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1. Introduction

Two of the most interesting challenges in Kaon physics are to explaialtkel /2 rule (the
enhancement by a factor of about 450 of the rateKfer 17T decays into an isospin O final state
relative to those into ah= 2 state) and to understand quantitatively the experimentally measured
value ofe’ /e = (17.2+1.8) x 104 [1], the parameter whose non-zero value was the first evidence
for direct CP-violation. In order to meet these challenges we need to be ablduatevie non-
perturbative QCD effects in the correspondkg- it decay amplitudes. In this talk | review the
status of lattice calculations &f — 7T matrix elements of thAS= 1 effective Hamiltonian and
the prospects for future improvements.

The problem of handling multihadron states in Euclidean finite-volume lattice simwdason
an unsolved one. The main difficulty is that, in general, there are many possible adiaten
states which, after rescattering, can emerge as the required final state —arrr decays on the
other hand, it is a good approximation to neglect inelastic contributions. We aafidteerestrict
ourselves to considering the single two-pion state with a given isospin (0 or 2) andlar® ab
compute the corresponding matrix elements. For two-body non-lepBdecays on the other
hand we are unfortunately unable as yet to evaluate the amplitudes using latticdieimsul@his
severely limits the precision with which we can exploit the huge amount of datalateditam the
b-factories to explore the limits of the Standard Model.

Even forK — mrr decays we have further difficulties, but ones which have been solved. In a
finite Euclidean volume we do not obtain the S-matrix directly, but compute matiixegits into
the average of in- and out-states [2]. Moreover, as shown in the pioneering whilscter [3],
the propagation of two pions leads to finite-volume corrections which decrebsasopowers of
the volume and not exponentially as with single-hadron states. In section 2 | revietaths of
our understanding of finite-volume effects in extracting physical it decay amplitudes from
the corresponding finite-volume matrix elements computed in lattice simulations.

Chiral perturbation theoryxPT) plays a central role in obtaining physical information from
lattice simulations, particularly in guiding the extrapolation of results obtained at unplykicge
values of thau andd quark masses to the physical point. It is frequently useful to evaluatewhe
energy constants (LECs) of xPT to estimate physical quantities and this approach is used widely
in K — mmrrdecays. In 2001, the RBC and CP-PACS collaborations, for the first time were able to
determine the LECs of lowest ordgPT and obtained very interesting results for ftie= 1/2 rule
and fore’ /€ [4, 5], results which will provide valuable benchmarks for future calculations:

Collaboration | Re Ao/Re Az /e
RBC [4] 253+18 | —(40+23)x104
CP-PACS [5] 9+12 (-7+-2)x104
Experiments [1] 22.2 (17.2+18)x 10°*

To set the scene for the developments discussed in the following sections, | would/dike make
some remarks about the calculations of refs. [4, 5]:

1. Atleading order inyPT it is possible to determine the LECs by computing dfily Tand
K — vacuum matrix elements. At this order it is therefore possible to avoid any computations
with two-pion states.
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2. The RBC and CP-PACS collaborations were able, for the first time, to control tireeiol et
Problem, i.e. the subtraction of power divergences due to the mixing aAfiie 1 operators
in the weak Hamiltonian with lower dimensional ones, with sufficient precision to obtain
meaningful results. This was a very important milestone.

3. The simulations were quenched and assumed the validity of lowestdein the region
of meson masses of approximately 400-800 MeV. We will hear from Bob Mahwiiiije
that they are being repeated in unquenched simulations and with lighter quarlsmasse

Although it may appear that the values obtained for the octet enhancamedatge, it should
be noted that for the quark masses at which the simulations were performed theeanban
was about a factor of 5 or 6 (with the two collaborations agreeing on the result®. T
remaining enhancement came from the chiral extrapolation (which led to the disagtin
the table). This highlights the importance of having a good control of the ciiralpolation.

4. A natural extension of this calculation is to improve the precision to next-to-leadldey
(NLO) in the chiral expansion. This requires the evaluatiotiKoef> it decay amplitudes
directly.

5. In view of the approximations described above it is not too surprising that the results fo
¢’ /& even have the wrong sign. There are 10 operators ih8e 1 effective Hamiltonian
and there is a significant partial cancellation from ftie= 1/2 andAl = 3/2 contributions
which amplifies the relative errors?

For the remainder of this talk, | will concentrate on the direct evaluatiok ef it matrix
elements. In the following section | discuss the status of the finite volume effects andiam St
describe the strategy of usindT at NLO. In section 4 | consider the possibility of using twisted
boundary conditions to improve the momentum resolution and also report on an iatiestigf the
role of the charm quark in th&l = 1/2 rule. Finally in section 5 | briefly summarise and present
my conclusions.

