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one conserved charge. We then turn to the phase trajectdriiee hot and dense matter formed
in a high-energy collision. The generic features suggesttiere is an optimal range of collision
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phase-coexistence region and thus is most likely to undepjwase separation.

Subsequently, within the general framework of collectiyaaimics in many-body systems, we
elucidate how the presence of a phase transition inducemai¢nt enhancement of the mode
fluctuations, and the more so the further the system venittieethe unstable region.

Finally, we briefly discuss the spinodal clumping that magurdf the expansion dynamics drives
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1. Introduction

Several years of vigorous research with high-energy nudeblisions have provided com-
pelling evidence for the existence of a new phase of mattéshwias been tentatively identified as
the expected quark-gluon plasma. A central goal of the fielbiv to investigate this deconfined
phase and, in particular, to explore the phase structuremigly interacting matter.

While the confinement phase transformation appears to basaarer in baryon-poor matter
(which has been most extensively studied so far), it is ebggeto become of first order at suffi-
ciently high baryochemical potential. The prospect ofld#hing evidence of this first-order phase
transition and identifying the associated critical poiaststimulated a rapid growth of interest in
hot and baryon-dense matter and several facilities ardumavorld are being prepared to address
this hitherto unexplored physics area [1, 2, 3]

There are numerous significant challenges associated migh/énture. For one thing, we
do not yet have quantitative theoretical predictions of be/phase diagram should look, so the
experimentalists need to prepare for a broad range of plitssib Furthermore, as always in heavy-
ion physics, the success of the experimental effort dependke identification of measurable and
informative observables and this, in turn, requires thelavitity of suitable simulation models
with the help of which the robustness of proposed signaldeaiested and effective data analyzes
devised. Unfortunately, it is particularly difficult to defop such models for the phase region of
primary interest where the effective degrees of freedonrmghdrom partonic to hadronic. We
discuss here key features of such a first-order phase tmansiith a view towards developing
suitable signal observables.

2. Thermodynamics reminder

We start by a reviewing the thermodynamics relevant in cotiore with a first-order phase
transition. In this discussion, the term “thermodynamicsfers to the statistical dynamics of sys-
tems that are spatially uniforn.€. translationally invariant) and sufficiently large that feisize
effects are insignificant.

Consider now such a system of voluMend let its total energy be = Ve, wheree = E/V
is the energy density. In general the system may contaimineaimounts of conserved charges,
which we here shall examplify by the “particle numb&=V p (in the nuclear context it may be
thought of as th@etbaryon number), witlp = N /V being the corresponding net charge density.

The key thermodynamic quantity is the associated ent®gyN,V) =Vo(e,p), with the
entropy densityo = S/V, whose derivatives yield the thermodynamic parameXers, and p:

dES(EaN’V) = % = B(e,p) = d:0(e,p), (2.1)
ONS(E,N,V) = —# = a(g,p) = dpa(e,p), (2.2)
ASENV) = 2 = nie.p) = o(e,p)—Ble.p)e—ale.p)p. (2.3)

In the thermodynamic limity( — o) the volume plays no role and the thermodynamic properties
can be expressed solely in terms of the densitjgs ando, as shown above on the right.
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The conditions fothermodynamic coexistenoétwo such systems in contact can be obtained
by requiring that the total entrot,, = S; + S be stationarydS;» = 0, for arbitrary conserving
variations in energydE; + 0E, = 0), charge §N; + ON, = 0), and volume §V; + 6V, = 0). This
yields the condition®g, S = Je,S (implying Ty = T), OnS1 = 0N, S (implying g = p2), and
A,S = A,S (implying p1 = p2). These conditions can be visualized as the requirementttea
tangents of the entropy densiti(, p) at the two coexisting phase poinfs, &1) and (pz, €2) be
identical: o(&1,p1) + B1(e — €1) + 01(p — p1) = 0(&2,P2) + Bo(€ — &2) + d2(p — P2).

Furthermorethermodynamic stabilitgxists when the second variation of the entropy yields
a lower value,6%S;,» < 0. This requirement translates into the demand that thegniensity
be a concave function,e. the eigenvalues of its curvature matfig.dy o} must all be negative.
Thus the occurrence of a convex anomalyoife, p) signals the existence of a first-order phase
transition,i.e. two different manifestations of the system that may coekistmodynamcially.

