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Signals of the first order phase transition?
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The phase diagram of strongly interacting matter presents afocal point for current high-energy
nuclear physics as several facilities are preparing to mount experimental programs devoted to
the search for the expected first-order phase transition andthe associated critical point. For this
effort to succeed, it is important to develop suitable dynamical models that can be used to test
candidate signals and provide a framework for the interpretations of the data.

Starting with a brief reminder of the thermodynamics relevant for first-order phase transitions,
we illustrate the intricacies of the associated phase diagrams for the simple cases of either zero or
one conserved charge. We then turn to the phase trajectoriesof the hot and dense matter formed
in a high-energy collision. The generic features suggest that there is an optimal range of collision
energies within which the system spends the longest time inside the thermodynamically unstable
phase-coexistence region and thus is most likely to undergoa phase separation.

Subsequently, within the general framework of collective dynamics in many-body systems, we
elucidate how the presence of a phase transition induces a transient enhancement of the mode
fluctuations, and the more so the further the system venturesinto the unstable region.

Finally, we briefly discuss the spinodal clumping that may occur if the expansion dynamics drives
the bulk matter into the spinodal region of instability. We review both kinematic and chemical
correlation observables that exhibit a sensitivity to sucha clumping and may therefore be useful
as signals of that phenomenon and thus help to identify the first-order transition.
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1. Introduction

Several years of vigorous research with high-energy nuclear collisions have provided com-
pelling evidence for the existence of a new phase of matter which has been tentatively identified as
the expected quark-gluon plasma. A central goal of the field is now to investigate this deconfined
phase and, in particular, to explore the phase structure of strongly interacting matter.

While the confinement phase transformation appears to be a crossover in baryon-poor matter
(which has been most extensively studied so far), it is expected to become of first order at suffi-
ciently high baryochemical potential. The prospect of establishing evidence of this first-order phase
transition and identifying the associated critical point has stimulated a rapid growth of interest in
hot and baryon-dense matter and several facilities around the world are being prepared to address
this hitherto unexplored physics area [1, 2, 3]

There are numerous significant challenges associated with this venture. For one thing, we
do not yet have quantitative theoretical predictions of howthe phase diagram should look, so the
experimentalists need to prepare for a broad range of possibilities. Furthermore, as always in heavy-
ion physics, the success of the experimental effort dependson the identification of measurable and
informative observables and this, in turn, requires the availability of suitable simulation models
with the help of which the robustness of proposed signals canbe tested and effective data analyzes
devised. Unfortunately, it is particularly difficult to develop such models for the phase region of
primary interest where the effective degrees of freedom change from partonic to hadronic. We
discuss here key features of such a first-order phase transition with a view towards developing
suitable signal observables.

2. Thermodynamics reminder

We start by a reviewing the thermodynamics relevant in connection with a first-order phase
transition. In this discussion, the term “thermodynamics”refers to the statistical dynamics of sys-
tems that are spatially uniform (i.e. translationally invariant) and sufficiently large that finite-size
effects are insignificant.

Consider now such a system of volumeV and let its total energy beE = Vε , whereε = E/V
is the energy density. In general the system may contain certain amounts of conserved charges,
which we here shall examplify by the “particle number”N = Vρ (in the nuclear context it may be
thought of as thenetbaryon number), withρ = N/V being the corresponding net charge density.

The key thermodynamic quantity is the associated entropyS(E,N,V) = Vσ(ε ,ρ), with the
entropy densityσ = S/V, whose derivatives yield the thermodynamic parametersT, µ , andp:

∂ES(E,N,V) =
1
T

= β (ε ,ρ) = ∂ε σ(ε ,ρ) , (2.1)

∂NS(E,N,V) = −
µ
T

= α(ε ,ρ) = ∂ρσ(ε ,ρ) , (2.2)

∂VS(E,N,V) =
p
T

= π(ε ,ρ) = σ(ε ,ρ)−β (ε ,ρ)ε −α(ε ,ρ)ρ . (2.3)

