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Dynamics of relativistic heavy-ion collisions is investigated on the basis of a simple (1+1)-

dimensional hydrodynamical model in light-cone coordinates. The main emphasis is put on

studying sensitivity of the dynamics and observables to the equation of state and initial conditions.

Low sensitivity of pion rapidity spectra to the presence of the phase transition is demonstrated,

and some inconsistencies of the equilibrium scenario are pointed out. Possible non-equilibrium

effects are discussed, in particular, a possibility of an explosive disintegration of the deconfined

phase into quark-gluon droplets. Simple estimates show that the characteristic droplet size should

decrease with increasing the collective expansion rate. These droplets will hadronize individually

by emitting hadrons from the surface. This scenario should reveal itself by strong non-statistical

fluctuations of observables.
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1. Introduction

High–energy heavy–ion collisions provide a unique tool for studying properties of hot and
dense strongly–interacting matter in the laboratory. The theoretical description of such collisions is
often done within the framework of a hydrodynamic approach. This approach opens the possibility
to study the sensitivity of collision dynamics and secondary particle distributions to the equation of
state (EOS) of the produced matter. The two most famous realizations of this approach, which differ
by the initial conditions, have been proposed by Landau [1] (full stopping) and Bjorken [2] (partial
transparency). In recent decades many versions of the hydrodynamic model were developed.

Below we apply a simplified version of the hydrodynamical model, dealing only with the
longitudinal dynamics of the fluid (see details in refs. [3, 4]). This approach has as its limiting
cases the Landau and Bjorken models. We investigate the sensitivity of the hadron rapidity spectra
to the fluid’s equation of state, to the choice of initial state and freeze–out conditions. Special
attention is paid to possible manifestations of the deconfinement phase transition. In particular, we
compare the dynamical evolution of the fluid and secondary particle spectra calculated with and
without the phase transition. In the second part of the talk I present arguments in favour of the
explosive hadronization of the quark-gluon plasma, first formulated in ref. [5].

2. Hydrodynamical equations in light-cone coordinates

We consider central collisions of equal nuclei disregarding the effects of transverse collective
expansion. In this case one can parameterize the collective fluid velocity, U µ , in terms of the
longitudinal flow rapidity Y as U µ = (coshY,0,0,sinhY )µ . It is convenient to make transition from
the usual space–time coordinates t,z to the hyperbolic (light–cone) variables, namely, the proper
time τ and the space–time rapidity η , defined as

τ =
√

t2 − z2 , η = tanh−1
(z

t

)

=
1
2

ln
t + z
t − z

. (2.1)

In these coordinates the hydrodynamic equations take the following form
[

τ
∂

∂τ
+ tanh(Y −η)

∂
∂η

]

n+n

[
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[

tanh(Y −η)τ
∂

∂τ
+

∂
∂η

]

P = 0 , (2.4)

where n, ε and P are the baryon density, energy density and pressure of the fluid. To solve
Eqs. (2.2)–(2.4), one needs to specify the EOS, P = P(n,ε), and the initial profiles n(τ0,η),
ε (τ0,η), Y (τ0,η) at a time τ = τ0 when the fluid may be considered as thermodynamically equi-
librated.

3. Equation of state

In this paper we consider only the baryon–free matter, i.e. assume vanishing net baryon density
n and chemical potential µ . In this case Eq. (2.2) is trivially satisfied and all thermodynamic
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quantities, e.g. pressure, temperature T and entropy density s = (ε +P−nµ)/T , can be regarded
as functions of ε only.
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Figure 1: Comparison of different EOSs used in hydro simulations. Parameters characterizing EOS–I,
EOS–II and EOS–III are given in ref. [4].

One of the main goals of experiments on ultrarelativistic heavy–ion collisions is to study the
deconfinement phase transition of strongly–interacting matter. In our calculations this phase transi-
tion is implemented through a bag–like EOS using the parameterization suggested in Ref. [6]. This
EOS consists of three parts, denoted below by indices H,M,Q , and corresponding, respectively, to
the hadronic, ”mixed” and quark–gluon phases. As already mentioned, pressure, temperature and
sound velocity, cs =

√

dP/dε , of the baryon–free matter can be regarded as functions of ε only. It
is further assumed that cs is constant in each phase and, therefore, P is a linear function of ε with
different slopes in the corresponding regions of energy density.

