
P
o
S
(
K
A
O
N
)
0
2
1

Lattice Studies of Non-Leptonic Kaon Decays

Chris T. Sachrajda∗

School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
E-mail: cts@phys.soton.ac.uk

I review recent progress in the development of the theoretical framework necessaryfor computing

K → ππ decay amplitudes in Euclidean finite volumes. The status of the theory of finite volume

effects is discussed and the rôle of chiral perturbation theory and the determination of low energy

constants is reviewed. A proposal to use twisted boundary conditions is explained and the status

of a suggestion to investigate the rôle of the charm quark in the∆I = 1/2 rule is discussed.

KAON International Conference
May 21-25 2007
Laboratori Nazionali di Frascati dell’INFN, Rome, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
K
A
O
N
)
0
2
1

Non-Leptonic Decays Chris T. Sachrajda

1. Introduction

Two of the most interesting challenges in Kaon physics are to explain the∆I = 1/2 rule (the
enhancement by a factor of about 450 of the rates forK → ππ decays into an isospin 0 final state
relative to those into anI = 2 state) and to understand quantitatively the experimentally measured
value ofε ′/ε = (17.2±1.8)×10−4 [1], the parameter whose non-zero value was the first evidence
for direct CP-violation. In order to meet these challenges we need to be able to evaluate the non-
perturbative QCD effects in the correspondingK → ππ decay amplitudes. In this talk I review the
status of lattice calculations ofK → ππ matrix elements of the∆S = 1 effective Hamiltonian and
the prospects for future improvements.

The problem of handling multihadron states in Euclidean finite-volume lattice simulations is
an unsolved one. The main difficulty is that, in general, there are many possible intermediate
states which, after rescattering, can emerge as the required final state. ForK → ππ decays on the
other hand, it is a good approximation to neglect inelastic contributions. We can therefore restrict
ourselves to considering the single two-pion state with a given isospin (0 or 2) and are able to
compute the corresponding matrix elements. For two-body non-leptonicB decays on the other
hand we are unfortunately unable as yet to evaluate the amplitudes using lattice simulations. This
severely limits the precision with which we can exploit the huge amount of data available from the
b-factories to explore the limits of the Standard Model.

Even forK → ππ decays we have further difficulties, but ones which have been solved. In a
finite Euclidean volume we do not obtain the S-matrix directly, but compute matrix elements into
the average of in- and out-states [2]. Moreover, as shown in the pioneering work ofLüscher [3],
the propagation of two pions leads to finite-volume corrections which decrease only as powers of
the volume and not exponentially as with single-hadron states. In section 2 I review thestatus of
our understanding of finite-volume effects in extracting physicalK → ππ decay amplitudes from
the corresponding finite-volume matrix elements computed in lattice simulations.

Chiral perturbation theory (χPT) plays a central rôle in obtaining physical information from
lattice simulations, particularly in guiding the extrapolation of results obtained at unphysically large
values of theu andd quark masses to the physical point. It is frequently useful to evaluate thelow
energy constants (LECs) of χPT to estimate physical quantities and this approach is used widely
in K → ππ decays. In 2001, the RBC and CP-PACS collaborations, for the first time were able to
determine the LECs of lowest orderχPT and obtained very interesting results for the∆I = 1/2 rule
and forε ′/ε [4,5], results which will provide valuable benchmarks for future calculations:

Collaboration Re A0/Re A2 ε ′/ε
RBC [4] 25.3±1.8 −(4.0±2.3)×10−4

CP-PACS [5] 9÷12 (-7÷ -2)×10−4

Experiments [1] 22.2 (17.2±1.8)×10−4

To set the scene for the developments discussed in the following sections, I would like now to make
some remarks about the calculations of refs. [4,5]:

1. At leading order inχPT it is possible to determine the LECs by computing onlyK → π and
K → vacuum matrix elements. At this order it is therefore possible to avoid any computations
with two-pion states.
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2. The RBC and CP-PACS collaborations were able, for the first time, to control theUltraviolet
Problem, i.e. the subtraction of power divergences due to the mixing of the∆S = 1 operators
in the weak Hamiltonian with lower dimensional ones, with sufficient precision to obtain
meaningful results. This was a very important milestone.