In the thermodynamic limit (V → ∞) the volume plays no role and the thermodynamic properties
can be expressed solely in terms of the densitiesε , ρ , andσ , as shown above on the right.
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The conditions forthermodynamic coexistenceof two such systems in contact can be obtained
by requiring that the total entropyS1+2 = S1+S2 be stationary,δS1+2

.
= 0, for arbitrary conserving

variations in energy (δE1+δE2 = 0), charge (δN1 +δN2 = 0), and volume (δV1 +δV2 = 0). This
yields the conditions∂E1S1

.
= ∂E2S2 (implying T1 = T2), ∂N1S1

.
= ∂N2S2 (implying µ1 = µ2), and

∂V1S1
.
= ∂V2S2 (implying p1 = p2). These conditions can be visualized as the requirement that the

tangents of the entropy densityσ(ε ,ρ) at the two coexisting phase points(ρ1,ε1) and(ρ2,ε2) be
identical:σ(ε1,ρ1)+ β1(ε − ε1)+ α1(ρ −ρ1)

.
= σ(ε2,ρ2)+ β2(ε − ε2)+ α2(ρ −ρ2).

Furthermore,thermodynamic stabilityexists when the second variation of the entropy yields
a lower value,δ 2S1+2 < 0. This requirement translates into the demand that the entropy density
be a concave function,i.e. the eigenvalues of its curvature matrix{∂x∂x′σ} must all be negative.
Thus the occurrence of a convex anomaly inσ(ε ,ρ) signals the existence of a first-order phase
transition,i.e. two different manifestations of the system that may coexistthermodynamcially.

2.1 Simplest example: No conserved charges
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Figure 1: First-order phase transition without conserved charges: When the entropy densityσ(ε) has a
convex anomaly there is a common tangent connecting the two coexistence points that have the same values
of T and p (upper left). The slope ofσ(ε) is the inverse temperatureβ (ε) which is then non-monotonic
and it increases through the (spinodal) interval of the convexity (upper right). The pressure is also non-
monotonic and decreases through the spinodal region (lower left). The resulting equation of statep(T) then
executes a complicated behavior as the phase-coexistence region ofε is traversed (lower right).
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It is instructive to first consider the simplest situation when there are no conserved charges.
The key function is thenσ(ε) and we haveβ (ε) = ∂ε σ(ε) andπ(ε)≡ p(ε)/T(ε) = σ(ε)−β (ε)ε .
The presence of a convex anomaly inσ(ε) is illustrated in Fig. 1 which brings out the fact the
thermodynamic variablesT(ε) and p(ε) are non-monotonic functions of the mechanical control
variableε in the phase-coexistence region, causing the corresponding inverse functions to be triple-
valued and resulting in a multilayered appearance of the thermodynamic equation of statep(T).

2.2 One conserved charge: nuclear matter

We further illustrate the phase-transition thermodynamics by considering an idealized model
with one conserved charge that resembles the familiar case of iso-symmetric nuclear matter. It is
defined in Fig. 2 which also depicts the associated equation of state.
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Figure 2: Schematic model of nuclear matter:Left: Description of the model which considers classical
particles in a density-dependent mean field.Right: The associated equation of statepT(ρ) is depicted by
plotting the pressure plotted as a function of densityρ for a succession of fixed temperaturesT. The solid
curve between the vacuum and the ground state goes through the phase coexistence points, while the dashed
curves delineate the low (green) and high (red) density spinodal boundaries, joining at the critical point.

It is instructive to consider the phase diagram in various representations, as done in Fig. 3.
In the mechanical(ρ ,ε) representation all features are visible on a single sheet since the thermo-
dynamic functions are all single-valued everywhere; the accessible part of the phase diagram is
bounded from below by the zero-temperature energy densityεT=0(ρ). Furthermore, phase trajec-
tories resulting from dynamical expansions have a simple appearance.

In the (ρ ,T) diagram the entire upper half plane is accessible and coexisting phase points
are joined by horizonthal lines; dynamical trajectories tend to be well-behaved here as well. By
contrast, the(µ ,ε) representation yields a rather complicated phase diagram that requires multiple
sheets and the dynamical phase trajectories are correspondingly complicated.

