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We analyze measures of the azimuthal asymmetry, in particular theparticipant harmonic mo-

ments,ε∗, in a variety of Glauber-like models for the early stage of collisions at RHIC. Quantita-

tive comparisons indicate substantial model dependence for ε∗, reflecting different effective num-

ber of sources, while the dependence of the scaled standard deviationσ(ε∗)/ε∗ on the particular

Glauber model is weak. For all the considered models the values ofσ(ε∗)/ε∗ range from∼ 0.5

for the central collisions to∼ 0.3-0.4 for peripheral collisions. These values, dominated by statis-

tics, change only by 10-15% from model to model. For central collisions and in the absence of

correlations between the location of sources we obtain through the use of the central limit theorem

the simple analytic formulaσ(ε∗)/ε∗(b = 0) ≃
√

4/π −1≃ 0.52, independent on the collision

energy, mass number, or the number of sources. In consequence, with smooth hydrodynamics at

central collisionsσ(v2)/v2(b = 0)≃
√

4/π −1. We show, that the same value is achieved also at

peripheralcollisions, as long as the particles come from a collection of independentppcollisions.

We investigate the shape-fluctuation effects on jet quenching and find they are important only for

very central events. Finally, we list some remarks and predictions from smooth hydrodynamics

on higher flow coefficients and their fluctuations, in particular σ(v4)/v4 = 2σ(v2)/v2.
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Figure 1: A typical gold-gold collision in thex− y plane atb = 6 fm. Left: wounded nucleons. Red and
black circles indicate nucleons from the two colliding nuclei. Right: the centers of mass of pairs of nucleons
undergoing binary collisions. The straight lines indicatethe twisted and shifted principal axes of the second
harmonic moment, while the blue dots show the center of mass of the system.

1. Introduction

This talk is based on Ref. [1], where more technical details may be found.

Event-by-event hydrodynamic studies [2, 3] of relativistic heavy-ion collisions have revealed
that fluctuations of the initial shapeof the system formed in the early stage of the reaction lead
to quantitatively relevant effects for signatures of the azimuthal asymmetry [4, 5, 6, 7, 8]. These
effects are also important for experimental measurements of the elliptic flow [9, 10, 11, 12]. In
this talk we report our investigation of this phenomenon in the framework of various Glauber-like
approaches describing the deposition of energy in the system in the early stages of the collision.
Our study focuses on both understanding of the statistical nature of the results, as well as on com-
parisons of various models.

Figure 1 illustrates the two effects of the shape fluctuations due to the finite number of sources:
the shift of the center-of-mass and the rotation of the principal axes. Statistical analyses may be
performed in the reference frame fixed by the reaction plane (we call itfixed-axes, a.k.a. standard),
or for each event in the frame defined by the twisted and shifted principal axes (we call it the
variable-axesframe, a.k.a. participant). In the fixed-axes frame the two-dimensional probability
distribution of sources can be Fourier-expanded as

f (ρ ,φ) = f0(ρ)+2 f2(ρ)cos(2φ)+2 f4(ρ)cos(4φ)+ . . . , (1.1)

where the transverse radiusρ =
√

x2 +y2 is measured from the center of the geometric intersection
of the two nuclei. One also introduces

εl =

∫

2πρ fl (ρ)ρ2dρ
∫

2πρ f0(ρ)ρ2dρ
. (1.2)

On the other hand, in the variable-axes frame we have the distribution

f ∗(ρ ,φ) = f0(ρ)+2 f ∗2 (ρ)cos(2φ −2φ∗)+2 f ∗4 (ρ)cos(4φ −4φ∗)+ . . . , (1.3)
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whereφ∗ denotes the rotation angle of the principal axes in each event. Correspondingly,

ε∗
l =

∫

2πρ f ∗l (ρ)ρ2dρ
∫

2πρ f0(ρ)ρ2dρ
(1.4)

( f0 = f ∗0 ). The deformation parameters are denoted without the subscript asε = ε2 andε∗ = ε∗
2 .

