PROCEEDINGS

OF SCIENCE

Multiparticle correlations and momentum
conservation in nucleus-nucleus collisions

Nicolas Borghini*
Fakultat fur Physik, Universitat Bielefeld, Postfach 18Q21D-33501 Bielefeld, Germany
E-mail: bor ghi ni @hysi k. uni - bi el ef el d. de

Particle correlations are very actively studied in heasy<ollisions at ultra-relativistic energies.
Here, an attempt is made at determining a proper referemeiti studies, by taking properly
into account the multiparticle correlations induced bydbaservation of total momentum in the
collisions.

High-pT physics at LHC
March 23-27 2007
University of Jyvéaskyld, Jyvaskyla, Finland

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Multiparticle correlations and momentum conservation Nicolas Borghini

1. Introduction

High-energy collisions of heavy nuclei result in the endssof up to several thousands of
particles. Such large numbers reflect the complexity of tiks@ns; yet, they allow for a wealth
of different tools to characterize the processes that tid@epin particular to assess the properties
of the medium that is created. Among the possible approathepresence of these many parti-
cles calls in a natural way for statistical descriptionsyad as for observables involving several
particles. Various studies are thus devoted to extractorgetations between pairs, triplets, and
more generallyn-tuples of particles.

The purposes of these investigations are manifold, as ararttierlying physics pictures: To
mention only correlations in momentum space, there aréestfidcusing on identical particles that
are close in momentum (and in position) space, searchingvidence of (anti)symmetrization of
the corresponding wave-function [1]. Other, closely ediegtudies deal with pairs of non-identical
particles with close velocities, to estimate the diffeefietween their emission times [2]. An-
other phenomenon investigated through studies of thelatimes between emitted particles is the
anisotropy in the transverse plane of the emission pattehacied by the finite impact parameter
between the nuclei (“anisotropic flow”) [3]. The extendednsverse-momentum range that be-
came available with collisions at RHIC allowed novel inigations, involving particles with high
transverse momentar, with a view to studying jets. A first kind of such study is tlwditcorrela-
tions in azimuth between pairs of particles with both higinfverse momenta [4], to look for the
presence of structures, close or away in azimuth to a pigheference (“trigger”) particle, that
resemble the jets seen pp collisions. The next step consists of studies of correfatibetween
a highpr trigger and lowpr “associated” particles [5], so as to characterize the mespof the
created medium to the propagation of a highparton (or, less plausibly, hadron).

Whatever the specific aim of a correlation study, it boils ddw a simple principle, namely
to try to identify the trace of some genuine dynamical effadthe joint two-, three-M-particle
distributions. To accomplish this, one needs to determiopgrly what the expectation would
be for these distributions in the absence of such a dynaraftedt. Now, such a “no-dynamics”
M-patrticle distribution is not merely the product Mif single-particle distributions, for there exists
a trivial correlation between arbitrary final-state pdetic due to the conservation of total mo-
mentum, which imposes some constraints on the joint digtabhs [6]. The computation of these
constraints will be discussed in section 3, using the gérdermalism from probability theory
introduced in section 2. In section 4, | shall further disctlee meaning of this ever-present cor-
relation due to global momentum conservation in the colisiand speculate on possible ways to
take it into account in correlation studies.

2. Probability distributions and cumulants

Consider a collision with a total dfi particles in the final state(throughout this papeN is
assumed to be large). The basic observable in studies of éin@emtum correlations betwedh
particles among thal is the joint distribution §.4"/dp;---dpm. To avoid normalization issues, it

IN includesall particles, including the non-detected ones.
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is more convenient to consider the joMtparticle probability distribution f (ps,...,pm), which is
by definition normalized to unity, and therefore (roughiglépendent of the system size.