2. Finite Volume Effects

For most of the quantities being calculated in lattice simulations (suth,&x andK,3 decays
discussed in this conference [7, 8]) there is at most a single hadron in the initial anstditealIn
K — 1t decays there are two-pions and the interactions between the two pions indtese fin
volume corrections which do not vanish exponentially. For the direct evaluatitme K — 7t
amplitudes, the theory of finite-volume effects for two-hadron states in the elasticerégjimow
fully understood, both in the centre-of-mass and moving frames. In this section | deseibe
status of our understanding based on the work of Lischer [3] and subsequers [8a113]. For a
discussion of two-hadron states in nucleon-nucleon systems see ref. [14] and e=d¢heamein.

2.1 The Two-Pion Spectrum in a Finite Volume

Consider the two-hadron propagator represented by the diagram
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where the shaded circles represent two-particle irreducible contributions isdi@nnel. For
simplicity let us take the two-hadron system to be in the centre-of mass frame and asatume th
only thes-wave phase-shift is significant (the discussion can be extended to include paghiat
waves). Consider the loop integration/summation qvésee the figure). Taking the time extent

of the lattice to be infinite, we can perform tpg integration by contours and obtain a summation
over the spatial momenta of the form:

1< f(p?)
3 % 2o 2.1)

wherek is the relative momentunE¢ = 4(m? + k?), whereE is the total energy), the function

f (p?) is non-singular and (for periodic boundary conditions) the summation is ovesermtaih =
(2rr/L) i wherefi is a vector of integers. In infinite volume the summation in eq. (2.1) is replaced
by an integral and in Minkowski space the denominator has the approfmiptescription. It is

the difference between the summation and integration which gives the finite-walamections.
The relation between finite-volume sums and infinite-volume integrals iBdisson Summation
Formula, which (in 1-dimension) is:

%Zg( Z /dpé'Lpg (22)
p

If the functiong(p) is non-singular, the oscillating factors on the right-hand side ensure that only
the term withl = 0 contributes, up to terms which vanish exponentially vittHence, up to this
precision, the finite-volume sum and infinite-volume integral are equal. The sadima&q. (2.1)

on the other hand is singular (there is a polp%t k?) and this is the reason why the finite-volume
corrections decrease only as powers of he full derivation of the formulae for the finite-volume
corrections can be found in refs. [3,9-13] and is beyond the scope of this tatk! jdet sketch the

key ingredients. Following ref. [12], it is convenient to start by rewriting the expressigi2 &g

in a form without singularities so that, up to exponential precision in the volume,

LsZ

The exponential factors in eq.(2.3) are introduced to ensure ultra-violet gema & is the cut-
off). Eq.(2.3) can then readily be rewritten in the form

1o f(p?) _/ d*p  f(p?)
L32 p2—k2 ) (2m)3 p?—k2—ie

K2y taa] Ly €7, [ d &P 2.4
~an ! () 1K) L32 pP—k2 /(Zn) Pk (2.4)

where & represents the principal value. The finite-volume correction exhibited aboeaiEpin
every loop in diagrams such as that in the figure, and upon resummation gicenetge series.

(2.3)

—f k2 d3p f(p f(kz)e“(k ~P)
- e
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In infinite volume there is a two-particle cut with a branch point at the two-pion thigsHa
finite volume the cut is replaced by a series of poles and the positions of thesepolspond

to the allowed energy levels (i.e. the Luscher quantization condition). Note thiiteevolume
corrections in eq.(2.4) depend on the functioavaluated at the external energy corresponding to
k?, which allows us to express the positions of the poles in terms of the physical arepldud
phase-shify(k?)) and kinematic factors; specifically the poles occur at valuéssatisfying:

K (1 _ eakp B e ) "
tan(a(kZ)):—E{F%m—@/(z—rgsm} . (2.5)
Inrefs. [9, 12, 13] the spectrum is derived also in frames in which the total momentwhzsno.

A very important practical consequence of the quantization condition, eq.{2.8)at the
phase-shifts can be derived from the spectrum, i.e. from the measured vakhms@sponding to
the energy eigenstates we evaluate the right-hand side of eq. (2.5) andletereeined (k?) . So,
in spite of the fact that in Euclidean space we measure matrix elements into thecawbiagand
out- states, we do nevertheless have the capability of determining the phase-shifts.

2.2 Finite Volume Effects in Matrix Elements

The finite-volume corrections to the matrix elements have also been obtained bibih in
centre-of-mass frame [10] and in moving frames [12, 13]:
erEZ * !