3. The simulations were quenched and assumed the validity of lowest orderχPT in the region
of meson masses of approximately 400-800 MeV. We will hear from Bob Mahwhinney [6]
that they are being repeated in unquenched simulations and with lighter quark masses.

Although it may appear that the values obtained for the octet enhancementare large, it should
be noted that for the quark masses at which the simulations were performed the enhancement
was about a factor of 5 or 6 (with the two collaborations agreeing on the results). The
remaining enhancement came from the chiral extrapolation (which led to the disagreement in
the table). This highlights the importance of having a good control of the chiral extrapolation.

4. A natural extension of this calculation is to improve the precision to next-to-leadingorder
(NLO) in the chiral expansion. This requires the evaluation ofK → ππ decay amplitudes
directly.

5. In view of the approximations described above it is not too surprising that the results for
ε ′/ε even have the wrong sign. There are 10 operators in the∆S = 1 effective Hamiltonian
and there is a significant partial cancellation from the∆I = 1/2 and∆I = 3/2 contributions
which amplifies the relative errors?

For the remainder of this talk, I will concentrate on the direct evaluation ofK → ππ matrix
elements. In the following section I discuss the status of the finite volume effects and in section 3 I
describe the strategy of usingχPT at NLO. In section 4 I consider the possibility of using twisted
boundary conditions to improve the momentum resolution and also report on an investigation of the
role of the charm quark in the∆I = 1/2 rule. Finally in section 5 I briefly summarise and present
my conclusions.

2. Finite Volume Effects

For most of the quantities being calculated in lattice simulations (such asfK , BK andK`3 decays
discussed in this conference [7, 8]) there is at most a single hadron in the initial and finalstate. In
K → ππ decays there are two-pions and the interactions between the two pions induce finite-
volume corrections which do not vanish exponentially. For the direct evaluationof the K → ππ
amplitudes, the theory of finite-volume effects for two-hadron states in the elastic regime is now
fully understood, both in the centre-of-mass and moving frames. In this section I describethe
status of our understanding based on the work of Lüscher [3] and subsequent papers [9–13]. For a
discussion of two-hadron states in nucleon-nucleon systems see ref. [14] and references therein.

2.1 The Two-Pion Spectrum in a Finite Volume

Consider the two-hadron propagator represented by the diagram
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where the shaded circles represent two-particle irreducible contributions in thes-channel. For
simplicity let us take the two-hadron system to be in the centre-of mass frame and assume that
only thes-wave phase-shift is significant (the discussion can be extended to include higherpartial
waves). Consider the loop integration/summation overp (see the figure). Taking the time extent
of the lattice to be infinite, we can perform thep0 integration by contours and obtain a summation
over the spatial momenta of the form:

1
L3 ∑

~p

f (p2)

p2− k2 , (2.1)

wherek is the relative momentum (E2 = 4(m2 + k2), whereE is the total energy), the function
f (p2) is non-singular and (for periodic boundary conditions) the summation is over momenta~p =

(2π/L)~n where~n is a vector of integers. In infinite volume the summation in eq. (2.1) is replaced
by an integral and in Minkowski space the denominator has the appropriateiε prescription. It is
the difference between the summation and integration which gives the finite-volume corrections.
The relation between finite-volume sums and infinite-volume integrals is thePoisson Summation
Formula, which (in 1-dimension) is:

1
L ∑

p
g(p) =

∞

∑
l=−∞

∫
d p
2π

eilLpg(p) . (2.2)

If the functiong(p) is non-singular, the oscillating factors on the right-hand side ensure that only
the term withl = 0 contributes, up to terms which vanish exponentially withL. Hence, up to this
precision, the finite-volume sum and infinite-volume integral are equal. The summand in eq. (2.1)
on the other hand is singular (there is a pole atp2 = k2) and this is the reason why the finite-volume
corrections decrease only as powers ofL. The full derivation of the formulae for the finite-volume
corrections can be found in refs. [3,9–13] and is beyond the scope of this talk. Here I just sketch the
key ingredients. Following ref. [12], it is convenient to start by rewriting the expression eq. (2.1)
in a form without singularities so that, up to exponential precision in the volume,