By definition, M particles with momenta,,...,pm are statistically independent from each
other if and only if the corresponding joint probability gibution can be factorized into the product
of the M single-particle probability distributionsf (ps,...,pm) = f(p1)--- f(pm). Reciprocally,
if they are not independent, this factorization no longddé@nd the joint probability distribution
involves further terms: the joint probability distributican be expanded into a sum over all prod-
ucts ofcumulantscorresponding to distinct partitions of tiw particles. For instance, at the two-
and three-particle levels:

f(p1,p2) = fe(p1)fe(p2) + fe(P1, p2), (2.1)
f(p1,P2,P3) = fe(p1)fe(P2) fe(p3) + fe(p1) fe(p2,P3) + fe(P2) fe(P1,P3) + fe(P3) fe(P1,P2)
+ fe(p1,P2,P3), (2.2)

where the single-particle cumulant is equal to the singigigle probability function,f;(p) =
f(p). TheM-particle cumulantfc(ps,...,pm) corresponds to the “genuine” correlation between
the M patrticles. The physical interpretation of the cumulantasgion is straightforward: the
joint M-patrticle distribution depends not only on the genuihgarticle correlation, but also on
all the possible correlations involving subsets amongNhearticles. As an example, think of
two particles emitted exactly back-to-back wjth = —p; (as the two pions from a decayiny
meson in the rest frame of the latter). The two-particle pbility distribution readsf (p1,p2) =
f(p1)d(p1+p2) (Where, inthep — mrrcase, the single-particle distributidiip; ) actually reduces
to the angular distribution sindes| is also fixed), while the corresponding cumulant is obvigusl
non-vanishing, see equation (2.1). Other illustrationthefdifference between the distributiohs
and the cumulant$; can be found in reference [7].

While equations (2.1)-(2.2), and so on, can be inverted ftee the other to yield the cumu-
lants as functions of the joint probability distributioribere is a more systematic way to perform
the same operation. First, one defines a generating funefitime joint multiparticle probability
distributions:

G(Xq,...,xn) = L+x1f(p1) +xf(p2) + - + XX (p1,p2) + -, (2.3)

and similarly for every ordeM, wherex,...,xy are auxiliary variables. Given this generating
function of the joint probability distributions, the fumeh that generates the cumulants is simply
its logarithm [8]:

ING(xq,...,XNn) = X1 fe(p1) + X2 fe(p2) + - - - +Xaxa fe(P1,p2) + -+ - (2.4)

Thus, the knowledge of one of these functions automatidalipslates into that of the other.
In the following section, | shall use this property to sketble computation of the multipar-
ticle cumulants due to the momentum-conservation comsiratarting from the expression of
the joint probability distribution foiM particles. Moreover, | shall also use “scaled” cumulants

fe(P1,- -, pm) = fe(Pa,- .-, pm)/[F(P1) -~ f(pm)]-
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3. Multiparticle cumulants from momentum conservation

As stated in the introduction, the purpose is to determimnve ¢lobal momentum conservation
affects the joint multiparticle probability distributierof final-state particles in a large-multiplicity
event like a heavy-ion collision. That is, givéi particles with momentg;, ..., pn Obeying
the constrainp; + - -- + pn = 0, what is the resulting/-particle cumulant? This question was to
my knowledge first addressed (albeit semi-quantitativiglfhe two-particle case in reference [6].
A quantitative estimate of the two-particle correlationswtaen derived in the frame of some
anisotropic-flow measurement [9], then independentlysamiered in the same context [10]. In
both these cases, the computation relied on the use of theakkmit theorem for the distribution
of the sum ofn >> 1 (yetn < N) uncorrelatedmomenta. Eventually, a general approach to com-
pute the cumulants to arbitrary order was introduced irresige [11], making use of the generating
functions of joint probability distributions and of cumata and of a saddle-point integration.

