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Abstract 
 

 It will be reviewed a current status of theoretical and phenomenological approaches to 
investigation of dipole photon strength functions. The model of electric dipole photon strength 
functions (EDPSF) depending on the temperature of gamma-transition final state is compared 
with the phenomenological EDPSFs recently obtained by various methods. Special accent is put 
on the results derived by a “model-less” analysis of two-step gamma decay of compound-states 
created after thermal neutron capture by heavy nuclei. The conclusion on the dependence of 
these strength functions on characteristic of final states is made. A necessity for development of 
the consistent theoretical approach for description the dipole strength functions in the case of 
deformed nuclei is discussed. 
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1. Introduction 

 Slow neutron induced reaction (n,γ) provides very detailed information on photon 
strength functions (PSF) with E  ≤ Bγ n.  In many cases it is possible to study gamma-decay of 
individual excited (compound) induced reaction (n,γ) provides very detailed information on 
photon strength functions (PSF) with Eγ nuclear states with known Jπ values leading to final 
states with very limited range of  Jπ quantum numbers. In addition study of two-step (n, γα)-
reaction [1,2] and (n, γγ)-decay [3-6] gives unique possibility to extract the information on PSF 
for γ-transitions between excited nuclear states important for verification of theoretical models 
and many practical applications. During last decade very useful the results on the sum of mainly 
dipole PSF were obtained with aid of two step reactions (3

 

N

j

N

i

He, 3He’γ) and (3 4He, He’γ). 

Below we consider mainly dipole γ-transitions dominated in gamma-decay of compound states 
created by slow neutron capture.  

2. Gamma-transitions from compound states 

 Gamma-transitions from highly exited nuclear states could be analyzed ion the basis of 
statistical model. We use below the approach proposed in ref. [7]. 

Wave function of compound nuclear state after neutron capture (neutron resonance – NR) could 
be expressed in form [7] 

~

                                                                                                              ,   ( 1 )                                                                 ∑∑ +=Ψ J
jj

J
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where         and             are quasi-particle-phonon basic functions, the principal and small 
components respectively. 
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For an ensemble of NR the distribution of principal components has a form 
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In the limit of N=1 this formula describes a pure ensemble. So we can hope that for      N ≥ 1 the 
distribution (3) gives reasonable results. To estimate a number of principal components consider 
a spreading of basic state          over compound states λ with the same quantum numbers Jπ πJgi
 
                                                                                            ,               ( 4 )             )P

 

 
here Гi  is a spread width of the basic state            . 
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Taking into account normalization condition for xi and natural assumption                        we can 
derive that  
                                                                                                             ( 6 ) 
 
The last condition used really for all combinatorial calculations of level density. The Soloviev 
quasi-particle-phonon model [8] reproduces in general experimental level density. It means that 
Гi  is comparatively small and a variation of  level density within Гi  is small too. So we can 
obtain                                   
                                                                                                            ( 7  ) 

Main contribution into normalization condition of                   (2) goes from basic states with 
the mean number of quasi-particles  
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So it’s possible to show [7] that <Гi >≈1 MeV and N is the number of compound states at 
spreading interval <Гi >. 

As it’s follow from quasi-particle-phonon model a main contribution into normalization 
condition of                gives basic states formed by combinations of shell model states from last 
unfilled shell near Fermi surfaces for neutron and proton systems (principal components) in the 
energy interval: 
 
                                                                                                            ( 9 ) 
A creation of quasi-particle with transition to adjacent shell needs in an additional energy more 
than           and a number of quasi-particles of respective basic states  became much lower (n≈2) 
than a mean number (8). So the density of such (small) components will be much lower than for 
abovementioned principal components and its contribution to the normalization of compound 
state             will be very small.  

2gU≈

−AE i

πJΨ

There is evident difference [7] between γ-transition from compound state c to low lying 
highly excited state c’ and γ-transition from the same state c to ground state or to other 
comparatively “simple” (s) excited states lying above the ground one. 