In the familiar (µ ,T) diagram the phase coexistence partners coincide and the entire phase
coexistence region lies on intermediate sheets that are usually not displayed. This representation is
therefore particularly inconvenient for the discussion ofphase transition dynamics. This problem
is well illustrated by the expansion phase trajectories which cross the phase transition line three
times and thus exhibit a zig-zag behavior as the phase coexistence region is being traversed.
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Figure 3: Various representations of the phase diagram for a liquid-gas type system with one conserved
charge. Starting from the basic mechanical representation(ρ ,ε) (upper left), either density may be replaced
by the corresponding thermodynamic variable, yielding either (µ ,ε) (upper right) or (ρ ,T) (lower left)
phase diagrams, and ultimately the(µ ,T) representation familiar from text books (lower right). Also shown
are the phase trajectories resulting from (approximately)isentropic expansions of uniform matter.

3. Dynamical phase trajectories for nuclear collisions

The prospects for probing the phase structure of hot and dense matter with high-energy nuclear
collisions depends of which parts of the phase diagram are being visited during the dynamical
evolution. This can be elucidated by considering the evolving densitiesρ(t) andε(t) together by
plotting the dynamical trajectory in theρ −ε phase plane, as done in Ref. [4], see Fig. 4 (left). That
study demonstrated that a number of quite different dynamical models yield very similar results for
these quantities. We may therefore extract certain genericfeatures, illustrated in Fig. 4 (right).

Obviously, the lowest collision energies are insufficient to bring the system near the phase
coexistence region. Generally, as the collision energy is increased, the phase trajectories penetrate
into ever larger compressions and excitations and the (nearly isentropic) expansion paths steepen.
Therefore, there will be a certain “critical” collision energy for which the expansion trajectory will
pass right through the critical point. Above this energy thedynamical trajectory will entirely miss
the phase coexistence region and such “supercritical” collision energies would seem rather unlikely
to provide direct signals of the first-order transition.

5



P
o
S
(
C
P
O
D
0
7
)
0
0
6

Signals of the first order phase transition? Jørgen Randrup

0.0 0.5 1.0 1.5 2.0 2.5

Net baryon density ρ(t) (fm
-3

)

0

1

2

3

4

5

6

7

8
E

xc
ita

tio
n 

en
er

gy
 d

en
si

ty
 ε

* 
(G

eV
/fm

3 )

3-fluid (Ivanov, Ruuskikh, Toneev)

40 GeV/A

20 GeV/A

10 GeV/A

5 GeV/A

ε* = ε - mN ρ

V

V

T
e
m

p
e
ra

tu
re

  
T

Baryon densityρ0

critical

subcritical

su
p

er
cr

it
ic

al

optimal

ρ

Figure 4: Dynamical phase trajectories.Left: Time evolution of the mechanical phase point(ρ(t),ε∗(t))
extracted at the center of a head-on gold-gold collision as calculated in the 3-fluid model (from Ref. [4]).
Right: Sketch of the associated generic features as a sweep is made in the collision energy.

On the other hand, there is an entire range of relatively low collision energies for which the
phase trajectories penetrate into but not beyond the phase coexistence region. The bulk of the sys-
tem then spends a maximal amount of time in the thermodynamcially unstable phase region. These
circumstances may be optimal for a phase separation to develop. Such a macroscopic reorganiza-
tion into a phase mixture renders the system highly irregular and is expected to lead to anomalously
large fluctuations in various observables (see later).

Unfortunately, it is not yet possible to make a precise prediction of the corresponding “op-
timal’ collision energies, partly because of the uncertainties inherent in the dynamical collision
simulations, but mostly because the lack of sufficiently realistic calculations of the phase diagram.
Because of this situation, theory can only provide qualitative guidance and experimental data on
the phase structure are urgently needed.

4. Collective dynamics near a critical point

There is currently some debate about the dynamical behaviorof collective modes in the neigh-
borhood of a critical point and we wish to illuminate the issue within a schematic model that has
the relevant characteristic features.