The hadronic phase corresponds to the domain of low energy densities, ε < εH , and tem-
peratures, T < TH . This phase consists of pions, kaons, baryon–antibaryon pairs and hadronic
resonances. Numerical calculations for the ideal gas of hadrons (see e.g. [7]) predict a rather soft
EOS: the corresponding sound velocity squared, c2

s = c2
H ∼ 0.1−0.2 , is noticeably lower than 1/3.

The mixed phase takes place at intermediate energy densities, from εH to εQ or at temperatures
from TH to TQ . The quantity εQ − εH can be interpreted as the ”latent heat” of the deconfinement
transition. To avoid numerical problems, we choose a small, but nonzero value of sound velocity
cM in the mixed phase. The third, quark–gluon plasma region of the EOS corresponds to ε > εQ or

3



P
o
S
(
C
P
O
D
0
7
)
0
1
0

Hydrodynamical modeling Igor N. Mishustin

T > TQ. It is assumed that c2
s = c2

Q reaches the asymptotic value (1/3) already at the beginning of
the quark–gluon phase, i.e. at T ' TQ .

-6 -4 -2 0 2 4 6
0

5

10

15

20

25

30
,G

eV
/fm

3

0=7 GeV/fm3, 0=3.34, =0

0=8 GeV/fm3, 0=1.14, =1.30

0=10 GeV/fm3, 0=0, =1.74

0=20 GeV/fm3, 0=0, =1.42

E=26.1 TeV

Figure 2: Initial energy density profiles used in the hydro simulations. Solid and dashed–dotted lines
represent, respectively, the parameter sets A and C. Dashed line is calculated for the table–like pro-
file with η0 = 3.34 , ε0 = 7 GeV/fm3. Dotted line corresponds to the Gaussian profile with σ = 1.42 ,
ε0 = 20 GeV/fm3 .

Figure 2 represents some profiles of initial energy density used in our calculations. They are
parameterized by a flattened Gaussian distributions with a plateau at −η0 ≤ η ≤ η0 and wings of
width σ . All these profiles correspond to the same total energy of secondaries, E ≈ 26 Tev, as
estimated by the BRAHMS collaboration for Au+Au collisions at RHIC energy

√
sNN = 200 GeV

[8]. One can see that three different phases of matter appear already at the initial state.

4. Hydrodynamical evolution of matter

Space–time evolution of matter as predicted by the present model is illustrated in Fig. 3.
This figure shows profiles of the temperature at different proper times τ . Here we consider the
Gaussian–like initial conditions, with parameters from the set A (see Fig. 2. For comparison, the
results are presented for the EOS–I and for the hadronic EOS with c2

s = 0.15. One can see that in
the case of the phase transition the model predicts appearance of a a flat shoulder in T (η) which is
clearly visible at τ . 10 fm/c. This is a manifestation of the mixed phase which exists during the
time interval ∆τ ∼ 10 fm/c. According to Fig. 3, the largest volume of this phase in the η–space is
formed at τ ∼ 5 fm/c. In the considered case the ”memory” of the quark-gluon phase is practically
washed out at τ & 30 fm/c.
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Figure 3: Temperature profiles at different proper times τ calculated for initial conditions corresponding
to the parameter set A. Only the forward hemisphere (η > 0) is shown. Left and right panels correspond,
respectively, to the EOS–I and the pure hadronic EOS P = c2

H ε with c2
H = 0.15 .
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Figure 4: Isotherms in the η − τ plane calculated for the parameter set A. Left and right panels correspond
to the same EOSs and initial conditions as in Fig. 3. Shaded region indicates the mixed phase.