In case of (cc’) dipole γ-transitions the operators of electromagnetic interaction E1 or 
M1 should match two very complicated many component wave functions (WF). 
In contrary for (cs) γ-transitions the same operators have to ensure an overlapping of compound 
state c wave function and much more simple WF of low lying (ground) state s. Due to different 
structure of WFs of the states c and s PSF for (cs) γ-transitions has to be different from PSF for 
(cc’) transitions. 
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3.         Dipole strength functions in slow neutron induced reactions 

 
The reduced width amplitude of γ-transition of (λI) type (λ=E or M) from NR c to final state f 
could be expressed as [7]: 
 
                                                                                                               ( 10 ) ffJ

cf m ππ λγ ΨΨ= ) f
J

c I ,(
 
Inserting in this formula WFs of states c and f one has 
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where matrix element 
 
                                                                                                   .            ( 12 ) fJ
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If (assumption 1) each basic function           of final state f  could be linked by the operator  
                with r ( r >>1) (in average) functions          when each function         is connected by 
the same operator with in average k  functions          so number of total links is  

ffJ
jg π

)( Im λ

                                                                                                    ( 13 ) 
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where      < N   is number of basic functions              satisfying of the respective selection rules. 
NrNR f

0== k

So one can derives [7] 
0N πJgi

                                                                                                         ( 14 ) NrmRyxm jcf /2 >=<>><><>=<< γ ijiij
2222

 
We see that the reduced width          does not depend on number Nf  so it is valid as for 
complicated states (c type) (N  f >>1) as well as for extremely simple states s (Nf f f=1). Of 
course the approach [7] reproduces the dispersions of          and its other statistical properties. 

2
cfγ

Up to now we considered only γ-transitions related to links between principal components of 
WFs of initial and final states. It’s true for M1 transitions because the respective operator is able 
to connect most basic functions         obtained by combination of p-h -configurations from last 
unfilled proton and neutron shells.  

2
cfγ

πJgi

The estimation of PSF(M1) made in [7] is 
 
                                                             ~ (1÷2)×10-8 MeV-3               (  15 ) 

3)1( πγS J
cf ≡

 
But for E1 γ-transitions a situation is essentially different. The assumption 1 is not true. (cc’) γ-
transitions connect excited states with opposite parity. The structure of such states are rather 
different. Note that in the last unfilled proton (or neutron) shell there is only one state with 
“abnormal” parity opposite to ones of all rest shell states and  the difference ΔJ of its spin value 
from spins of all rest shell states is ΔJ ≥ 2.  

γ

π
γ

ED
M

c

J
cf

><

>Γ<

Then NRs with parity of ground state π0 contain the principle components         formed by p-h –
configurations of shell states of “normal” parity and even   p-h –combinations of shell states of 
opposite parities. In contrary the basic components        states c or c’  with parity (- π0 ) include 
odd number of p-h –configurations connecting shell states of opposite parities.  

πJg

πJg

i

i

-So E1 operator with symmetry 1  could not realize links between most principle components of 
states c and c’. In this case E1 γ-transitions could go only through small components of WFs 
related with p-h –transitions to adjacent shell. 
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It is convenient to account for the effect of most contributing small components of WFs in terms 
of GDR formed  on the final state c’  (Brink hypothesis [9]).  

In the standard approach the cross-section E1  photo-absorption for nuclear state f   has a 
form [10]:  

 
                                                                                                ,               ( 16 ) 
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where         and          are  the position and spread width of GDR. The PSF(E1) could be 
expressed as  
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In this approach there is no difference between (cc’) and (cs) γ-transitions. 
In the paper [11] there was made an attempt to account for PSFcf(E1) a dependence on structure 
of final state f.  
In general                                                                               ,                ( 19 ) 
 
where             is a dipole response. By definition  
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If one use the response              related to the dielectric nuclear penetrability             )γP n(
  
                                                                                              ,                 ( 21 ) 
and the analytic properties of this response are different:  
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The standard expansion of               is 
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For              the same expansion has an opposite sign before the second term in figure brackets. 
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In the last formula the dipole operator has standard shape 
)( γP n E
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and                is an energy of ground 0 (excited c) state. If using technique of strength function 
to average the expansion (23 ) over the energy interval ΔE << E
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If ( 25 ) insert into expansion (23) and account for only term with Eγ >0 we have: 
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But if for           one takes into account both terms in (23) so the following result could be 
obtained [11]: 

)γP (En

 
                                                                                                             ( 27 ) 
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The last formula provides explanation of Eγ dependence in numerator of                     [10].   