The starting point of these calculations is the expressiathe joint M-particle probability
distribution under the momentum-conservation constraint

(Jlle(pj)> /5(p1+ -4 PN) j:u+1[F(pj)dpj]

f(p1,...,pm) = ) (3.1)

/5(p1+---+pN) ﬂl[F(pj)dpj]
=

whereF (p) is the single-particle probability distribution “unremealized” for the momentum con-
servation constraint: to leading order ifiN, it equals the measured single-particle probability
distribution f (p), yet they actually differ at the next-to-leading order [1®] the previous calcula-
tions [9—11],F was assumed to be isotropic; here we shall relax this assumgrtd consider the
more realistic case of collisions with anisotropic expangiflow) in the transverse plafeQuite
obviously, the Dira®d in equation (3.1) represents the constraint from global erdom conserva-
tion: in its absence; (p) = f(p) and the joint probability distribution would simply facipe into
the product (p;)---F(pm).

To derive the cumulants arising from global momentum corai&m, the most convenient and
systematic way is to introduce equation (3.1) in the exjpoessf the generating function (2.3) so
as to compute the latter [11]. After introducing a Fourigiresentation of the Dirac distribution,
one finds thaG(x, ..., XN) can be expressed as the integral over the Fourier conjugegbiek of
the exponential of a functioN.Z (k), which also depends on the auxiliary variabkqeé SinceN is
supposed to be large, this integral can be performed by despdiht approximation, provided one
finds the positiorkg of the maximum. The key to obtaining the successive cumsilarthen first
to solve to a given order ir/N the equation givindgo (a solution to the ordeW — 1 is required for

2The recipe for extending the calculation to the non-isdramse was briefly given in reference [11], and the
corresponding expression for two-particle correlatioms loe found in reference [12].

3More precisely,# only depends ox; through combinations;F (p;j)/N: this allows one to replacg; in G by
Xj = XjF (pj) — which amounts, to leading order i/, to replacing the cumulantl by the scaled cumulants —
and to derive the scaling witl of the cumulants [11]: th&-particle cumulant scales a;él\l""*l.
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the M-patrticle cumulant):

N xj gkoPi
<J—1ﬁjw ) (pe*e®) =Z A (3.2)

where the angular brackets denotds(p)-weighted average. Then, one uses this expressi&p of
to compute the value d4.7 (ko):

: N xi gkopi
Z (ko) =N <|n<ék°'p> +> %%) : (3.3)

The coefficient okj; ...X;, in N.Z (ko) is then the scaled cumulafi¢(ps,...,pm). For instance,
one finds (we assume for the sake of brevity tft= 0, otherwise one only need replapeby
p’ =p — (p) in the following formulas)

£ _ pl,xp27x . pl,ypZ,y . P1zP2z

e PjxPkx . PjyPky , PjzPkz

f s M2, = - + +

C(pl P2 p3) ng ( <px> N2<py> N2<p§>>
P1.xP2.x plyp2y n P1,zP2,z P1.xP3x n PLyP3y n P1,zP3z
N2(pz) N2 Py N2(p2) J\ N2(p3)  N%(p7)  N2(pZ)
P1, xp2x PryP2y = P1zP2z P2,xP3 x n P2yP3y n P2,zP3 2
N2(p2) | NP pg)  N2(p2) J\ N2(p2)  N2(pf) N%(p2)

P1xP3x , PryP3y = P1zP3:z P2xP3x , P2yP3y  P2zP3:z
+ + + + + . (35
<N2<p3> N2 {2) N2<p§>><N2<p§> N2 (52) N2<p§>>( )

In these expressions, the, y- and zdirections are the principal axes that diagonalize theden
(p®p): in practice, one axis will lie along the beam direction, aheng the impact parameter of
the nucleus-nucleus collision, which is the only prefem@dction in the transverse plane, and the
third one will be perpendicular to the other two.Rfp) is isotropic, (pf) = (pg) = (pZ), so that
one recovers the formulas given in reference [11].

In nucleus-nucleus collisions at ultra-relativistic egies, the mean square momentum along
the beam directiorng] is typically significantly larger than the mean square $xemse components.
As a consequence, the terms involving theomponent in the expressions of the cumulants are
much smaller than those involving the other two componerggecially when one considers final-
state particles emitted close to mid-rapidity. Thereforhall drop these longitudinal-momentum
terms from now on, which amounts to considering only the taitg imposed by the conservation
of total transverse momentupy.