1
L3 ∑

~p

f (p2)− f (k2)eα(k2
−p2)

p2− k2 =
∫

d3p
(2π)3

f (p2)− f (k2)eα(k2
−p2)

p2− k2 . (2.3)

The exponential factors in eq.(2.3) are introduced to ensure ultra-violet convergence (α is the cut-
off). Eq.(2.3) can then readily be rewritten in the form

1
L3 ∑

~p

f (p2)

p2− k2 =
∫

d3p
(2π)3

f (p2)

p2− k2− iε

− ik
4π

f (k2)+ f (k2)

{

1
L3 ∑

~p

eα(k2
−p2)

p2− k2 −P

∫
d3p

(2π)3

eα(k2
−p2)

p2− k2

}

, (2.4)

whereP represents the principal value. The finite-volume correction exhibited above appears in
every loop in diagrams such as that in the figure, and upon resummation give a geometric series.
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In infinite volume there is a two-particle cut with a branch point at the two-pion threshold. In
finite volume the cut is replaced by a series of poles and the positions of these polescorrespond
to the allowed energy levels (i.e. the Lüscher quantization condition). Note that thefinite-volume
corrections in eq.(2.4) depend on the functionf evaluated at the external energy corresponding to
k2, which allows us to express the positions of the poles in terms of the physical amplitude (or
phase-shiftδ (k2)) and kinematic factors; specifically the poles occur at values ofk satisfying:

tan(δ (k2)) = − k
4π

{

1
L3 ∑

~p

eα(k2
−p2)

k2− p2 −P

∫
d3p

(2π)3

eα(k2
−p2)

k2− p2

}

−1

. (2.5)

In refs. [9,12,13] the spectrum is derived also in frames in which the total momentum is not zero.
A very important practical consequence of the quantization condition, eq.(2.5), is that the

phase-shifts can be derived from the spectrum, i.e. from the measured values ofk corresponding to
the energy eigenstates we evaluate the right-hand side of eq. (2.5) and hencedetermineδ (k2) . So,
in spite of the fact that in Euclidean space we measure matrix elements into the average of in- and
out- states, we do nevertheless have the capability of determining the phase-shifts.

2.2 Finite Volume Effects in Matrix Elements

The finite-volume corrections to the matrix elements have also been obtained both inthe
centre-of-mass frame [10] and in moving frames [12,13]:

|A|2 = 8π V 2 mKE2

k∗2

{

δ ′(k∗)+φ P ′

(k∗)
}

|M|2 (2.6)

where the′ represents the derivative with respect tok∗. k∗ is the relative momentum in the centre-
of-mass frame, so that ifE and~P are the total energy and momentum,E2−P2 = 4(m2 + k∗2). A
andM are the physicalK → ππ amplitude and the finite-volume matrix element respectively:

A = ∞〈ππ;E,~P |HW (0) |K;~P〉∞ and M = V 〈ππ;E,~P |HW (0)|K;~P〉V . (2.7)

φ P(k∗) is a kinematical function whose explicit form can be found in eqs.(2) and (3) of ref.[12]
for example.

We therefore have the necessary techniques to control the finite-volume effects in both the
spectrum and in the matrix elements. Preliminary results for∆I = 3/2 K → ππ decays using this
technique have been presented using a quenched simulation on a course lattice (a−1 = 1.3GeV) [15].