Follow approach [11] represent the amplitude of reduced width of E1 γ-transition from 
NR c  to final state f  by the diagram:  

                                    .                   ( 28 )                                                       
 
Here  the solid lines correspond to initial and final states, the circle shows a fragmentation 
amplitude of p-h-state formed on the state f to decaying state c . Analytically the amplitude (28) 
has a form: 
                                                                                                            ( 29  ) 
 
Here                    is a p-h propagator 
 
                                                                                             ,               ( 30 ) 
 
where ν denotes a shell state with energy εν. The equation for vertex  
 
                                                                                                               ( 31 ) 
                                                                                                                        
 
includes the effective interaction in p-h-channel           and the matrix element of dipole 
operator. The fragmentation amplitude could be linked to the width of composite state {f νν’}:  
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if                                     
                                                                                                             ( 33 ) 
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The equation for                      has a solution [12]:  
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where                               
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and the average width has a form:    
 
                                                                                                            ( 38 )  
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In Landau-Migdal approach [12]                  has a form 
 
                                                                                ,                          ( 41 ) 
so finally we have 
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Sometimes it is more convenient to use another form: 
 
                                                                                                             ( 43 ) 
 
The formulas (42-43) were derived for                    . In this energy range the ratio 
                                                                                                                                                                         
                                                                                                             ( 44  ) 
 
depends on            and excitation  energy         .             

It should be stressed that the formula for                 was obtained with some 
approximations such as a reduction of ph-poles in the equation for vertex             to   one 
effective pole ε0 and an use for all indicated poles one spread width             .  

These approximations allow one to describe some integral behavior of PSF and could 
not pretend to reproduce a fine structure of the tail of E1 GDR such as for instance the pygmy 
resonances or other weakly collective phenomena. But for analysis of primary E1 γ-transitions 
and total radiation widths this approach could be effective. It was confirmed in course of 
following extensive investigations. ( See, for more detail the contribution of F. Bechvar at this 
conference). It should be noted that the formula (42) was obtained for spherical nuclei and its 
modifications for deformed nuclei has semi-phenomenological character. 

 
3. Comparison with experiment 
 

Here we have to confess that theoretical study of E1 PSF has been initiated by 
experimental results [1,2] of Dubna group on investigation of the two step (n,γα)-reaction for 
target nucleus 143Nd .The total width of this reaction could be expressed in form [2]: 
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Schematically the spectrum of emitted α-particles is shown in left figure below 
 

 
 

143 140Nd (n,γα)Fig. 1 Alpha spectra from Ce reaction 
 

In the right part of fig. 1 the fit of α-spectrum measured in ref. [13] is shown. The fit gives 
evidence of dominating the dipole (cc’) γ-transitions in this reaction. 

It was very important to study this reaction for different Jπ states of compound nucleus 

 

144Nd. The ratio of                                     depends strongly on type of dipole (cc’)   γ-transitions.  
For E1 γ-transitions                                                                     ( 46 ) 

(/ ≡ΓΓ
−−

ωγα )1

and for M1 γ-transitions  

43 Λγα

42 4)/(( 2 ≈+=)1 αα αω

                                                                                                           ( 47 )                                              
In experiment [2] the value of               was in between of these two numbers so with accuracy 
of 30% for (cc’) primary γ-transitions with E

TTE

)1 3

T

γ ≤ 2.5MeV 
                                                                                                           ( 48 ) 
 
This result revealed for the first time a strong dependence of dipole PSF on structure of the state 
to which γ-transition goes. 
Using the formula (45) for             and calculating the transmission coefficients 
for α-emission by standard method [14] it could be obtained [2] PSFE1 shown below together 
with  other experimental data for 144Nd.  
 