2.1 Simplest example: No conserved charges
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Figure 1: First-order phase transition without conserved chargeheMthe entropy density () has a
convex anomaly there is a common tangent connecting thedaxistence points that have the same values
of T andp (upper lef}. The slope ofo(¢) is the inverse temperatuf#e) which is then non-monatonic
and it increases through the (spinodal) interval of the emity (upper righ). The pressure is also non-
monotonic and decreases through the spinodal redpare( lef). The resulting equation of stafgT) then
executes a complicated behavior as the phase-coexistegioa 0f¢ is traversedlower right).
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It is instructive to first consider the simplest situationemhthere are no conserved charges.
The key function is thew () and we havg8(e) = d-0(¢) andr(e) = p(e) /T () = o(e) — B(€)e.
The presence of a convex anomalyarie) is illustrated in Fig. 1 which brings out the fact the
thermodynamic variable$ (¢) and p(e) are non-monotonic functions of the mechanical control
variableg in the phase-coexistence region, causing the corresppiuiarse functions to be triple-
valued and resulting in a multilayered appearance of thertbéynamic equation of staf@T).

2.2 Oneconserved charge: nuclear matter

We further illustrate the phase-transition thermodynantig considering an idealized model
with one conserved charge that resembles the familiar dase-aymmetric nuclear matter. It is
defined in Fig. 2 which also depicts the associated equafistate.
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Figure 2: Schematic model of nuclear mattdreft: Description of the model which considers classical
particles in a density-dependent mean fidRight: The associated equation of state(p) is depicted by
plotting the pressure plotted as a function of dengitipr a succession of fixed temperatuiiesThe solid
curve between the vacuum and the ground state goes throaghése coexistence points, while the dashed
curves delineate the low (green) and high (red) densityosf@ihboundaries, joining at the critical point.

It is instructive to consider the phase diagram in varioygeagentations, as done in Fig. 3.
In the mechanicalp, €) representation all features are visible on a single sheee ghe thermo-
dynamic functions are all single-valued everywhere; theessible part of the phase diagram is
bounded from below by the zero-temperature energy deesity(p). Furthermore, phase trajec-
tories resulting from dynamical expansions have a simpteamnce.

In the (p, T) diagram the entire upper half plane is accessible and doexiphase points
are joined by horizonthal lines; dynamical trajectoriasdi¢o be well-behaved here as well. By
contrast, the€ i, €) representation yields a rather complicated phase diadgratmequires multiple
sheets and the dynamical phase trajectories are corrasgbndomplicated.

In the familiar (i, T) diagram the phase coexistence partners coincide and tiie phase
coexistence region lies on intermediate sheets that asdlysot displayed. This representation is
therefore particularly inconvenient for the discussiorpbése transition dynamics. This problem
is well illustrated by the expansion phase trajectoriesciuross the phase transition line three
times and thus exhibit a zig-zag behavior as the phase ¢eegesregion is being traversed.
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Figure 3: Various representations of the phase diagram for a liqasltgpe system with one conserved
charge. Starting from the basic mechanical representgtign) (upper lef}, either density may be replaced
by the corresponding thermodynamic variable, yieldingezi{u,€) (upper righ) or (p,T) (lower leff
phase diagrams, and ultimately tfie T) representation familiar from text booKsyer right). Also shown
are the phase trajectories resulting from (approximatséntropic expansions of uniform matter.

3. Dynamical phase trajectoriesfor nuclear collisions

The prospects for probing the phase structure of hot andedeagier with high-energy nuclear
collisions depends of which parts of the phase diagram areghbasited during the dynamical
evolution. This can be elucidated by considering the emghdensitie(t) ande(t) together by
plotting the dynamical trajectory in the— € phase plane, as done in Ref. [4], see Figeft)( That
study demonstrated that a number of quite different dynailmmodels yield very similar results for
these quantities. We may therefore extract certain gefeatares, illustrated in Fig. 4i¢ht).

Obviously, the lowest collision energies are insufficiemtting the system near the phase
coexistence region. Generally, as the collision energgdeeased, the phase trajectories penetrate
into ever larger compressions and excitations and thelgnisantropic) expansion paths steepen.
Therefore, there will be a certain “critical” collision exyg for which the expansion trajectory will
pass right through the critical point. Above this energydiggamical trajectory will entirely miss
the phase coexistence region and such “supercriticalisgmti energies would seem rather unlikely
to provide direct signals of the first-order transition.
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Figure 4: Dynamical phase trajectorieteft: Time evolution of the mechanical phase paiptt),&*(t))
extracted at the center of a head-on gold-gold collisionadsutated in the 3-fluid model (from Ref. [4]).
Right: Sketch of the associated generic features as a sweep is mimedollision energy.

