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We shortly review a couple of proposals of Bell inequality tests with entangled pairs of neutral

kaons from φ resonance decays. The suggested experiments are discussed in the light of the

essential requirements for a genuine discrimination between local hidden–variable theories (i.e.,

local realism) and quantum mechanics. We clarify the logical limitations of these tests in refuting

the whole class of local realistic models. Detailed analyses imply that a Bell–type test with

neutral kaons free from the detection loophole requires a few % strangeness detection efficiencies

and very high efficiencies for the detection of the kaon decay products.
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1. Introduction – The correlations shown by the distant parts of a system in an entangled state offer one of the most
counterintuitive and subtle aspects of quantum mechanics. This became evident with the appearance of the well known
papers by Einstein–Podolsky–Rosen (EPR) and Bohr [1] on the completeness of quantum mechanics. For about 30 years
the debate triggered by EPR and Bohr was reputed to be a philosophical matter rather than an actual physical question.
In 1964, Bell [2] interpreted EPR’s argument as the need for the introduction of additional, unobservable variables
aiming to restore completeness, relativistic causality (i.e., locality) and realism in quantum theory. He established a
theorem which proved that any local hidden–variable (i. e., local realistic) theory is incompatible with some statistical
predictions of quantum mechanics. Since then, various forms of Bell inequalities [3]–[5] have been the usual tool for an
experimental discrimination between local realism (LR) and quantum mechanics (QM).

Bell–type tests have been performed mainly with entangled photons [5, 6] and ions [7]. Although these tests
obtained results in good agreement with QM, they do not represent a conclusive proof against LR since they only showed
the violation of the so called non–genuine Bell inequalities. Because of non–idealities of the apparata and other technical
problems, supplementary assumptions not implicit in LR were needed in the interpretation of these experiments. No one
of these tests has been loophole–free [5, 8], i. e., able to test a genuine Bell inequality, which is a consequence of LR
alone. Two main logical loopholes affected the performed experiments. The detection loophole originates from the fact
that the achievable detection efficiencies are lower than the thresholds required for the violation of genuine inequalities
[5, 9]. In addition, an experiment is not free from the locality loophole if the measurements on the two parties of the
entangled state are not carried out under strict space–like separation conditions; exchange of subluminal signals between
the two measurement event regions cannot be avoided in such cases.

Extensions to other kinds of entangled systems are thus important. Recently, there has been an increased interest
on the possibility to test LR in particle physics, by using entangled neutral kaons [10]–[15]. In φ resonance decays, as at
DaΦne [16], or pp̄ annihilation processes at rest [17], neutral kaon pairs are produced in the maximally entangled state:

|φ(0)〉 = {|K0〉l |K̄0〉r −|K̄0〉l |K0〉r}/
√

2 = {|KS〉l |KL〉r −|KL〉l |KS〉r}/
√

2 , (1)

where l and r denote the ‘left’ and ‘right’ kaon directions of motions and CP violation effects have been neglected in
the second equality. The strong nature of kaon hadronic interactions has the value of enhancing the efficiencies to detect
the products of kaon decays and interactions with ordinary matter. Moreover, the measurements on each one of the two
kaons produced in φ decays or pp̄ annihilations at rest can be performed when they are separated by many centimeters.
Closing the locality loophole is then a hard, but merely technical, problem. However, other specific difficulties appear
with kaons which renders very difficult a genuine test of LR. In this contribution we concentrate on these difficulties and
discuss a couple of kaonic Bell–type tests in the light of the basic requirements necessary to establish genuine tests of
LR. For detailed reviews on the subject see Refs. [13, 14, 15].

2. Requirements for a genuine Bell inequality test – The requirements for deriving a genuine Bell inequality from
LR can be summarized as follows: (1) A non–factorisable or entangled state must be used; (2) Alternative and mutually
exclusive measurements, corresponding to non–commuting observables, must be chosen at will and performed on both
members of that state (reality requirement); (3) Each one of the different single measurements has to have dichotomic
outcomes; (4) The measurement process on each member of the two–particle state must be space–like separated from
the measurement on the other member (locality requirement).

At a φ–factory, or in pp̄ annihilations at rest, the first requirement poses no serious problems: entanglement has
been confirmed experimentally for K0K̄0 pairs [17, 18]. Difficulties appear with requirements number (2) and (4) and are
discussed in the next Section. In order to establish the feasibility of the real test, one finally has to derive the minimum
detection efficiencies necessary for a meaningful QM violation of the considered Bell inequality.

