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Beginning in 2004, much progress has been made towards the determination of |Vus| using new
measurements of branching ratios, lifetimes and form factor parameters in semileptonic kaon
decays. My discussion here concentrates on some presently unsatisfactory aspects about these
measurements, especially the attempts to determine strongly correlated parameters that leads to
strong fluctuations. There are large discrepancies between the results from different experiments,
especially for the parameter λ ′0, which have been combined, using the dubious procedure of intro-
ducing scale factors. This poor practice accepts clearly incorrect results which leads to incorrect
central values that, after just enlarging the errors, still remain incorrect. Yet, when compared to
the situation of only a few years ago, there has indeed been large progress in the knowledge of
|Vus| and the verification of lepton universality. Means for further improving the determination of
several parameters are indicated.
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1. Welcome from KLOE

The Laboratori Nazionali di Frascati, LNF, is the home of the KLOE experiment. All members
of the KLOE collaboration who designed, built and use the KLOE detector, are very proud that the
2007 edition of the International Kaon Conference is hosted by LNF and joins in welcoming the
participants. KLOE is at present hibernating and the KLOE collaboration is quite busy analyzing
the data collected prior to the run end in early 2006. The detector is parked in its assembly hall and
remains fully operational. This fall, a crucial accelerator experiment will be carried out on DAΦNE.
There are good reasons to expect a significant increase in luminosity and improved background
conditions. If the experiment is a success, KLOE will be back on the beam in 2009. All this will
be presented Thursday afternoon during the panel discussion.

2. 60 years of kaon physics

Kaons were discovered 60 years ago, [1]. 1963 was an important year for kaon physics. That
year Nicola Cabibbo [2], proposed Universality as a way of avoiding introducing additional cou-
plings in the weak interactions. Extending the idea of Cabibbo’s angle, through GIM [3] and then
Kobayashi and Maskawa [4], we arrived to the flavor mixing CKM matrix that can accommodate
CP violation. C\P\ was also discovered in 1963. While the official publication of Cronin, Chris-
tenson, Fitch, and Turlay is dated 1964 [5], the result was known before the end of ’63, at least in
Brookhaven. It took a long time to get to prove the existence of direct C\P\ and even longer to arrive
to an accurate verification of Cabibbo unitarity. In 2004, KTeV presented the first good measure-
ments of the KL semileptonic branching ratios in this hall, [6]. The subsequent two years have seen
quite a consolidation of our knowledge of |Vus|, essentially sinθC, [6, 7, 8, 9].

There are still some unsatisfactory points with the |Vus| business, especially some wild dis-
crepancies in the value of the form factor parameters. I will briefly comment about some of this,
also with respect to two questions raised at the last kaon meeting, Kaon 05, by Vincenzo Cirigliano
[10] and Giancarlo D’Ambrosio [11].

Before continuing I would like to recall that unitarity of the CKM flavor mixing matrix trans-
lates into 6 “unitary triangles”, as many as the zeros of the Kronecker’s δi j in three dimensions,
[12]. The “kaon”, J12, and “B”, J13, triangles are shown in figure 1.
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Figure 1: Two CKM unitarity triangles, drawn to scale except as noted.

3. Measuring the Kπ current form factor parameters

3.1 Definitions and error estimates

The matrix element of the hadronic current between a kaon and a pion has the general form

〈π(p)|ūγαs|K(P)〉= f (0)
(

(P+ p)α f̃+(t)+(P− p)α

(
f̃0(t)

∆
t
− f̃+(t)

∆
t

))
(3.1)
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where P and p are the kaon and pion 4-momenta, t = (P− p)2 = M2 +m2−2MEπ , f̃+, 0(0) = 1 and
∆ = M2−m2, with M = m(K) and m = m(π). f (0) accounts for SU(3) breaking effects and must
be obtained from prime principles. The spectrum obtained from the amplitude above is distorted by
radiative corrections. Because I am interested in understanding the errors in the determination of
the FF parameters, I will ignore radiative corrections which are relevant to values of the parameters
but do not affect the statistical errors.