On the other hand, there is an entire range of relatively lolistoon energies for which the
phase trajectories penetrate into but not beyond the plussgéstence region. The bulk of the sys-
tem then spends a maximal amount of time in the thermodyraiyncinstable phase region. These
circumstances may be optimal for a phase separation toagevBluch a macroscopic reorganiza-
tion into a phase mixture renders the system highly irrecanal is expected to lead to anomalously
large fluctuations in various observables (see later).

Unfortunately, it is not yet possible to make a precise ptamh of the corresponding “op-
timal’ collision energies, partly because of the uncettaminherent in the dynamical collision
simulations, but mostly because the lack of sufficientljlisga calculations of the phase diagram.
Because of this situation, theory can only provide qualeagjuidance and experimental data on
the phase structure are urgently needed.

4. Collective dynamics near acritical point

There is currently some debate about the dynamical behakallective modes in the neigh-
borhood of a critical point and we wish to illuminate the isswithin a schematic model that has
the relevant characteristic features.

Following Ref. [5], we consider the dynamical evolution ajeneral many-body system after
its collective modes have been identified and the correspgratjuations of motion have been lin-
earized. These collective modes are labeled by the imdind the associated quantum amplitudes
are{A, }. The time evolution of\, is governed by the following equation of motion,

EAv(t) = —iwyAy(t)+By(t) , <By(t)B(t') = = 22,,0(t—t), 4.1)

dt
where the coupling of the collective modes to the residustiesy is accounted for by the stochastic
terms{B, } which we here assume to be diagonal and Markovian (the eimttvalue is taken
over the considered ensemble of systems).
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Figure5: Dynamics near a critical poinkeft: The prescribed time evolution of the imaginary parof the
eigenfrequency of a particular mode in four different se&sa equilibrium,y(t) = y (black), subcritical,
Ymax < O (blue), critical,ymax = O (green), and supercriticakax > 0 (red). Right: The resulting evolution
of the induced transient agitation of the mode as measurédeoyariance of the associated amplitéde

The eigenfrequency is generally comples, = €, +iy,. When the mode is stablgy, is
negative and its magnitude represents the damping widtradtree interaction with the residual
system. Conversely, the frequency is purely imaginary wthenmode is unstable at the mean-
field level. Generally, the imaginary part of the frequergyhie difference between the damping
width and the growth rate and it may therefore become pesitivus producing an exponential
development of\,. We now illustrate this by considering the fluctuations & #mplitudes\, (t).

While we may generally study the two-time correlation mato, , (t1,t2) =< Ay () A (t2) =,
we focus here on just the diagonal elements of the same-timelationg2(t) =< A, (H)A}(t) =,
which is a convenient measure of the degree of agitationefitbde. This quantity evolves ac-
cording to a simple feed-back equation of motion [5],

d

GO = 2%, + 2% 0i(t) | (4.2)
where the source ter#r, expresses the continual noisy input from the residual sysi&/heny,

is negative, the feed-back term suppresses these distedband thus ensures that the appropriate
equilibrium variance is approached?(t— — ) = —2,/y,. On the other hand, the feed-back
term amplifies disturbances whegnis positive. These features are evident in the generalisnl|ut

t , t
o2(t) = [2% / vWdt + a2(t) | e 2V | Ty (t) = / Yo (t)dt' . (4.3)
t ti

We now emulate the effect of the dynamics near the criticéthtploy prescribing the time
evolutiony(t) = yp+ Oy(t). Starting in equilibrium withy(t) = y < 0, the mode responds to the
temporary increas@y(t) caused by the instability of the system, as illustrated @ bi

We first consider a subcritical scenario where the dynanpbake trajectory passes by the
critical point without entering the phase-coexistenceiaeg The mode then remains stable but
the temporary decrease |¢f causes the instantaneous equilibrium variance to becamorarily
larger; the dynamical readjustment of the variance to thége is delayed by the relaxation time.
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When the dynamics takes the system right through the dripicimt, the value ofy reaches
zero, but for a moment only. Therefore, even though the ki fluctuations diverge foy = 0,
the dynamically determined fluctuations remain well belda@md subsequently subside again).