Following Ref. [5], we consider the dynamical evolution of ageneral many-body system after
its collective modes have been identified and the corresponding equations of motion have been lin-
earized. These collective modes are labeled by the indexν and the associated quantum amplitudes
are{Aν}. The time evolution ofAν is governed by the following equation of motion,

d
dt

Aν(t) = −iωνAν(t)+Bν(t) , ≺ Bν(t)B∗
µ(t ′) ≻ = 2Dν µδ (t − t ′) , (4.1)

where the coupling of the collective modes to the residual system is accounted for by the stochastic
terms{Bν} which we here assume to be diagonal and Markovian (the expectation value is taken
over the considered ensemble of systems).
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Figure 5: Dynamics near a critical point.Left: The prescribed time evolution of the imaginary partγν of the
eigenfrequency of a particular mode in four different scenarios: equilibrium,γ(t) = γ0 (black), subcritical,
γmax < 0 (blue), critical,γmax = 0 (green), and supercritical,γmax > 0 (red).Right: The resulting evolution
of the induced transient agitation of the mode as measured bythe variance of the associated amplitudeAν .

The eigenfrequency is generally complex,ων = εν + iγν . When the mode is stable,γν is
negative and its magnitude represents the damping width dueto the interaction with the residual
system. Conversely, the frequency is purely imaginary whenthe mode is unstable at the mean-
field level. Generally, the imaginary part of the frequency is the difference between the damping
width and the growth rate and it may therefore become positive, thus producing an exponential
development ofAν . We now illustrate this by considering the fluctuations of the amplitudesAν(t).

While we may generally study the two-time correlation matrix, σν µ(t1, t2)≡≺Aν(t1)A∗
µ(t2)≻,

we focus here on just the diagonal elements of the same-time correlationσ2
ν (t) =≺ Aν(t)A∗

ν(t) ≻,
which is a convenient measure of the degree of agitation of the mode. This quantity evolves ac-
cording to a simple feed-back equation of motion [5],

d
dt

σ2
ν (t) = 2Dν + 2γν σ2

ν (t) , (4.2)

where the source termDν expresses the continual noisy input from the residual system. Whenγν

is negative, the feed-back term suppresses these disturbances and thus ensures that the appropriate
equilibrium variance is approached.σ2

ν (t− → ∞) = −Dν/γν . On the other hand, the feed-back
term amplifies disturbances whenγν is positive. These features are evident in the general solution,

σ2
ν (t) =

[

2Dν

∫ t

ti
e2Γν (t ′)dt′ + σ2

ν (ti)

]

e−2Γν (t) , Γν(t) ≡
∫ t

ti
γν(t ′)dt′ . (4.3)

We now emulate the effect of the dynamics near the critical point by prescribing the time
evolutionγ(t) = γ0 + δγ(t). Starting in equilibrium withγ(t) = γ0 < 0, the mode responds to the
temporary increaseδγ(t) caused by the instability of the system, as illustrated in Fig. 5.

We first consider a subcritical scenario where the dynamicalphase trajectory passes by the
critical point without entering the phase-coexistence region. The mode then remains stable but
the temporary decrease of|γ | causes the instantaneous equilibrium variance to become temporarily
larger; the dynamical readjustment of the variance to this change is delayed by the relaxation time.

7
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When the dynamics takes the system right through the critical point, the value ofγ reaches
zero, but for a moment only. Therefore, even though the equilibrium fluctuations diverge forγ = 0,
the dynamically determined fluctuations remain well behaved (and subsequently subside again).

Finally, the supercritical phase trajectories pass through the spinodal phase region whereγ > 0
and spontaneous amplitude amplification would occur in static matter. Nevertheless, again because
of the finite time spent in the unstable region, the resultingfluctuations remain finite but they
(temporarily) reach values that are still larger than thoseattained for the critical trajectory.

It thus appears than one would generally expect that a sweep from subcritical to supercritical
trajectories would show a relatively sudden (but transient) enhancement of the fluctuations as the
critical trajectory is being approached, followed by further (and even stronger) enhancement as the
supercritical region is entered. This feature is expected to be rather generic and it may therefore
form the basis for devising suitable experimental signals.It should of course be kept in mind
that when the fluctuations grow sufficiently large, the system will leave the linear regime and the
trajectories will branch into channels that are qualitatively different from one another. While this
non-linear behavior renders the problem more difficult to treat theoretically, it may well be helpful
for the experimental identification of the phase transitionand the associated critical point.