2.3 Summary

We have seen that finite volume effects for the two-pion spectrum andK → ππ amplitudes are
understood in both the rest and moving frames. ForI = 2 final states, there is now no barrier to
calculating the matrix elements precisely. ForI = 0 ππ states we need to learn how to calculate
the disconnected diagrams with sufficient precision. For example, consider the four quark-flow
diagrams for two-pion propagators:

0 t
V

1

2

4

3

0 0t t 0 t
D C R

2

1 4

3 2

1 4

3 2

1 4

3
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The two-pion propagators are an ingredient in the evaluation of theK → ππ matrix elements.
For theI = 2 state only the first two diagrams contribute and it appears that they are relatively
straightforward to evaluate. ForI = 0 in addition we have to evaluate diagrams R and V, and
new techniques, such as the use of stochastic or all-to-all propagators, needs to beimplemented
to evaluate them and to establish that they can be computed precisely. Correspondingissues are
present in the evaluation of theK → ππ correlation functions themselves.

3. χPT at NLO

As suggested above, one approach to improving the precision of the results of refs. [4,5] is
to extend the calculation to NLO inχPT. At this order forK → ππ matrix elements the generic
structure is of the form:

〈ππ|OW |K〉 = LO∗ (1+Logs)+NLO counterterms. (3.1)

The chiral logarithms (“Logs") are calculable in one-loopχPT and we then use lattice computations
of K → ππ matrix elements, for a range of masses and momenta, in order to determine the LO and
NLO low-energy constants. These LECs are then used to determine the physical decayamplitudes.

We have performed an exploratory quenched study with the SPQR kinematics, obtainingthe
matrix elements of the electroweak penguins successfully [16], obtaining

I=2〈ππ |O7(2GeV) |K0〉= (0.12±0.02)GeV3 andI=2〈ππ |O8(2GeV) |K0〉= (0.68±0.09)GeV3

(3.2)
On the other hand, we were unable to determine the LEC’s forO4 sufficiently well to perform the
chiral extrapolation. ForO4 the chiral expansion starts atO(p2), in contrast to the electroweak pen-
guins which start atO(p0). The positive aspects of this computation were that i) the finite-volume
energy shift was measurable; ii) the matrix Elements at simulated masses were well determined
and (iii) non-perturbative renormalization was implemented successfully. On the other hand the
quark masses were too high to demonstrate explicitly the validity of the chiral extrapolationand
the Lellouch-Lüscher factor was not implemented. We are now in a position to overcome these
shortcomings.

I have stated above that in order to compute the amplitudes at NLO in the chiral expansion it is
not sufficient in general to compute onlyK → π andK → vacuum matrix elements. It is necessary
to calculateK → ππ matrix elements. An exception is the evaluation of the matrix elements of the
electroweak penguin operators [17] for which preliminary results were presented in 2005 [18].

4. Miscellany

In this section I briefly discuss two approaches which are being developed to improve our
understanding ofK → ππ decays; the application of twisted boundary conditions to improve the
momentum resolution and an investigation into the rôle of the charm quark in the∆I = 1/2 rule.
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4.1 (Partially) Twisted Boundary Conditions and the Lellouch-Lüscher Factor.

The Lellouch-Lüscher factor relating theK → ππ matrix elements in finite-volume to the phys-
ical decay amplitudes contains the derivative of the phase-shift. As we have seen, the phase-shift
can be determined from the two-particle spectrum in finite-volume, but only at discretemomenta.
Indeed the momentum resolution is very poor, e.g. for a lattice withL = 24a anda ' 0.1 fm the
components of momentum are separated by about 1/2 GeV.

Using twisted boundary conditions,q(xi +L) = eiθiq(xi), the momentum spectrum is modified
(relative to periodic boundary conditions) to

pi = ni
2π
L

+
θi

L
. (4.1)

For quantities which do not involve final state interactions (e.g. masses, decay constants, form-
factors) the finite-volume corrections are exponentially small also with twisted boundarycondi-
tions [19]. Moreover they are also exponentially small forpartially twisted boundary conditions
in which the sea quarks satisfy periodic boundary conditions but the valence quarkssatisfy twisted
boundary conditions [19, 20], so that we do not need to perform new simulations forevery choice
of θi.