According to Fig. 4 (see the left panel), the initial stage of the evolution when matter is in the
quark–gluon phase, lasts only for a very short time, of about 5 fm/c. The region of the mixed phase
is crossed in less than 10 fm/c. This clearly shows that the slowing down of expansion associated
with the ”soft point” of the EOS [9, 10] plays no role, when the initial state lies much higher in the
energy density than the phase transition region. In this situation the system spends the longest time
in the hadronic phase.
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This low sensitivity to the EOS is clearly seen in Fig. 5, which shows the rapidity distribu-
tions of secondary pions. One can see that two EOS with and without the phase transition lead to
very similar observable pion rapidity spectra, which both agree very well with the BRAHMS data
[11]. The best fit of experimental data is achieved with freeze-out temperature TF = 130 MeV. The
feeding from resonance decays was accurately taken into account (see details in ref. [4]).

As one can see in Fig. 4, the freeze-out at TF = 130 MeV requires an expansion time of about
60 fm/c at η = 0. This is certainly a very long time which is seemingly in contradiction with some
experimental findings. Indeed, the interferometric measurements [12] show much shorter times
of hadron emission, of the order of 10 fm/c. As follows from our results, this discrepancy can
not be removed by considering other EOS or initial conditions. A considerable reduction of the
freeze–out times can be achieved by including the effects of transverse expansion and chemical
nonequilibrium [13]. However, this will not change essentially the dynamics of the early stage
(τ . 10 fm/c) when expansion is predominantly one–dimensional. A more radical solution would
be an explosive decomposition of the quark–gluon plasma, proposed in Ref. [5]. This may happen
at very early times, right after crossing the critical temperature line, when the plasma pressure
becomes very small or negative. We shall consider this possibility in the second part of the talk.
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Figure 5: Rapidity distribution of π+–mesons in central Au+Au collisions at
√

sNN = 200 GeV. Left panel
shows results of hydrodynamical calculations for the EOS–I and initial conditions with parameters of set
A. Right panel corresponds to the pure hadronic EOS with c2

H=0.15 and the same initial conditions. Solid,
dashed and dashed–dotted curves correspond to different values of the freeze–out temperature TF . The
dotted line shows contribution of resonance decays in the case TF = 130 MeV. Experimental data are taken
from Ref. [11].

5. Explosive hadronization

Let us consider now a simplified picture where the system expands according to the Hubble
law, v(r) = H ·r, where v is the local collective velocity and H is a function of time, as e.g. H ∝ 1/t,
in the Bjorken model.
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As demonstrated in refs. [5, 14], a first order phase transition in rapidly expanding system will
not follow the phase equilibrium trajectory. Instead, the high-temperature phase will expand until
it enters the spinodal region. Then, due to intrinsic instabilities it will disintegrate into droplets
surrounded by the undersaturated low-temperature phase. Different aspects of spinodal decompo-
sition in expanding systems were discussed in refs. [15, 16, 17]. For clarity, below we use capital
letters Q and H (not to be confused with the Hubble constant H) for the deconfined quark-gluon
phase and the hadronic phase, respectively. Following this picture, let us assume that the dynam-
ical fragmentation of the deconfined phase has resulted in a collection of Q droplets embedded in
a dilute H phase, as illustrated in Fig. 6. The optimal droplet size can be determined by applying
a simple energy balance argument saying that the droplets are formed when the collective kinetic
energy within the individual droplet is equal to its surface energy, Ekin(R) = Esurf(R), where

Ekin(R) =
1
2

∫ R

0
∆

�
[v(r)]24πr2dr =

2π
5

∆
�

H2R5, (5.1)

and Esurf(R) = 4πR2γ , where ∆
�

=
�

Q− �
H is the energy density difference of the two phases, and

γ is the corresponding surface tension. Then the optimal droplet size is given by the expression

R∗ =

(

10γ
∆

�
H2

)1/3

. (5.2)

As Eq. (5.2) indicates, the droplet size depends strongly on H . When expansion is slow (small
H) the droplets are big. In the adiabatic limit the process may look like a fission of a cloud of
plasma. But fast expansion should lead to very small droplets. This state of matter is very far from
a thermodynamically equilibrated mixed phase, particularly because the H phase is very dilute.
One can say that the metastable Q matter is torn apart by a mechanical strain associated with the
collective expansion.