5. Signals of spinodal clumping

If the deconfinement phase transformation of strongly interacting matter is of first-orderand
the expanding deconfined matter created in a high-energy nuclear collision enters the corresponding
region of phase coexistence, a spinodal phase separation might occur (especially if the overall ex-
pansion is sufficiently slow compared to the most rapid instability growth rates). The matter would
then condense into a number of separate blobs, each with its own collective flow and strangeness
contents. These features may form the basis for the development of suitable diagnostic observables.

In the following, we discuss certain specific observable consequences of such a phase de-
composition. For this purpose, we employ a schematic model in which the system breaks up into
entirely independent blobs which proceed to hadronize statistically. The blob sizes, positions, and
flow velocities are sampled from specified distributions. However, there is yet no account taken of
post-hadronization interactions and decays; these processes would generally be expected to erode
the signals and it would clearly be interesting to incorporate them into the simulation studies.

z2 3

4
6

5

1 SS
S

S

S

S

Figure 6: Schematic picture of spinodal clumping in a high-energy nuclear collision: The rapid longitudinal
expansion drives the bulk matter into the phase coexistenceregion. The spinodal instabilities may then
amplify density irregularities and cause the system to formindividual clumps of quark-gluon plasma, each
of which is endowed with its own flow velocity and a (stochastic) amount of net strangeness.
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5.1 Kinematic signals of clumping

A clumping of the expanding system is expected to affect the kinematic correlations between
the resulting hadrons. One simple kinematic observable that may be affected by a clumping is the
rapidity difference between two hadrons,|y1 − y2|. Because heavy hadrons are affected less by
the thermal smearing, it may be advantageous to limit the considerations to baryons. Fig. 7 (left)
shows the calculated two-proton correlation with regard toeither the ordinary longitudinal rapidity

or the rapidity associated with their three-dimensional relative motion,y12 = ln[γ12 +
√

γ2
12−1]

(with γ12 = p1 · p2/m1m2), which yields a significantly stronger signal [6].

Since there are several sources of two-particle correlations, it is advantageous to consider
kinematic correlations betweenN > 2 particles. A particularly convenient and instructiveN-body
correlation observable is the internal kinetic energy per particle, κN{pn}, for a group ofN si-
multaneously observed particles having four-momenta{pn} [6]. When theN-body momentum
distribution is clumped, the sampling ofκN will yield an enhancement around the thermal kinetic
energy in the individual source, relative to what would occur for a structureless distribution. In
order to bring out this signal, one may compare the correlated distributionP(κN), obtained by
sampling all theN particles from the same event, with the corresponding uncorrelated distribu-
tion P0(κN) obtained by samplingN different events. This yields the reduced correlation function,
CN(κN) ≡ P(κN)/P0(κN)−1, which is illustrated in Fig. 7 (right).

The correlation signal grows more prominent asN is increased, because it becomes increas-
ingly unlikely thatN momenta sampled from a structureless distribution would all be nearly similar,
and the higher-order correlations become progressively more effective in discriminating between
various dynamical mechanisms. However, since the signal receives its support from a suppressed
region of theN-body phase space, the required counting statistics increases rapidly withN, thus
presenting a practical limit to the order of correlation that can be addressed with a given set of
data. This basic feature illustrates the importance of having sufficiently large event samples for the
identification of a conclusive correlation signal.
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Figure 7: Kinematic signals of clumping (from Ref. [6]).Left: The 1D and 3D two-proton rapidity corre-
lation functions in a variety of clumping scenarios.Right: The correlation function function forN = 2,3,4
protons expressed as the enhancement of the internal kinetic energy per particle of the observedN protons.
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5.2 Chemical signals of clumping

Since the particular net strangeness trapped in a given spinodal blob would remain approxi-
mately conserved during its further evolution, the resulting hadrons will exhibit an enhanced de-
gree of strangeness fluctuation, relative to a statistical emisson from the overall system [7]. [This
is qualitatively easy to understand since the requirement that the total strangeness in a given blob
be non-zero necessarily puts a lower bound on the number of strange hadrons produced, whereas
no such bound exists when the total strangeness vanishes.] As a result of this elementary effect of
clumping, suitable strangeness-related observables may be useful signals of a phase separation.