 
  
Fig. 2.  Comparison  experimental ( points with error bars) and theoretical PSF (E1) 
 
Here the curve 1 corresponds to                          while the curve 2  relates to                  ..  . 
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It should be stressed that                        reproduces   here the experimental data      
without any normalization. Due to rather good averaging over intermediate states c’      the 
experimental PSF could serve as some kind of benchmark for this value. 

 

Compare PSF                        for Eγ≤ Bn   [15] 
 
                                                                                                   ( 49  ) 

 
 
with the experimental data on PSFE1 (Eγ≤ Bn ) compiled in ref. [16] . The results presented in fig. 
3 show that                      reproduces in general respective experimental values. 

 
 
 

                                       
 
 

 
 
 
 
 
 
 

Fig. 3    Comparison of experimental (triangles ) and theoretical(dots ) PSFE1. No normalization 
used. 

 
The same has been done for                                                                    .  Note that in the 

approach [7] 
                                                                                                            ( 50 ) 
 
In figure below experimental data from [16] is compare with                  normalized to the 144Nd 
data [2,17]. 

 
 

Fig. 4. Comparison  the experimental [16] PSFM1 (Eγ≤ Bn ) with the estimation from [7] 
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An overall agreement for  A > 90 is reasonable. It is clear that modern more precise data could 
show some variations near the estimation (50) especially due presence of M1 GDR and a 
closeness to magic shell numbers.  

Using the theoretical strength functions [7,11] with above mentioned fixed parameters 
there were calculated total gamma-widths [15] for some middle mass and heavy nuclei . The 
results are shown   in fig.5 below. 

                
  

exp theor Fig. 5   The ratios (Г

 

γ) /(Гγ) –(upper part) and a relative  
theor            contribution to (Гγ)   of  M1   γ-transitions (lower part). 

 
An overall agreement is satisfactory excluding some near magic nuclei. One can   see that    the 
M1   γ-transition contribution to (Г theor

γ)    is essential one. 
It is easy to derive the simple analytical formula for averaged total radiative widths of 

NR using the same theoretical PSFs . Defining                                                one can obtain [17] (( )1 ME ccc γγγ Γ+Γ=Γ )1
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These formulas give correct enough results for all middle mass and heavy nuclei with standard 
values of parameter a from the paper [18]. 
 With the same PSFs many total γ-ray spectra after thermal neutron capture were 
calculated [19]. Some examples of the results obtained without any normalization to 
experimental data are shown below in fig. 6. 

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 



P
o
S
(
P
S
F
0
7
)
0
1
3

 

 

 

 It is appropriate to note here that the same approach to the dipole PSFs and in general to 
gamma-decay of compound states near neutron binding energy permits one to describe 
successfully parity violation effects in total gamma-spectra [ B91 ].   

 
                                                                                                                               

 
 

Fig. 6. Total γ-ray spectra: experiment  -solid lines, calculations – dashed ones 
 
During last two decades a lot of new information for primary dipole PSF was obtained via 

studying of two step gamma cascades (TSCs) by Sukhovoi (Dubna) [3,4] and Bečář (Prague) 
[5,6] groups. These relatively “simple” experiments need very cumbersome and sophisticated 
analysis for extraction of phenomenological PSFs .The results of both groups obtained in 
framework of different data analysis methods are different too.  

In the papers F. Bečář and I. Tomandl a comprehensive description of TSC experiment and 
their method of data processing is presented as well as the results obtained. Here we outline 
schematically main ideas of TSC experiment and show very selective recent results of Dubna 
group. 