The shape of the f̃ form factors, necessary for computing the phase space integrals in K`3

decays is obtained experimentally from the pion energy spectrum. The form factors can be para-
meterized as polynomials in t:

f̃ i(t) = 1+λ ′i
t

m2 +
λ ′′i
2

t2

m4 (3.2)

with i= + or 0, or as poles in the S-wave and P-wave π−K scattering amplitude:

f̃ i(t) =
M2

j

M2
j − t

(3.3)

where i = +, 0 and j = j(i) = V, S for i = +, 0. The expressions in equation 3.2 and 3.3 are
trivially related. Expanding the pole form:

M2
j

M2
j − t

= 1+
t

M2
j
+

t2

M4
j
. . .

from which λ ′+=m2/M2
V , λ ′′+=2×λ ′+2. Let F(p,x) be a probability density function, PDF, where

p is some parameter vector, which we want to determine and x is a running variable, like t. The
inverse of the covariance matrix for the maximum likelihood estimate of the parameters is given by
[13] (dυ is the appropriate volume element):

(G−1)i j =− ∂ 2 lnL
∂ pi∂ p j

, from which, for N events,
(
G−1)

i j = N
∫ 1

F
∂F
∂ pi

∂F
∂ p j

dυ

3.2 Errors for the λ+ parameters from Ke3 decays

Only the term in (P+ p)α of equation 3.1 contributes to Ke3 decays. Since the form factor, FF,
is a function of t = M2 +m2−2MEπ , the form factor parameters are obtained from a fit to the pion
spectrum, after integration over the electron (or neutrino) momentum. Using the form factor from
equation 3.2, the covariance matrix obtained from a fit to the pion energy is given by:

G =


 δλ ′+

2 δλ ′+δλ ′′+

δλ ′′+δλ ′+ δλ ′′+
2


 =

1
N

(
1.258542 −0.606064

−0.606064 0.5094062

)
.

I have used λ ′+=0.025 and λ ′′+=0.00125 to obtain the result above which however is not very sen-
sitive to the λ values. For example, from a 4% change of λ ′+, the changes in δλ ′+, δλ ′′+ and the
correlation are, respectively, 0.25%, 0.17% and 0.01%. The same result holds for fits to the pion
momentum as well as to the pion transverse momentum distribution. No information is lost us-
ing the transverse component of the pion momentum. For 106 events the statistical errors and the
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correlation, ρ(a,b) = δaδb/(δa×δb), are:

δλ ′+ = 0.00126

δλ ′′+ = 0.00051
, ρ(λ ′+,λ ′′+) =−94.5%.

The unpleasant (but to be expected) “surprise” is the large, negative correlation between the two
parameters of the FF expansion, which allows a trading between λ ′+ and λ ′′+, resulting in almost
tripling the error for the coefficient of t with respect to assuming a linear t dependence. This is quite
evident when comparing results from fits ignoring λ ′′+, [6, 7, 8, 9]. One finds λ ′+∼0.029±0.0003,
while the inclusion of λ ′′+ gives λ ′+=0.025.., λ ′′+∼0.0012... The approximate rule is that ignoring
λ ′′+ in the fit increases λ ′+ by ∼3×λ ′′+.

Another disadvantage of using a FF of the form of equation 3.2 is that small statistical fluc-
tuation can lead to wrong results for the phase space integral. This is illustrated in figure 2 which
shows the results from fitting 100 pion spectra of 106 events each. KTeV was the first experiment
to experience this problem. They noticed [6] that the pole fit was inconsistent with the quadratic fit.
The phase space integral computed from the quadratic FF fit is therefore different from that from a
pole fit. For some reason they chose to prefer the value from the former, adding as systematic un-
certainty the difference between the two values, underestimating however the value of the integral.
The KTeV result fluctuated to the extreme upper left corner of figure 2. We know today that their
pole answer was correct.
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Figure 2: Spread of the λ ′+ and λ ′′+ values from fits to 100 pion spectra with quadratic and pole FF.

Results reported by KTeV, ISTRA+, NA48 and KLOE [6, 7, 8, 9] are quite consistent and are
given elsewhere [14]. The averaged values for λ ′+ and λ ′′+ from the KLe3 measurements [6, 8, 9],
λ ′+=0.02486±0.00113, λ ′+=0.00153±0.00046 are in perfect agreement with the values computed
from the average of the pole fits to the same data, λ ′+=0.02542±0.00003 and λ ′′+=0.00129±0.000032.
Fit with pole FF have a slightly higher CL, 40% vs 30% for the quadratic fits. The validity of the
pole form is confirmed by at least two phenomenological analysis, [15, 16]. It is ironic that KTeV
chose to give a value for the phase space integral which was 0.6% low with an adjusted fractional
error of 0.68%, while their pole fit gave the correct answer, with an error of only 0.15%. At the
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present level of accuracy, pole fits are preferable to quadratic fits. The answer to D’Ambrosio [11]
is therefore that we should use the pole as standard, at least until improved experimental accuracy
allows checking whether small corrections to a simple pole form are needed [17].

