/H,
and in the limit ofRk → ∞ the mode functions approach “freely oscillating” positiveand negative
frequency modes, while forRk → 0 the modes stop oscillating, and the modes exhibit exponentially
growing or exponentially decaying kinematics. The situation is lightly more complicated in our
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specific rainbow spacetime, that we wish to use to mimic cosmological inflation. However, we are
able to define a modified frequency ratio, see box, which remains the only significant parameter in
the system.

Ex antewe would like to motivate this section by the remark that while the frequency ratio
in the hydrodynamic limitRk(t) is a monotonically decreasing function in time, the ratio inthe
eikonal approximationRk(t) is not. Therefore there is some freedom to obtain results different
from the “conventional” particle production process. We demonstrate the correctness of this asser-
tion by referring to the numerical simulations reported in [23].

To obtain a rough estimate on the different qualitative regimes of particle production, we use
the experience gained in the hydrodynamic limit, and simplyexchangeRk(t) → Rk(t).

For early times, whenRk(t) ≫ 1 the hydrodynamic and eikonal ratios are identical, and there-
fore in both cases approach the adiabatic limit, where we expect the particle production process
to be negligibly small. Here quantum modes are approximately plane waves, but their amplitude
and frequency change as a function of time. This ansatz is referred to as the WKB approximation,
which is valid within theadiabatic limit, when during one oscillation periodT = 2π/ωk(t) the

relative change in the frequency is small (see [35]),
∣∣∣ωk(t+T)−ωk(t)

ωk(t)

∣∣∣ ≈ 2π
∣∣∣ ω̇k

ω2
k

∣∣∣ ≪ 1. For de Sitter

spacetimes equates to
∣∣∣ ω̇dS

k

(ωdS
k )2

∣∣∣ =
∣∣∣ 1

Rk(t)

∣∣∣ ≪ 1, the condition that the ratioRk(t) is much larger than

one, which verifies the consistency of adopting the adiabatic approximation.

As intimated, the overall slope of the eikonal ratio is not a monotonically decreasing function,
sinceṘk changes its sign attturn = ln(K2/(2k2))

2H . For t < tturn the slope of the ratio is negative, for

t = tturn the ratio is given byRk(tturn) = 3
√

3
2

γqp

H k2 , and fort > tturn the ratio is positive. Therefore
the eikonal ratio has a minimum attturn, with the maximal particle production around this point.
After this point the ratio starts to increase again, and we shall soon see that the particle production
process will slow down again.

To qualitatively describe the particle production processin our specific rainbow spacetime, we
suggest the following terminology:

t →−∞: At early times almost all modes are “sub-Hubble-horizon” modes, and the particle pro-
duction process is negligible. The modes oscillate with much higher frequencies than their
corresponding Hubble frequencies, that isRk(t) ≫ 1.

t ∼ tturn: As times goes on the mode frequencies are decreasing, while at the same time the rainbow
Hubble frequencies are decreasing as well. Nevertheless, the ratio between them exhibits a
minimum attturn, where the particle production process is expected to be maximal. Even
if the particle production process is maximal, this does notnecessarily imply that the quan-
tity of particle production is noticeable; the modes also need to be “super-Hubble-horizon”
modes, or in more accurate terminology, we requireRk(tturn) ≪ 1.

t ∼ tcrossing: If there exists a timet = tcrossing, such thatRk(tcrossing) ∼ 1, where a modek crosses
the “Hubble horizon”, then there will be asecondtime t = tre−entering, where the modek
re-enters the “Hubble horizon”, andRk(tre−entering) ∼ 1. We suggest that it is useful to adopt
the following terminology to describe the behavior of the modes: “freezing of the modek”
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(c) Nk(t) projected onto thet-Nk plane. (d) Rk(t) projected onto thet-Rk plane.

Figure 2: (Colors online only.) In this figure we compare the quasiparticle production per quantum mode
(left column) with its frequency ratioRk(t) (right column), forts = 1×10−5. Parameters areCNL(t̄ = 0) =

2×105, N0 = 107 andX = 4×106. (See [23, 47] for details of the simulations.) The bold plotted dots on
the left hand side indicate that the frequency ratio is belowone, hence the quantum mode corresponds to a
super-Hubble horizon mode. On the right hand side we have indicated with the bold dots when a change
in the mode occupation number is above a certain threshold — here∆Nk > 0.004 — roughly to filter out
quantum noise fluctuations.

occurs in the time periodtcrossing< t < tturn, whereas “melting of the modek” occurs during
tturn < t < tre−entering.