After applying some corrections the TSC raw spectra could be converted into the spectra 
expressed via absolute intensities of respective γ-transitions.  
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eally due to a finite energy resolution of used γ-detectors there exists some averaging over 
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In the approach of Dubn es to extract simultaneously [22] the level 
den

Fig averaged over all nuclei under 

 
The right part of this fig. (empty circles) corresponds the assumption of data analysis when 

lect in some extent 
the step                  

lar conclusion were obtained by Prague and Oslo groups (see 
respecti

f such results  

γγ
γγ

ic
fic Γ

γγ ifciI
Γ

Γ

Γ
=

 
R
intermediate states i  that results in additional ambiguities of data analysis. But it was created 
some methods [6, 21-22 ] for extraction from TSC data a sum of  
                                                                                                          )1()1( MSES γγ + cicci
. 

a group one manag
sity (LD)               and the sum (54) of dipole PSFs. Some results from ref. [4] averaged over 

many middle mass and heavy nuclei are represented below in figs. 7 and 8.  
)( ∗Eρ

 
.7.The ratios                             from [4] in function of Eγ /Bn )exp(/)( ∗∗ aEEρ

investigation. 

there is no difference in an energy dependence of PSFs for primary and secondary γ-transitions. 
In the right part of fig. 7 such difference is taken in account (full circles). One can see that the 
details of LD irregularities ( step-like behavior) depend strongly on the type of nuclei ( compare 
for example the results for even-even and odd-odd nuclei). Of course this dependence of LD 
could be the result of the specific method data treating. But it is appropriate to note that the 
results obtained with aid of very different method used by Oslo group show also some step-like 
LD energy dependence (see respective papers presented at this conference).  

The results for the sums of dipole PSFs (54) shown in fig. 8 could ref
-like behavior of LD but in general they give definite indications on dependence of  

on temperature of an intermediate level i  in accordance with ref. [11]. It is more convincing for 
even-even and even-odd nuclei.  

Many arguments for simi
ve contributions to this conference).  
In fig. 9 it is presented one example o
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ig. . PSFs for 148,149Sm,141,142Dy, 146,147Er and 171,172Yb. The full circles are experimental data. 

 
Fig.  8.    The averaged sums of dipole RSF from [ 4  ]. The legends are the same as in fig.
he lower curves correspond to                 from [11] and the upper ones relate to the standard 

Lorentzian shape [10]. Both curves obtained with                                . 
 

 
 

)1(ES ci
γ ConstMS ci =)1(γ

F 9
The solid lines are a fit to the data using                   from [11] and as                    a spin-flip 
GMDR plus a pygmy resonance. 

 

)1(ES ci
γ )1(MS ci

γ
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4. Conclusion 

Slow neutron induced reactions (n, γ), (n, γ γ), (n,γα) are the effective tool for study of 
dip

le to describe in detail all existing experimental  
data

nties of experimental data and theoretical models it is 
pos
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	1. Introduction
	 Slow neutron induced reaction (n,γ) provides very detailed information on photon strength functions (PSF) with Eγ ≤ Bn.  In many cases it is possible to study gamma-decay of individual excited (compound) induced reaction (n,γ) provides very detailed information on photon strength functions (PSF) with Eγ nuclear states with known Jπ values leading to final states with very limited range of  Jπ quantum numbers. In addition study of two-step (n, γα)-reaction [1,2] and (n, γγ)-decay [3-6] gives unique possibility to extract the information on PSF for γ-transitions between excited nuclear states important for verification of theoretical models and many practical applications. During last decade very useful the results on the sum of mainly dipole PSF were obtained with aid of two step reactions (3He, 3He’γ) and (3He,4He’γ).
	Below we consider mainly dipole γ-transitions dominated in gamma-decay of compound states created by slow neutron capture. 
	2. Gamma-transitions from compound states
	 Gamma-transitions from highly exited nuclear states could be analyzed ion the basis of statistical model. We use below the approach proposed in ref. [7].
	Wave function of compound nuclear state after neutron capture (neutron resonance – NR) could be expressed in form [7]
	                                                                                                              ,   ( 1 )                                                                                             
	where         and             are quasi-particle-phonon basic functions, the principal and small components respectively.
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