3. Neutral kaon measurement procedures – According to previous requirements (2) and (4), for genuine Bell–type
tests the adopted measurements must be performed by exerting the free will of the experimenters in two space–like
separated regions. Measurements on neutral kaons reduce to only two kinds. At the chosen measurement time, one can
either place a slab of ordinary matter or allow for kaon free–space propagation, thus measuring either strangeness or
lifetime. Actively changing from one setup to another in such a way that the two measurement events are space–like
separated implies serious technical difficulties. The use of fully passive measurements, which are also possible for kaons
and are important for other QM tests [19], prevents the derivation of genuine Bell inequalities [20].

Strangeness – The ‘strangeness’ basis consists of the two eigenstates |K0〉 and |K̄0〉 with strangeness S = +1 and
S = −1, respectively, and is suitable to analyze S–conserving electromagnetic and strong interaction processes.
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Strangeness of a given kaon state is measured by placing a piece of ordinary material along the meson path. When
a kaon–nucleon reaction occurs, the distinct strong interactions of the S = +1 and S = −1 neutral kaons on the bound
nucleons inside the medium project the arbitrary state of an incoming kaon into one of the two orthogonal members of
the strangeness basis [13]. Unfortunately, the efficiency for such strangeness measurements at moderate kaon energies
is less than what people have been naively expecting from the strong nature of these interactions [17]. The reason,
rather than being the difficulty in detecting the final state particles, stems from the low probability in initiating the strong
reaction. Ordinary matter is indeed too transparent for kaons.

Lifetime – The short– and long–lived states, |KS〉 and |KL〉, are the normalized eigenvectors governing neutral
kaon (proper) time evolution in free–space:

|KS(L)(τ)〉 = e−imS,Lτ e−
1
2 ΓS(L)τ |KS(L)(τ = 0)〉 ≡ e−iλS(L)τ |KS(L)〉, (2)

mS,L and ΓS,L being the KS,L masses and decay widths. They define the quasi–orthonormal lifetime basis, with 〈KS|KL〉=

(ε + ε∗)/(1+ |ε|2), ε being a CP violating parameter.
To measure if a kaon is propagating in free–space as a KS or KL at a given time τ , one has to allow for further prop-

agation in free–space and then detect at which time the kaon decays. Kaons decaying between times τ and τ +∆τ have
to be identified as KS’s, while those decaying later than τ + ∆τ have to be identified as KL’s. By choosing ∆τ = 4.8τS,
both KS and KL misidentification probabilities reduce to ' 0.8%, which can be further decreased if the decay mode
is also identified (see appendix of Ref. [15]). At DaΦne one has at disposal rather high detection efficiency for these
lifetime measurements.

4. Kaonic Bell–type tests
A proposal assuming fair sampling – We start by analyzing a proposal [11] based on the fair sampling hypothesis

[5], which amounts to assume that the set of effectively measured events represent an undistorted sample of the whole set
of states emitted from the source. While such an assumption represents an obvious procedure in quantum measurement,
in a local realistic model the hidden–variables can be well correlated with the efficiencies of measuring apparata. Under
fair sampling, the efficiency factors in the Bell inequalities are assumed to be 1 and thus no undetected event appears.

The entangled state used in Ref. [11] is prepared by placing a thin regenerator with parameter η on the right beam,
close to the point where the two–kaon state (1) originates. We assume that the proper time ∆τ required by the right
moving neutral kaon to cross the regenerator is short enough (∆τ << τS) to ignore kaon decays. Free propagation is
then considered for the left and right beams up to a proper time T , with τS << T << τL ' 579τS. After normalization
to surviving pairs, one obtains the non–maximally entangled state:

|Φ〉 = {|KS〉|KL〉− |KL〉|KS〉+R|KL〉|KL〉}/
√

2+ |R|2 , R ≡−ηe[i(mS−mL)+ 1
2 (ΓS−ΓL)]T . (3)

For each kaon on each beam at time T , one then considers either a strangeness or a lifetime measurement. With the
strategy adopted for lifetime measurements, requiring an extra interval time ∆T after T , for kaon pairs from φ decays,
one has to use T > 1.77∆T to guarantee the space–like separation between left and right measurements.