{80+ 1)} ImP? (2.6)
where th€e represents the derivative with respeckto k* is the relative momentum in the centre-
of-mass frame, so that E andP are the total energy and momentulf,— P? = 4(n? +k*2). A
andM are the physicak — rrrramplitude and the finite-volume matrix element respectively:

A= o(mTE,P|.#4y(0)|K;P)w and M =y (mmE,P| 4y (0)| K;P)y. (2.7)

|A]2 = 8mV?2

@°(k*) is a kinematical function whose explicit form can be found in egs.(2) and (3) of1&f.
for example.

We therefore have the necessary techniques to control the finite-volume effecithithé
spectrum and in the matrix elements. Preliminary resulté\for 3/2 K — mrr decays using this
technique have been presented using a quenched simulation on a courselatticé 3 GeV) [15].

2.3 Summary

We have seen that finite volume effects for the two-pion spectrunKardrirr amplitudes are
understood in both the rest and moving frames. IFer2 final states, there is now no barrier to
calculating the matrix elements precisely. Fot 0 T states we need to learn how to calculate
the disconnected diagrams with sufficient precision. For example, consideruhgquark-flow
diagrams for two-pion propagators:
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The two-pion propagators are an ingredient in the evaluation oKthe it matrix elements.

For thel = 2 state only the first two diagrams contribute and it appears that they are relatively
straightforward to evaluate. Fdér= 0 in addition we have to evaluate diagrams R and V, and
new techniques, such as the use of stochastic or all-to-all propagators, needsmmdmented

to evaluate them and to establish that they can be computed precisely. Correspssu@sgare
present in the evaluation of tlke— 17T correlation functions themselves.

3. xPT at NLO

As suggested above, one approach to improving the precision of the results of rgfds[4,
to extend the calculation to NLO igPT. At this order forK — mrr matrix elements the generic
structure is of the form:

(rr G |K) = LO % (14 Logs) + NLO counterterms. (3.1)

The chiral logarithms (“Logs") are calculable in one-lggPT and we then use lattice computations
of K — mrrrmatrix elements, for a range of masses and momenta, in order to determine the LO and
NLO low-energy constants. These LECs are then used to determine the physicahagdizydes.

We have performed an exploratory quenched study with the SPQR kinematics, obta@ing
matrix elements of the electroweak penguins successfully [16], obtaining

1—2(TTIT|O7(2GeV) |[KO) = (0.1240.02) GeV? and, _»( 1| Og (2 GeV) |K®) = (0.68+£0.09) GeV®
(3.2)

On the other hand, we were unable to determine the LEC'®jasufficiently well to perform the
chiral extrapolation. FoD, the chiral expansion starts@f p?), in contrast to the electroweak pen-
guins which start a®(p°). The positive aspects of this computation were that i) the finite-volume
energy shift was measurable; ii) the matrix Elements at simulated masses were wetlirsde
and (iii) non-perturbative renormalization was implemented successfully. On thehahe the
quark masses were too high to demonstrate explicitly the validity of the chiral extrapadaiibn
the Lellouch-Lischer factor was not implemented. We are now in a position toamerthese
shortcomings.

| have stated above that in order to compute the amplitudes at NLO in the chiralkexpd is
not sufficient in general to compute orfy— mandK — vacuum matrix elements. It is necessary
to calculateK — it matrix elements. An exception is the evaluation of the matrix elements of the
electroweak penguin operators [17] for which preliminary results were presentedSrjIB]0

4. Miscellany

In this section | briefly discuss two approaches which are being developed to improve o
understanding oK — 7t decays; the application of twisted boundary conditions to improve the
momentum resolution and an investigation into the role of the charm quark il thel /2 rule.
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4.1 (Partially) Twisted Boundary Conditions and the Lellouch-Lischer Factor.

The Lellouch-LUscher factor relating the— i matrix elements in finite-volume to the phys-
ical decay amplitudes contains the derivative of the phase-shift. As we hewetbe phase-shift
can be determined from the two-particle spectrum in finite-volume, but only at disooetenta.
Indeed the momentum resolution is very poor, e.g. for a lattice with24a anda ~ 0.1 fm the
components of momentum are separated by about 1/2 GeV.

Using twisted boundary conditiong(x; + L) = €%q(x), the momentum spectrum is modified
(relative to periodic boundary conditions) to

2m 6
pl—an+E' (4.1)

For quantities which do not involve final state interactions (e.g. masses, detstamts, form-
factors) the finite-volume corrections are exponentially small also with twisted boundadi-

tions [19]. Moreover they are also exponentially small partially twisted boundary conditions

in which the sea quarks satisfy periodic boundary conditions but the valence gatigfg twisted
boundary conditions [19, 20], so that we do not need to perform new simulatioasdnr choice
of 6.