4. Defining a minimally-biased background for correlation gudies

The behaviour of the three-particle cumulant resultingnftbe momentum-conservation con-
straint, equation (3.5), was discussed in some detail iEreete [13] in the case of an isotropic
transverse emission of particles. Here, | shall now distwrgiser the expression of the two-particle
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cumulant and its content. The physical meaning of equaBof) {s intuitive: momentum conser-
vation induces an “anti-correlation” between the momenmfinal-state particles. This is of course
reminiscent of the situation in which only two particles amitted, with back-to-back equal mo-
menta (note, however, that the calculation reported hamaatecover that case, since it assumes
N > 1). Additionally, the anti-correlation is largest betwggarticles with larger momenta; it is
also largest in events with a smaller total multiplicity

Let me emphasize the implications of the expression of treegarticle cumulant. In colli-
sions in whichN particles are in the final state, equation (3.4) implies thatjoint two-particle
probability distribution reads (assuming first that paeticare emitted isotropically, which is a fair
approximation in the transverse plane for central coltisico that pi) = (p) = (p%)/2):

2pt1- P2
f =f f 1-———=). 4.1
(Pr1,P12) = f(PT1) f(PT2) ( N(R2) (4.1)
In other words, although the particle emission is isotropie. f(pt) depends orpr only, yet
given a “trigger” particle with transverse momentyrs,, the conditional probability to find an
“associated” particle with transverse momentps is not isotropic:

((prafprs) = P t(pry) (1- 2L ) £ (e 42
Thus, the conservation of transverse momentum inducesisadal modulation of the probability
distribution of “associated” particles, with a minimum bgtdistribution along the trigger-particle
momentum: there is a larger probability that the momentuth@fissociated particle points in the
hemisphere opposite to that of the trigger particle. Theldnge of the modulation increases with
the values of both the trigger momentym, and the associated momentyr,, and it decreases
with increasing\.

One recognizes in equation (4.2) the difference betwearginal [ f (prt5)] and conditional
[f(pT2|pTl)] probability distributions [8]. Since the former is — up tmarmalization factor —
the measured single-particle distribution, it is most téngpto use it in studies of two-particle
correlations; yet one must rather use the latter once a firsicfe momentunpr, in the event is
fixed as a reference. This is not to be unexpected: by remdrangthe event this trigger particle,
one obtains a collection of final-state particles (inclgdthe non-measured ones) whichnist a
“valid” event, since the sum of the transverse momenta gbéntcles does not vanish. Hence there
is no reason why the single-particle probability distribntfor this collection should be the same
as for real events satisfying momentum conservatidinus, in studies of two-particle correlations
in which the transverse momentumq, of one of the particles has been fixed — thereby implic-
itly selecting a subset of the whole available sample of &ven one should consider the condi-
tional probability distributionf(pT2|pT1) of equation (4.2), including the momentum-conservation
constraint, as the proper “reference” distribution of assed-particle momentgr,, over which

4In fact, from the mathematical point of view, these collent ofN — 1 particles with non-vanishing total transverse
momentunty pt = —pr4 are equivalent to events with a mean first-harmonic anipathow component (directed flow)
vi = —pr1/[(N—1)(pr)], the direction of the equivalent reaction plane being tfiaq. Therefore, the corresponding
single-particle distribution includes arcos ¢ — ¢1) azimuthal modulation, which is absent from the originabten
particle distribution of the real events, which we assunsetropic.
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dynamical effects are to be investigated. This is admigtetdghtly unsatisfactory, since the con-
ditional probability distribution is not measured, and eegs on two unknown quantities: the
total numbeN of final-state particles and the mean square transverse momep?) (albeit only
through their product). Yet they can be estimated, as was done to take into accounbtiserva-
tion of total momentum in analyses of anisotropic flow [10, ddin femtoscopy studies [12]. Only
at this price can one determine the “minimally-biased bemtgd” which is what the distribution
of associated particles would look like in the absence oftnieral correlations. For Au-Au colli-
sions at RHIC energies, the corresponding correction niighdaf at most 1 or 2% when choosing
a highpr trigger particle; yet this is of the same relative magnitadethe effects that are mea-
sured [5], so that such a precision is necessary if one wardstablish the existence of specific
dynamical effects and to quantify their importance.