3.3 Errors for the λ+, 0 parameters from Kµ3 decays, I

While measurements of the vector FF are satisfactory, that is not the case for the scalar FF.
The pion spectrum depends on both f̃+ and f̃0. If a quadratic form is assumed for both FF we have
to determine four parameters: λ ′+, λ ′′+, λ ′0 and λ ′′0 . There is a folk-lore that a measurement of λ ′′0
might help improve the value of f (0) although it is not clear by how much [10]. It is however a
moot point: λ ′′0 is not measurable. The covariance matrix for the four parameters is




δλ ′0
2 δλ ′0δλ ′′0 δλ ′0δλ ′+ δλ ′0δλ ′′+

δλ ′′0 δλ ′0 δλ ′′0
2 δλ ′′0 δλ ′+ δλ ′′0 δλ ′′+

δλ ′+δλ ′0 δλ ′+δλ ′′0 δλ ′+
2 δλ ′+δλ ′′+

δλ ′′+δλ ′0 δλ ′′+δλ ′′0 δλ ′′+δλ ′+ δλ ′′+
2




=
1
N




63.92 −1200 −923 197

−1200 18.82 272 −59

−923 272 14.82 −49

197 −59 −48 3.42




and the normalized correlations are


−0.9996 −0.974 0.91

0.978 −0.919
−0.976


 .

The latter are all very close to±1, note ρ(λ ′0,λ ′′0 )=−99.96%, which results in δλ ′0 and δλ ′′0 growing
out of control. In particular δλ ′′0 =0.0188 for 106 events or δλ ′′0 =0.00188 for 108 events. Since we
expect λ ′′0 to be of O(0.0005), 108 events provide a ∼400% measurement of δλ ′′0 , which is no
measurement at all. It is therefore not possible to measure the “curvature” of the scalar FF and
contribute to knowledge about f (0). The answer to Vincenzo Cirigliano is “no” [10]. In practice a
χ2 fit will not even converge.

3.4 Errors for the λ+, 0 parameters from Kµ3 decays, II

Ignoring λ ′′0 the covariance matrix for λ ′0, λ ′+ and λ ′′+ is

1
N




1.752 3.32 −1.88

3.32 3.092 −3.87

−1.88 −3.87 1.342




which shows that λ ′0 can be reasonably measured. The problem here is that the form factor does
contain higher powers of t. Ignoring such terms however results in a systematic shift in the value
of λ ′0 and ultimately the estimate of the phase space integral necessary to obtain |Vus| from the K`3

decay widths. It is easy to get an estimate of this shift. The scalar form factor is dominantly a pole,
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which gives the relation λ ′′0 =2λ ′02. With this condition, the result of a fit with a linear scalar FF
gives a result for λ ′0 systematically higher by∼3×λ ′′0 as illustrated in figure 3.
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Figure 3: λ ′0 from fit vs λ ′0 true, due to λ ′0-λ ′′0 correlation.

We therefore conclude that all results reported for the value of λ ′0 are systematically higher than
the correct value.

A possible way out is to simultaneously fit Ke3 and Kµ3 or appropriately combine the results
from separate fits. We note however that even if λ ′+ and λ ′′+ were known without errors, λ ′′0 would
be determined to ±500% with 1 million events or ±50% with 100 million events, statistical error
only of course.

The systematically higher results from a fit with a scalar FF linear in t gives a higher value for
the phase space integral. The integral, given by 0.363426+ 0.822071λ ′0+1.442195(λ ′02+λ ′′0 )+. . . ,
changes by 0.15% if λ ′0=0.015 and the presence of a quadratic term is ignored. This of course
is not much, when compared to the present experimental situation, with λ ′0 spanning the interval
0.0095 (NA48) to 0.0128 (KTeV), 0.0156 (KLOE) and 0.0171, ISTRA+. The latter is clearly
an unacceptable situation, especially when all the parameter’s values are averaged. Palutan [14]
showed a fit to all slope and ”curvature” results, with a CL of 10−6. There is no question in
my mind that some results are just plainly wrong. Moreover the errors quoted are also at times
incorrect. The covariance matrices that I have given are of course ideal lower limits to the errors.
Resolution, full coverage and limited Monte Carlo statistics all contribute to enlarging the statistical
errors.