Finally, the supercritical phase trajectories pass thndhg spinodal phase region where 0
and spontaneous amplitude amplification would occur incstaatter. Nevertheless, again because
of the finite time spent in the unstable region, the resulflngtuations remain finite but they
(temporarily) reach values that are still larger than thatt&ined for the critical trajectory.

It thus appears than one would generally expect that a swespdubcritical to supercritical
trajectories would show a relatively sudden (but trangienhancement of the fluctuations as the
critical trajectory is being approached, followed by fantlfand even stronger) enhancement as the
supercritical region is entered. This feature is expeabelet rather generic and it may therefore
form the basis for devising suitable experimental signdtsshould of course be kept in mind
that when the fluctuations grow sufficiently large, the systeill leave the linear regime and the
trajectories will branch into channels that are qualitidifferent from one another. While this
non-linear behavior renders the problem more difficult éatitheoretically, it may well be helpful
for the experimental identification of the phase transiiod the associated critical point.

5. Signalsof spinodal clumping

If the deconfinement phase transformation of strongly auting matter is of first-ordeaind
the expanding deconfined matter created in a high-enerdgamullision enters the corresponding
region of phase coexistence, a spinodal phase separatgin agcur (especially if the overall ex-
pansion is sufficiently slow compared to the most rapid liitga growth rates). The matter would
then condense into a number of separate blobs, each witlvitcollective flow and strangeness
contents. These features may form the basis for the develojpoh suitable diagnostic observables.

In the following, we discuss certain specific observableseguences of such a phase de-
composition. For this purpose, we employ a schematic modehich the system breaks up into
entirely independent blobs which proceed to hadronizésttally. The blob sizes, positions, and
flow velocities are sampled from specified distributionswdweer, there is yet no account taken of
post-hadronization interactions and decays; these pesagould generally be expected to erode
the signals and it would clearly be interesting to incorpwthem into the simulation studies.

Figure6: Schematic picture of spinodal clumping in a high-energyl@arccollision: The rapid longitudinal
expansion drives the bulk matter into the phase coexistezgien. The spinodal instabilities may then

amplify density irregularities and cause the system to fordividual clumps of quark-gluon plasma, each
of which is endowed with its own flow velocity and a (stochaséimount of net strangeness.
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5.1 Kinematic signals of clumping

A clumping of the expanding system is expected to affect therkatic correlations between
the resulting hadrons. One simple kinematic observablentiag be affected by a clumping is the
rapidity difference between two hadrong; — y»|. Because heavy hadrons are affected less by
the thermal smearing, it may be advantageous to limit theiderations to baryons. Fig. #ft)
shows the calculated two-proton correlation with regareitioer the ordinary longitudinal rapidity

or the rapidity associated with their three-dimensiongtiee motion,y1, = In[yi2+ 1/ V2, — 1]
(with y12 = p1 - p2/miny), which yields a significantly stronger signal [6].

Since there are several sources of two-particle correlgtid is advantageous to consider
kinematic correlations betweeh > 2 particles. A particularly convenient and instructNebody
correlation observable is the internal kinetic energy petige, kn{pn}, for a group ofN si-
multaneously observed particles having four-momemig [6]. When theN-body momentum
distribution is clumped, the sampling &f will yield an enhancement around the thermal kinetic
energy in the individual source, relative to what would acfar a structureless distribution. In
order to bring out this signal, one may compare the corréldistribution P(ky), obtained by
sampling all theN particles from the same event, with the corresponding welzied distribu-
tion Py(kn ) obtained by samplingyl different events. This yields the reduced correlation fiamg
Cn(kn) = P(kn)/Po(kn) — 1, which is illustrated in Fig. 7right).

The correlation signal grows more prominentNigs increased, because it becomes increas-
ingly unlikely thatN momenta sampled from a structureless distribution woullloeahearly similar,
and the higher-order correlations become progressiveleraffective in discriminating between
various dynamical mechanisms. However, since the sigeaives its support from a suppressed
region of theN-body phase space, the required counting statistics iseseapidly withN, thus
presenting a practical limit to the order of correlationttban be addressed with a given set of
data. This basic feature illustrates the importance ofrtgasufficiently large event samples for the
identification of a conclusive correlation signal.
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Figure 7: Kinematic signals of clumping (from Ref. [6]Left: The 1D and 3D two-proton rapidity corre-
lation functions in a variety of clumping scenaridight: The correlation function function fad = 2, 3,4
protons expressed as the enhancement of the internalkeretirgy per particle of the obseridgrotons.
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5.2 Chemical signals of clumping