Let me now comment on the two-particle cumulants in the mereegal case where particles
are not emitted isotropically in the plane transverse tabiem. More precisely, | shall consider
particles emitted with a mean second-harmonic transvenseteopy (elliptic flow)v, defined by
V2 = (pg — pj) /(P + p3).° This definition yields at once the identitiépZ) = (1+V2)(p%)/2 and
(p§) = (1—V2)(p%)/2, which one can insert in equation (3.4):

_ L 2 PixP2x | PryP2y
fe(Pr1,P12) = N(R2) ( v, T 1w ) (4.3)

from which one deduces the conditional probability disttitn f(pT2|pT1) of particles associated
to a trigger particle with transverse momentyyy. One sees that the effect of the constraint
from momentum conservation is larger in adirection, i.e. perpendicular to the nucleus-nucleus
impact parameter, than in thedirection. That is quite normal, since particles with axtneerse
momentum along are less numerous than those pointing inxtftérection (remember that values
of vz(pr) = 0.16 were reported fopr > 2 GeV/cin minimum-bias Au-Au collisions at RHIC [15],
meaning that twice more charged hadrons are emitted ir-theection than perpendicular to it).
As a consequence, if the trigger particle is chosen within the y-direction, only few particles
are present to balance its momentum, so that those few omesaae strongly correlated to it than
if we were considering a trigger particle with a momentumhiex-direction.

The dependence of the strength of the two-particle cumi#aBj on the azimuths of the two
particles means that the correction for the momentum-cwasen effect has to be performed with
some care. Let me illustrate that with an example. | havadirargued above why one should use
the conditional probability distributiorﬁ(pT2|pTl) instead of the marginal one when investigating
the possible structures associated with the presence agla-ifh) trigger particle. If only the
average correction, corresponding to the isotropic cad¢, (#ere used instead of the azimuthally-
dependent one (4.3), this would yield an over-correctiesgr an under-correction) mtpTz\pTl)
for trigger particles emitted along the nucleus-nucleusaat parameter (resp. emitted along yhe
axis). As aresult, one would observe a small (using typi¢#liGvalues foN, (p3 ) andvs, of order

SFurthermore, the averagés -) involve the non-measurable distribution “in the absencmefmentum conserva-
tion” F(p), rather than the physical distributidrip) [12]. This is however but a minor issue, as the differencevben
F andf is of subleading order in/N, while here we only consider leading-order quantities.

6This definition yields values of, that are typically a factor 2 larger than those obtained thighmore conventional
definitionv, = ((pZ — p?)/(p2 + p2)), so that at RHIC energias ~ 0.1 in mid-central Au-Au collisions.
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< 0.005) spurious bump (resp. dip) at P8@way from the trigger in the conditional probability
distribution forpr,. This azimuthally-dependent spurious structure due tmaccurate definition
of the “minimally-biased background”, which is to be theemahce over which correlations of
dynamical origin can be observed, would prevent any acewtatermination of these interesting
correlations, by mimicking irrelevant features. Furtheplications of the azimuthal dependence
of the two-particle cumulant (4.3) due to momentum cong@mare discussed in reference [16].

In summary, | have recalled that the general purpose of stgdyorrelations is to yield ev-
idence of phenomena that go beyond trivial expectationghdnspecific context of high-energy
collisions, correlations between any number of final-spatticles are induced by the conservation
of total momentum, which are not of dynamical origin. Thesiteresting correlations can be
computed, thereby allowing one to define a “minimally-béasackground”, including the effect
of total-momentum conservation, which is viewed as theregfee over which genuine dynamical
effects might be revealed.
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