By using (partially) twisted boundary conditions, the derivative of the phase gh{if*€))
can be evaluated f&l = 3/2 decays [21]. To see this consider the propagation ofrftwanesons
with momentad /L and (6 — 2m)/L, where we can varg. This can be arranged for example by
choosing twisted boundary conditions for the valencguark. From the two-pion spectrum, as
explained above, we can determidigg*?), whereq® is the corresponding centre-of-mass relative
momentum. Sincé can be varied with small intervals, we can also evaluate the deriv&igé).

To illustrate this consider the following preliminary results, obtained uling 2+ 1 Domain Wall
Fermion configurations from the RBC & UKQCD collaborations, whose properties arglsc
inref. [22]. We start by measuring the lowest energy in the finite voluggg/) which is different
from the sum of the energies of two free pions with momedta and (6 — 2m)/L. From the
total energy,Ery/, and momentum(26 — 2m)/L, we determineg* and in the left-hand plot of
fig. 1 we show the energy shift as a functiongsf From the energy shift we can determine the
phase-shifid(q*) as described above (see centre plot) and from the behaviauasfa function

of g* we can obtain its derivative and hence the Lellouch-Llscher factor relatinghiteevfolume
matrix element and the physical decay amplitude (right-hand plot). At each w&gompute the
gquantities directly for the masses used in the simulation (the plots are shown for one particula
choice of the masses). We are therefore able to control the finite volume effects intitbe la
computations.

In addition to enabling one to calculate the finite-volume corrections in lattice calmdaifo
Al = 3/2 decays with periodic boundary conditions, the use of twisted boundary condifitargls
the kinematic range for which the matrix elements can be computed. Since in tleelpreevhich
we have used the relative momentum in the moving frame is alwayk,2he range of accessible
values ofg* is limited, but nevertheless, represents an extension over periodic boundary eenditio
alone.



Non-Leptonic Decays Chris T. Sachrajda

Energy Shift (m /m_=0.02/0.04) Phase Shift (m /m_ = 0.02/0.04) LL factor (m,/m_=0.02/0.04)
0.0; -0. 4500

0025 -0.27
4000
0.024 -0.28
. 3500
0.023] -0.29 —Fei +
0
0022 -03) + 3000
0.021] -0.31]
2500

.01 -0.3: 200
0 0.2 0.205 0.21 0.215 0.22 0.225 0.2 0.205 0.21 0.215 0.22 0.225 8.2 0.205 0.21 . 0.215 0.22 0.225

q q q

AE
LL factor

Figure 1: The energy shift (left), the phase-shift (centre) and the Lellouch-Lischer faigbt) as a func-
tion of g* for an illustrative pair of light quark (me= 0.02) and strange quark¢a = 0.04) masses.

4.2 Role of the Charm Quark in theAl =1/2 Rule

There has been a recent proposal to study the réle of the charm quarlin-thk/2 rule [23,
24]. The programme, which has only been partially implemented to date, conssstegfs:

1. In theSJ(4) limit with all four masses very light,nlc = ms=m, = my < /\XpT) there are
two LECs,g" andg—, which have been evaluated by matching a quenched QCD simulation
onto xPT (in thee regime):

g"=051+009 and g =26+05 Ao 1 (1 39

A_zzﬁ é-|-E>:6. (4.2)

A, pT is the scale of chiral symmetry breaking. The authors conclude Evettt though the
enhancement is not large enough to match the experiment, it already indicates that penguin
operator/contractions cannot be the whole story.

2. The mass of the charm quark is now increased, while still remaining within the clynalee
(/\Xp-r > mg > Mg = my = My). The matching from step 1 to this effective theory can be
done analytically. This has been done at lowest ordeubiartunately NLO couplings are
needed to have predictability.

3. Finally the charm quark mass is increased to its physical vedye (\, pT>> Ms = my = My)
and this remains to be done in the future.

5. Summary and Conclusions

In this talk, | have tried to demonstrate that there has been a considerable ambentefical
progress in formulatingl — T decays in a form suitable for lattice simulations. There is now the
opportunity of achieving significant numerical results Ko T decay amplitudes.

() Forl = 2 final states, there is now no barrier to calculating the matrix elements precisely.

(i) For | =0, mrT states, as explained in section 2.3, we still need to learn how to calculate the
disconnected diagrams with sufficient precision.
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| started the talk with a reminder about the results from the RBC and CP-PACS collabsration
obtained in 2001 at lowest order ¥PT in quenched simulations. We will hear from Bob Mawhin-
ney, that interesting new calculations are underway to repeat the calculatiorgienahed simu-
lations and at lower masses.
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