It is clear that since a linear fit for f̃0(t) is incorrect and a quadratic fit is impossible we must
find a better way of doing things. Stern and collaborators [17] have developed a dispersive approach
that is approximately equivalent to setting λ ′′0 =λ ′02+0.000416 in the scalar FF. This procedure re-
duce to one the number of parameters in f̃0(t) making the fit possible. Note that for λ ′0=0.014,
λ ′′0∼0.0002+0.0004∼3 λ ′02 and all λ ′0 values from a linear f̃0(t) fit are even more wrong than what
is indicated in figure 3.

3.5 Systematic errors

In addition to what has been discussed so far there are imponderables which we all like to add
on and call systematics errors. In the end, it all comes to a doubling (or more) of the errors with
respect to the values I have derived, which is quite reasonable. The ISTRA+ group is always very
optimistic in this respect and I also believe they made a mistake when they rewrote their original Ke3

paper in order to claim observation of a quadratic term in their data. They give the same systematic
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uncertainty for λ ′+ in the linear and the quadratic fit. The statistical error approximately triples and
the same should happen for the systematic error. Doing this aligns their one sigma contour with all
others, see figure 4.
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Figure 4: 1 σ contours. Left: original ISTRA+ errors. Right ISTRA+ systematic error tripled .

KTeV is quite conservative with their systematics but I believe they got confused on how to fit the
data and also did not recognize that their pole solution was the right one. NA48 is over cautious
with their Ke3 analysis, they give the largest errors with the largest data sample of all. They are
on the contrary sloppy with their Kµ3 analysis. KLOE is certainly very conservative, that is not so
good either. One last comment. All fits to a quadratic form in t must give the same error ratios
and correlation, i.e. one and the same shape. I have distorted the pion spectrum from Ke3 decays
multiplying it with the factors 1±0.05z and 1±0.05z2, where z = (E(π)−Emin(π))/(Emax(π)−
Emin(π)). Fitting the distorted spectra, I obtain the results in figure 5. Note that while λ ′+ and λ ′′+
move around a lot, the errors δλ ′+, δλ ′′+ and their correlation hardly change at all.
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Figure 5: 1 σ contours. Original spectrum, 1 and distorted spectra 2-5.

This proves that results showing strangely different contours, other than an overall scale due to the
number of events and the estimates of systematic effects, are suspect.

The accuracy achieved at present is barely adequate for obtaining |Vus| at the 0.2% level. In
fact we can do better, if we were to reduce inconsistencies between experiments and among modes.
Consistency is poor everywhere, branching ratios and form factor parameters. Where it really is
terrible is in the measurements of the scalar FF. This is due in part to the intrinsical difficulty of
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measuring strongly correlated quantities. However the probability that the four measured values
fluctuate the way they do is of O(10−8), ignoring correlations.

4. A better parameterization for the form factor

As discussed above, trying to fit for two highly correlated parameters results in large fluctua-
tion which could be avoided. Both experiment and phenomenology suggest that a good parameter-
ization of the vector FF is:

f̃+(t) = 1+λ+
t

m2 +λ 2
+

t2

m4

which includes the established t2 dependence of the FF. For the scalar FF a dispersive approach has
been developed [17]. In its approximate form it suggests the relation:

f̃0(t) = 1+λ0
t

m2 +
λ 2

0 +0.000416
2

t2

m4 .

The total number of parameters is thus reduced to 2 from 4 while allowing for t2 terms in the FFs.
The Hill parameterization for the FF [19], on the other hand, does not solve the problem of too
many parameters. As applied by KTeV to their Ke3 decay data [20], leads to a FF with an even
larger t2 term than their original quadratic fit, see figure 2 in [20], in clear contradiction with the
average of all available data.

5. Conclusions

Progress since 2004 is outstanding! The product f (0)Vus is known to 0.2% and |Vus| itself
to 0.84%, where the error is mostly from the theoretical uncertainty on f (0). Unitarity of the
CKM mixing matrix is satisfied, for its first row, to ∼1.2σ or ∼1 part in 1000, with |Vus| and |Vud |
contributing approximately equally to the uncertainty. Lepton universality, as verified with the K`3

modes, is reaching the accuracy obtained in pion decays and could go well beyond with better
analysis and improved data statistics.
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