Since the particular net strangeness trapped in a giveodglitlob would remain approxi-
mately conserved during its further evolution, the reaglthadrons will exhibit an enhanced de-
gree of strangeness fluctuation, relative to a statisticas®on from the overall system [7]. [This
is qualitatively easy to understand since the requirenfattthe total strangeness in a given blob
be non-zero necessarily puts a lower bound on the numberaofget hadrons produced, whereas
no such bound exists when the total strangeness vanishesJrésult of this elementary effect of
clumping, suitable strangeness-related observables magdful signals of a phase separation.

For a source having a significant net baryon density, whemstadider transition is expected,
Fig. 8 (eft) illustrates the dependence of the fluctuation of khe/rr™ yield ratio on the overall
baryochemical potential, compared with that would regtitteé strangeness of each blob were fixed
to zero or if a grand canonical treatment were employed. Tieetds seen to become significant
for large values of the chemical potential.

But there are two opposing effects: The fluctuations are rgéigeenhanced by the fact that
the plasma has more active degrees of freedom, while thesupmessed by the expansion which
increases the available hadronic volume. The net effetusrated in Fig. 81ight) which shows
the dependence on tie" /rr* fluctuation on the degree of expansion between the formafitme
plasma blob (which is assumed to occuiTat Tq andV = V) to the effective volume at the time
of hadronization canonical emission {at= T, andV =W, = xVy). Itis therefore to be expected
that a smaller degree of expansion will yield a larger degfestrangeness fluctuation, as is indeed
borne out in the illustration. In fact, it can be seen thatuhkie x = 3 used in [7] [eft pane)
is particularly unfavorable with regard to the enhancenoémtrangeness fluctuations and even a
modestly smaller expansion ratio would yield a significatakger fluctuation effect.
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Figure 8: Signals of strangeness trapping (from Ref. [7gft: The variance of th&K* /mr* ratio as a
function of the baryochemical potentigk and an expansion factor gf = 3, for three different statistical
treatments of the of strangeneswithin each blob: grand-canonical equilibrium (greenyaaical equi-
librium with S = 0 (blue), and canonical equilibrium wit® having been determined by the (stochastic)
number ofs ands quarks it contains at the time of its formatid&, = Ns— Ns. Right: The variance of the
K*/m" ratio for ug = 300 MeV as a function of the assumed expansion fagterVy / V.
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6. Concluding remarks

The development of robust signals of the first-order confer@nphase transition is still in its
infancy and presents many interesting challenges.

In particular, attempts to learn about the thermodynamfcstrongly interacting matter by
means of nuclear collision experiments have to overcomefgignt obstacles because the systems
are small in size, non-uniform in space, rapidly evolvindiine, and may not achieve even local
equilibrium. Due to these inherent features, the connediitween the collision observables and
the underlying thermodynamical properties is not simphelekd, it is necessary to rely on dynam-
ical transport models with which the entire collision preg&an be simulated. Such models are
particularly difficult to develop when phase transitione present because the effective degrees of
freedom change from partonic to hadronic.

Nevertheless, even in the absence of quantitatively feliedlculations, a number of general
expectations emerge: As the collision energy is being ledidrom the current RHIC regime,
the generated compression and excitation decreases assvdibes the slope of thig, ) phase
trajectory associated with the expansion stage. Therddhberefore, be a cerain “critical” colli-
sion energy for which the expansion phase trajectory gogs tivrough the critical point. As this
collision energy is approached from above, a number of obbtes are expected to acquire ever
larger fluctuations. If these fluctuations survive the sgbeat hadronic gas expansion they may be
used to signal the onset of the phase transition (and heecapitroximate location of the critical
point). It is important to recognize that the fluctuations generally expected to keep increasing
even further at subcritical collision energies where thasgttrajectory is being driven through the
thermodynamcially unstable phase coexistence region.

Inside the spinodal part of the phase coexistence regiomkasipstem seeks to phase separate
and such a clumping may be particularly useful as a phagsiti@an signal [8]. One may expect
that the optimal conditions for a phase separation to develould occur when the bulk of the
collision system spends the longest time inside the ursstagion and this is expected to happen
within a range of relatively low collision energies, stagisomewhat above the lowest collision
energy for which the phase coexistence boundary can beestidhed.
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