By using (partially) twisted boundary conditions, the derivative of the phase shift (δ ′(q∗2))
can be evaluated for∆I = 3/2 decays [21]. To see this consider the propagation of twoπ + mesons
with momentaθ/L and(θ −2π)/L, where we can varyθ . This can be arranged for example by
choosing twisted boundary conditions for the valenceu quark. From the two-pion spectrum, as
explained above, we can determineδ (q∗2), whereq∗ is the corresponding centre-of-mass relative
momentum. Sinceθ can be varied with small intervals, we can also evaluate the derivativeδ ′(q2).
To illustrate this consider the following preliminary results, obtained usingN f = 2+1 Domain Wall
Fermion configurations from the RBC & UKQCD collaborations, whose properties are described
in ref. [22]. We start by measuring the lowest energy in the finite volume (EFV) which is different
from the sum of the energies of two free pions with momentaθ/L and (θ − 2π)/L. From the
total energy,EFV, and momentum,(2θ − 2π)/L, we determineq∗ and in the left-hand plot of
fig. 1 we show the energy shift as a function ofq∗. From the energy shift we can determine the
phase-shiftδ (q∗) as described above (see centre plot) and from the behaviour ofδ as a function
of q∗ we can obtain its derivative and hence the Lellouch-Lüscher factor relating the finite-volume
matrix element and the physical decay amplitude (right-hand plot). At each stage we compute the
quantities directly for the masses used in the simulation (the plots are shown for one particular
choice of the masses). We are therefore able to control the finite volume effects in the lattice
computations.

In addition to enabling one to calculate the finite-volume corrections in lattice calculations of
∆I = 3/2 decays with periodic boundary conditions, the use of twisted boundary conditionsextends
the kinematic range for which the matrix elements can be computed. Since in the procedure which
we have used the relative momentum in the moving frame is always 2π/L, the range of accessible
values ofq∗ is limited, but nevertheless, represents an extension over periodic boundary conditions
alone.
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Figure 1: The energy shift (left), the phase-shift (centre) and the Lellouch-Lüscher factor(right) as a func-
tion of q∗ for an illustrative pair of light quark (ma= 0.02) and strange quark (msa = 0.04) masses.

4.2 Rôle of the Charm Quark in the∆I = 1/2 Rule

There has been a recent proposal to study the rôle of the charm quark in the∆I = 1/2 rule [23,
24]. The programme, which has only been partially implemented to date, consists of3 steps:

1. In theSU(4) limit with all four masses very light, (mc = ms = mu = md � ΛχPT) there are
two LECs,g+ andg−, which have been evaluated by matching a quenched QCD simulation
ontoχPT (in theε regime):

g+ = 0.51±0.09 and g− = 2.6±0.5 ⇒ A0

A2
=

1√
2

(

1
2

+
3g−

2g+

)

' 6. (4.2)

ΛχPT is the scale of chiral symmetry breaking. The authors conclude that:Even though the
enhancement is not large enough to match the experiment, it already indicates that penguin
operator/contractions cannot be the whole story.

2. The mass of the charm quark is now increased, while still remaining within the chiral regime
(ΛχPT� mc � ms = mu = md). The matching from step 1 to this effective theory can be
done analytically. This has been done at lowest order butunfortunately NLO couplings are
needed to have predictability.

3. Finally the charm quark mass is increased to its physical value (mc ≥ΛχPT�ms = mu = md)
and this remains to be done in the future.

5. Summary and Conclusions

In this talk, I have tried to demonstrate that there has been a considerable amount oftheoretical
progress in formulatingK → ππ decays in a form suitable for lattice simulations. There is now the
opportunity of achieving significant numerical results forK → ππ decay amplitudes.

(i) For I = 2 final states, there is now no barrier to calculating the matrix elements precisely.

(ii) For I = 0, ππ states, as explained in section 2.3, we still need to learn how to calculate the
disconnected diagrams with sufficient precision.
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I started the talk with a reminder about the results from the RBC and CP-PACS collaborations
obtained in 2001 at lowest order inχPT in quenched simulations. We will hear from Bob Mawhin-
ney, that interesting new calculations are underway to repeat the calculations in unquenched simu-
lations and at lower masses.
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