For a source having a significant net baryon density, where a first-order transition is expected,
Fig. 8 (left) illustrates the dependence of the fluctuation of theK+/π+ yield ratio on the overall
baryochemical potential, compared with that would result if the strangeness of each blob were fixed
to zero or if a grand canonical treatment were employed. The effect is seen to become significant
for large values of the chemical potential.

But there are two opposing effects: The fluctuations are generally enhanced by the fact that
the plasma has more active degrees of freedom, while they aresuppressed by the expansion which
increases the available hadronic volume. The net effect is illustrated in Fig. 8 (right) which shows
the dependence on theK+/π+ fluctuation on the degree of expansion between the formationof the
plasma blob (which is assumed to occur atT = Tq andV = Vq) to the effective volume at the time
of hadronization canonical emission (atT = Th andV = Vh = χVq). It is therefore to be expected
that a smaller degree of expansion will yield a larger degreeof strangeness fluctuation, as is indeed
borne out in the illustration. In fact, it can be seen that thevalue χ = 3 used in [7] (left panel)
is particularly unfavorable with regard to the enhancementof strangeness fluctuations and even a
modestly smaller expansion ratio would yield a significantly larger fluctuation effect.
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Figure 8: Signals of strangeness trapping (from Ref. [7]):Left: The variance of theK+/π+ ratio as a
function of the baryochemical potentialµB and an expansion factor ofχ = 3, for three different statistical
treatments of the of strangenessS0 within each blob: grand-canonical equilibrium (green), canonical equi-
librium with S0 = 0 (blue), and canonical equilibrium withS0 having been determined by the (stochastic)
number ofs ands̄ quarks it contains at the time of its formation,S0 = Ns̄−Ns. Right: The variance of the
K+/π+ ratio for µB = 300 MeV as a function of the assumed expansion factorχ = Vh/Vq.
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6. Concluding remarks

The development of robust signals of the first-order confinement phase transition is still in its
infancy and presents many interesting challenges.

In particular, attempts to learn about the thermodynamics of strongly interacting matter by
means of nuclear collision experiments have to overcome significant obstacles because the systems
are small in size, non-uniform in space, rapidly evolving intime, and may not achieve even local
equilibrium. Due to these inherent features, the connection between the collision observables and
the underlying thermodynamical properties is not simple. Indeed, it is necessary to rely on dynam-
ical transport models with which the entire collision process can be simulated. Such models are
particularly difficult to develop when phase transitions are present because the effective degrees of
freedom change from partonic to hadronic.

Nevertheless, even in the absence of quantitatively reliable calculations, a number of general
expectations emerge: As the collision energy is being lowered from the current RHIC regime,
the generated compression and excitation decreases as well, as does the slope of the(ρ ,ε) phase
trajectory associated with the expansion stage. There should, therefore, be a cerain “critical” colli-
sion energy for which the expansion phase trajectory goes right through the critical point. As this
collision energy is approached from above, a number of observables are expected to acquire ever
larger fluctuations. If these fluctuations survive the subsequent hadronic gas expansion they may be
used to signal the onset of the phase transition (and hence the approximate location of the critical
point). It is important to recognize that the fluctuations are generally expected to keep increasing
even further at subcritical collision energies where the phase trajectory is being driven through the
thermodynamcially unstable phase coexistence region.

Inside the spinodal part of the phase coexistence region, a bulk system seeks to phase separate
and such a clumping may be particularly useful as a phase-transition signal [8]. One may expect
that the optimal conditions for a phase separation to develop would occur when the bulk of the
collision system spends the longest time inside the unstable region and this is expected to happen
within a range of relatively low collision energies, starting somewhat above the lowest collision
energy for which the phase coexistence boundary can be stillreached.
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