In Ref. [11] the following Clauser–Horne (CH) inequalities [4] have been derived under the assumption of perfectly
efficient measuring apparata:

P(K̄0,KL)−P(K̄0, K̄0)+P(KS, K̄0)+P(KS,KL)

P(KS,∗)+P(∗,KL)
≤ 1 ,

P(K̄0,KS)−P(K̄0, K̄0)+P(KL, K̄0)+P(KL,KS)

P(∗,KS)−P(KL,∗) ≤ 1 , (4)

where, for instance, P(KS,∗) ≡ P(KS,K0)+P(KS, K̄0). These CH inequalities are satisfied by all local realistic models
supplemented by fair sampling. By substituting the QM predictions, these inequalities imply: (2−ReR+ |R|2/4)/(2+

|R|2) ≤ 1, (2 +ReR + |R|2/4)/(2 + |R|2) ≤ 1. According to the sign of ReR, one of these two inequalities is violated
if |ReR| ≥ 3|R|2/4. The greatest violation occurs for a purely real value of R, |R| ' 0.56, for which one of the two
previous ratios reaches the value 1.14. This 14 % violating effect predicted by QM opens up the possibility for a
meaningful kaonic Bell–type test which could refute those LR models incorporating fair sampling.

An attempt of genuine test – We now discuss a proposal which does not assume hypotheses beyond LR. In our
opinion, it represent an interesting attempt for a loophole–free test of LR vs QM with neutral kaons.

Hardy’s proof without inequalities of Bell theorem [21] has been applied in Ref. [12] to the non–maximally entan-
gled state (3). Neglecting CP–violation and KL–KS misidentification effects, from state (3) with R = −1 (Hardy’s state)
one obtains the following QM predictions:

PQM(K0, K̄0) = η η̄/12 , PQM(K0,KL) = 0 , PQM(KL, K̄0) = 0 , PQM(KS,KS) = 0 , (5)
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where η (η̄) is the overall efficiency for K0 (K̄0) detection. It is found that the necessity to reproduce, under LR, the
first three equalities in Eq. (5), requires PLR(KS,KS) ≥ PLR(K0, K̄0) = η η̄/12 > 0, which contradicts the last equality
of Eq. (5). In principle, this allows for an ‘all–or–nothing’ test of LR vs QM. By requiring a perfect discrimination
between KS and KL states, an experiment measuring the joint probabilities of Eq. (5) closes the efficiency loophole even
for infinitesimal values of the strangeness detection efficiencies [12]. However, since KL and KS misidentifications do
not permit an ideal lifetime measurement even when the detection efficiency ητ for the kaon decay products is 1, the
question must be reconsidered by paying attention to the inefficiencies involved in the real test.

Retaining the lifetime misidentification effects, the predictions (5) are replaced by (see Ref. [15] for details):

PQM(K0, K̄0) = ηη̄/12 , (6)

PQM(K0,KL) = 6.77×10−4 η ητ , (7)

PQM(KL, K̄0) = 6.77×10−4 η̄ ητ , (8)

PQM(KS,KS) = 1.19×10−5 η2
τ . (9)

In the standard Hardy’s proof of non–locality [21], the probabilities corresponding to our (7)–(9) are perfectly vanishing.
In our case they are very small but not zero. Nevertheless, this does not prevent us from deriving a contradiction between
LR and QM. Indeed, it turns out [15] that the following Eberhard inequality [9]

H ≡ P(K0, K̄0)

P(K0,KL)+P(KS,KS)+P(KL, K̄0)+P(K0,ULif)+P(ULif, K̄0)
≤ 1. (10)

must be used to demonstrate the incompatibility between LR and QM in the realistic case. The argument ULif refers to
failures in lifetime detection and PQM(K0,ULif) = η(1−ητ )/6, PQM(ULif, K̄

0) = η̄(1−ητ )/6. It is important to stress
that the previous Eberhard inequality has been obtained without invoking supplementary assumptions on undetected
events, i.e., it is a genuine Bell inequality.

We now have to discuss the feasibility of the corresponding experiment. In the ideal case with no undetected events
(η = η̄ = ητ = 1), the inequality is strongly violated by QM, Hη=η̄=ητ =1

QM ' 60.0, even if one allows for unavoidable
KS and KL misidentifications. Assuming that only the detection efficiency of kaon decay products is ideal (ητ = 1), for
η = η̄ (η = η̄/2) Eberhard inequality is contradicted by QM whenever η > 0.023 (η > 0.017). Let us now consider
more realistic situations with small and possibly achievable values of η and η̄ . This implies that we have to consider
large decay–product detection efficiencies. For each ητ , the values of η and η̄ that permit a detection–loophole–free test
(HQM > 1) lie above the corresponding curve plotted in Fig. 1. As expected, when ητ decreases, the region of η and η̄
values which permits a conclusive test diminishes and larger values of η and η̄ are required.

In conclusion, a Bell–type test with neutral kaons and with strangeness detectors having an efficiency of a few %
would be free from the detection loophole if almost ideal lifetime measurements were achievable. In any case, as for the
performed photon experiments, the proposed kaonic test is able to refute LR modulo the fair sampling assumption.
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