Another novelty in our qualitative understanding of the particle production process in our FRW
rainbow-spacetime, is the connection with the condensed matter point of view: The minimum of
the ratioRk(tturn) for a modek occurs at

exp(−2Ht)−2(k/K)2 = 0 → k =
1√

2ℓPlanck(t)
. (2.7)

This quantity also appears in the context of conventional condensed matter physics, where it is
defined as the crossover between the phonon and free-particle region. This borderline, the inverse
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of the healing, or coherence lengthξ [36], is given by

ξ−2 =
2mn0U(t)

h̄2 =
1
2

4m2

h̄2

n0U(t)
m

=
1

2ℓPlanck(t)2 , (2.8)

which indicates where each mode starts to decouple from the spacetime. That is, each mode can
experience particle production, until it becomes free-particle like, and this behaviour starts to kick
on near the Planck scale. Hence, in terms of the microscopic physics of a BEC we have a natural
understanding ofRk(tturn). For a detailed treatment of the numerical simulations please see [23].

To show the quantitative correlation between the modified frequency ratio,Rk(t), with particle
production in our specific rainbow de Sitter spacetime, we have plotted the ratio for severalk-modes
as a function of time, and compared them to number occupationplots, see Fig. 2. This figure
compares the change in the mode occupation number in each mode on the left side, with frequency
ratio Rk(t) of the mode on the right side, for the scaling timets = ×10−5. Each coloured line on
the left hand side indicates the occupation number in the modek as a function of time. On the right
hand side we have plotted the frequency ratioRk(t) for each of those modes with a different colour
(online only); gradually changing from infrared modes (dark red), to ultraviolet modes (dark blue).

The black dots in the figures to the left indicate when the modes cross over from phononic to
trans-phononic behavior, i.e., where each mode starts to decouple from the emergent spacetime.
We can see that the black dots are located where the frequencyratio has its minimum; see Figs. 2.

It is also noteworthy that the commutation relation for the perturbations, in terms of the emer-
gent scalar field and its conjugate momentum with respect to the preferred rest-frame — the lab-
oratory frame — exhibits an explicit momentum-dependence,

[
∂t θ̂k, θ̂k

]
∼U +k2. (Hereθk is the

phase fluctuation operator in momentum-space.) Consequently, the size of the quantum fluctuation
is growing with the momentum of the quantum field mode. (In a sense, Planck’s constant is being
generalized in a momentum-dependent manner.) That is, the precision with which you can mea-
sure the macroscopic field variable〈θ̂k〉 decreases as the momentum increases. While the emergent
spacetime picture is necessary to understand the time-dependent commutation relations — in terms
of the field operator and its conjugate momentum on a time-dependent classical background — the
fact that particle production process tends to zero during inflation is naturally explained from a
condensed matter physics point of view, as it is related to the crossover between phononic and
trans-phononic quasi-particle excitations.

3. Conclusions

What have we learnt from the model presented above? The shortand sincere answer is, that we
have studied in depth a particular molecular system that shares some features with quantum field
theory in curved-spacetime. The viable regime, where the analogy is sufficiently good to mimic
the behavior of quantum modes during an inflationary epoch, is rather narrow. While we are able
to connect a certain parameter regime of the Bose–Einstein condensate model with semi-classical
quantum gravity there is no obvious evidence for its significance for “full” quantum gravity. Any
sensible theory of quantum gravity has to accommodate dynamics for the gravitational field which,
in the appropriate limit, should reduce to those of general relativity (or at least be sufficiently close
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to the latter, see modified theories of gravity such as [6, 22,29, 30, 40]). Therefore the analogue
model investigated above is not a suitable candidate for “full” quantum gravity. Thankfully, how-
ever, the breakdown of the analogy is to a very good extent uncorrelated with the applicability of
the linearization scheme, and (for questions of cosmological particle production that we are pri-
marily interested in) we are not picking-up deviations caused by back-reaction effects.

For the sake of the argument let us go further by concentrating on the relevance of our model
for the phenomenological side of quantum gravity. Quantum gravity phenomenology is the attempt
to reduce quantum gravity to a series of high-precision effects manifesting themselves in minor ex-
tensions of our currently known theories. (It is nothing else then, than an existentialist3 approach
towards quantum gravity.) One assumes that quantum gravity, as the fundamental theory behind
quantum field theory and general relativity, cannot hide completely, and will eventually reveal its
existence in terms of modifications to one or both of these theories. Lacking a theory of quantum
gravity, we are left withphysically reasonableguesses about the phenomenological side of quan-
tum gravity. In this spirit analogue models for gravity/ emergent spacetimes might be thought of as
an inspiration for quantum gravity phenomenology. They arereal-life examples for the idea, that
independent of the actual system (e.g. electromagnetic waveguide, superfluid helium, condensed
Bosons, water) a notion of spacetime exists in the infrared limit, hiding its actual fundamental na-
ture. What is more, the first corrections accounting for the specific substructure enter the quantum
field equations in a familiar manner, as expected in many effective field theories. As to the sense or
nonsense of emergent rainbow spacetimes, there is no physics restriction in the present model that
would prevent us from considering the “Planck-modifications” as part of the geometry.

In conclusion, we can only hope that the "deja vu effect" in physics is to some extent applicable
for quantum gravity, and to let nature decide what is physically reasonable.
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