The driving force for expansion is the pressure gradient, ∇P≡ c2
s ∇

�
, which depends crucially

on the sound velocity in matter, cs. Here we are interested in the expansion rate of the partonic
phase, which is not directly observable but predicted by the hydrodynamical simulations. In the
vicinity of the phase transition, one should expect a “soft point” [9, 10] where the sound velocity
is smallest and the ability of matter to generate the collective expansion is minimal. If the initial
state of the Q phase is close to this point, its subsequent expansion will be slow. Accordingly, the
droplets produced in this case will be big. When moving away from the soft point, one would
see smaller and smaller droplets. For numerical estimates we choose two values of the Hubble
constant: H−1=20 fm/c to represent the slow expansion from the soft point and H−1=6 fm/c for the
fast expansion.

One should also specify two other parameters, γ and ∆
�

. The surface tension σ is a subject
of debate at present. Lattice simulations indicate that it could be as low as a few MeV/fm2 in the
vicinity of the critical line. However, for our non-equilibrium scenario, more appropriate values
are closer to 10-20 MeV/fm2, which follow from effective chiral models. As a compromise, the
value γ = 10 MeV/fm2 is used below for rough estimates. Bearing in mind that nucleons and
heavy mesons are the smallest droplets of the Q phase, one can take ∆

�
= 0.5 GeV/fm3, i.e. the

energy density inside the nucleon. Then one gets R∗ = 3.4 fm for H−1 = 20 fm/c and R∗ = 1.5 fm
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Figure 6: (Color online) Schematic view of multi-droplet state produced after the dynamical fragmentation
of a metastable high energy-density Q phase. The Q droplets are embedded in the low energy-density H
phase. Each droplet emits hadrons as a thermal source, as well as participates in the overall Hubble-like
expansion.

for H−1 = 6 fm/c. As follows from eq. (5.2), for a spherical droplet V ∝ 1/∆
�

, and in the first
approximation its mass,

M∗ ≈ ∆
�

V =
40π

3
γ

H2 , (5.3)

is independent of ∆
�

. For the two values of R∗ given above the optimal droplet mass is ∼ 100 GeV
and ∼ 10 GeV, respectively. As shown in ref. [5], the distribution of droplet masses should follow
an exponential law, exp

(

− M
M∗

)

. Thus, about 2/3 of droplets have masses smaller than M∗, but with
1% probability one can find droplets as heavy as 5M∗.

In refs. [18, 19] the evolution of individual droplets was studied numerically within a hy-
drodynamical approach including dynamical chiral fields (Chiral Fluid Dynamics). It has been
demonstrated that the energy released at the spinodal decomposition can be transferred directly
into the collective oscillations of the (σ ,π) fields which give rise to the soft pion radiation. How-
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ever, eventually the Q droplets will hadronize by emitting hadrons from the surface. This scenario
can explain short emission times of hadrons observed in experiments, see e.g. ref. [12].

6. Anomalous multiplicity fluctuations

Figure 7: (Color online) Schematic view of the momentum space distribution of secondary hadrons pro-
duced from an ensemble of droplets. Each droplet emits hadrons (mostly pions) within a rapidity interval
δy ∼ 1 and azimuthal angle spreading of δφ ∼ 1.

After separation the QGP droplets recede from each other according to the global expansion,
predominantly along the beam direction. Hence their center-of-mass rapidities y i are in one-to-one
correspondence with their spatial positions. Presumably yi will be distributed more or less evenly
between the target and projectile rapidities. Since rescatterings in the dilute H phase between the
droplets are rare, most hadrons produced from individual droplets will go directly into detectors.
This may explain why freeze-out parameters extracted from the hadronic yields are always very
close to the phase transition boundary [20].

In the droplet phase the mean number of produced hadrons in a given rapidity interval is

〈N〉 =
ND

∑
i

ni = 〈n〉〈ND〉, where ni is the mean multiplicity of hadrons emitted from a droplet i,

〈n〉 is the average multiplicity per droplet and 〈ND〉 is the mean number of droplets produced
in this interval. If droplets do not overlap in the rapidity space, each droplet will give a bump
in the hadron rapidity distribution around its center-of-mass rapidity y i [15, 5, 14]. In case of
the Boltzmann spectrum the width of the bump will be δη ∼

√

T/m, where T is the droplet
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temperature and m is the particle mass. At T ∼ 100 MeV this gives δη ≈ 0.8 for pions and
δη ≈ 0.3 for nucleons. These spectra might be slightly modified by the residual expansion of
droplets. Due to the radial expansion of the fireball the droplets should also be well separated in the
azimuthal angle. The characteristic angular spreading of pions produced by an individual droplet
is determined by the ratio of the thermal momentum of emitted pions to their mean transverse
momentum, δφ ≈ 3T/〈p⊥〉 ∼ 1. The resulting phase-space distribution of hadrons in a single
event will be a superposition of contributions from different Q droplets superimposed on a more or
less uniform background from the H phase. Such a distribution is shown schematically in Fig. 7.
It is obvious that such inhomogeneities (clusterization) in the momentum space will reveal strong
non-statistical fluctuations. The fluctuations will be more pronounced if primordial droplets are
big, as expected in the vicinity of the soft point. If droplets as heavy as 100 GeV are formed, each
of them will emit up to ∼200 pions within a narrow rapidity and angular intervals, δη ∼ 1, δφ ∼ 1.
If only a few droplets are produced in average per unit rapidity, ND & 1, they will be easily resolved
and analyzed. On the other hand, the fluctuations will be suppressed by factor

√
ND if many small

droplets shine into the same rapidity interval.
It is convenient to characterize the fluctuations by the scaled variance ωN ≡ (〈N2〉−〈N〉2)/〈N〉.

Its important property is that ωN = 1 for the Poisson distribution, and therefore any deviation from
unity will signal a non-statistical emission mechanism. As shown in ref. [21], for an ensemble of
emitting sources (droplets) ωN can be expressed in a simple form, ωN = ωn + 〈n〉ωD, where ωn

is an average multiplicity fluctuation in a single droplet, ωD is the fluctuation in the droplet size
distribution and 〈n〉 is the mean multiplicity from a single droplet. Since ωn and ωD are typically
of order of unity, the fluctuations from the multi-droplet emission are enhanced by the factor 〈n〉.
According to the picture of a first order phase transition advocated above, this enhancement fac-
tor could be as large as ∼ 10. It is clear that the nontrivial structure of the hadronic spectra will
be washed out to a great extent when averaging over many events. Therefore, more sophisticated
methods of the event sample analysis should be applied as e.g. measuring event-by-event fluctu-
ations in the hadron multiplicity distributions in a varied rapidity bin. Up to now no significant
effects in fluctuation observables have been found [22].

7. Conclusions

• Rapidity distributions of pions and kaons at RHIC energy can be well described by the ideal
hydro with a soft EOS and initial energy density of 5-10 GeV/fm3.

• Equilibrium hydrodynamics is not sensitive to a phase transition if the initial state is far from
the transition point. In this case two EOSs with and without the phase transition give similar
results for observables.

• To explain short emission times observed in experiments one may assume an explosive dis-
integration of the quark-gluon plasma at the phase transition boundary. This should lead
to the formation of quark-gluon droplets which will manifest themselves in non-statistical
fluctuations of observables.

• Better conditions for observation of the deconfinement phase transition may occur at lower
energies when the baryon density is higher but the initial pressure is lower. The future FAIR
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facility at GSI should be a right place to search for manifestations of the deconfinement phase
transition in baryon-rich environment.

The author thanks L.M. Satarov and H. Stöcker for the fruitful collaboration on the hydro-
dynamic modeling of relativistic heavy-ion collisions. I am also grateful to Igor Pshenichnov for
the help in preparation of this talk. This work was supported in part by the BMBF, GSI, the
DFG grant 436 RUS 113/711/0–2 (Germany), and the grants RFBR 05–02–04013 and NS–
8756.2006.2 (Russia).
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