2. The toy problem

Consider the one-dimensional problem where uncorrelated particles are randomly generated
from a distribution in the azimuthal angleφ containing the zeroth and second harmonic moments,

f (φ) = 1+2ε cos(2φ), ε ∈ [−1
2
,
1
2
]. (2.1)

Obviously, the distribution has only two non-zero fixed-axes moments,

f0 =
1

2π

∫ 2π

0
dφ f (φ) = 1, f2 =

1
2π

∫ 2π

0
dφ cos(2φ) f (φ) = ε . (2.2)

We generaten particles according to the distribution (2.1) in each event, and subsequently carry
out the averaging over the events, denoted as〈〈.〉〉. For instance,f2 is estimated as

f2 ≃ 〈〈1
n

n

∑
k=1

cos(2φk)〉〉, (2.3)

wherek labels the particles the event. The equality becomes strictas the number of events ap-
proaches infinity, which is assumed implicitly. In the variable-axes case we rotate the particles by
the angleφ∗ in each event. Thus

f ∗2 ≡ ε∗ = 〈〈1
n

n

∑
k=1

cos[2(φk−φ∗)]〉〉. (2.4)

The rotation angleφ∗ depends itself on the distribution of particles in the givenevent. By definition,
it is chosen in such a way that the quantity1

n ∑n
k=1cos[2(φk−φ∗)] assumes maximum, which gives

the conditions

cos(2φ∗) = Y2/
√

Y2
2 +X2

2 , sin(2φ∗) = X2/
√

Y2
2 +X2

2 , (2.5)

Y2 =
1
n

n

∑
k=1

cos(2φk), X2 =
1
n

n

∑
k=1

sin(2φk).

Using the above formulas in Eq. (2.4) yields

f ∗2 = 〈〈
√

Y2
2 +X2

2〉〉 = 〈〈

√

√

√

√

(

1
n

n

∑
k=1

cos(2φk)

)2

+

(

1
n

n

∑
k=1

sin(2φk)

)2

〉〉. (2.6)

We see that the variable-axes moment corresponds to an average of the square root of sums (2.5),
thus is a highly “non-local” object, involving upon expansion infinitely many fixed-axes moments.
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For sufficiently largen one may evaluate Eq. (2.6) with the help of thecentral limit theorem.
Consider the variablesck = cos(2φk) andsk = sin(2φk). Their averages and variances are

c̄ = ε , σ2
c =

1
2
− ε2, s̄= 0, σ2

s =
1
2
. (2.7)

Importantly, there is no correlation betweenY2 and X2, as 1
2π
∫ 2φ

0 dφ cos(2φ)sin(2φ) f (φ) = 0.
Thus, according to the central limit theorem, the distribution ofY2 andX2 is Gaussian. Introducing

Y2 = qcosα , X2 = qsinα , q2 = Y2
2 +X2

2 , δ =
1

2σ2
c
− 1

2σ2
s

=
1

1−2ε2 −1, (2.8)

we may write this distribution in the form

f (X2,Y2) = f (q,α) =
n

π
√

1−2ε2
exp

[

−n

(

q2 + ε2−2qε cosα
1−2ε2

)

+nδq2 sin2α
]

. (2.9)

We need below the integral of this distribution overα , which can be expanded as [13, 11]

∫ 2π

0
dα f (q,α)=

2n√
π
√

1−2ε2
exp

[

−n

(

q2 + ε2

1−2ε2

)] ∞

∑
j=0

(2qε) j Γ( j + 1
2)

j!
I j

(

2nεq
1−2ε2

)

, (2.10)

whereI j(x) are the modified Bessel functions. We may now express Eq. (2.4) as the series involving
the confluent hypergeometric function,

f ∗2 =
∫

qdqdα q f(q,α)=
1−2ε2
√

nπ

∞

∑
j=0

(

2ε2) j Γ( j + 1
2)Γ( j + 3

2)

j!2 1F1

(

−1
2
, j+1;− nε2

1−2ε2

)

, (2.11)

which converges fast and can be used for practical calculations in a truncated form. Atε = 0
(azimuthally symmetric distribution) we have the very simple result

f ∗2 (ε = 0) =

√
π

2
√

n
, (2.12)

which shows the expected 1/
√

n behavior for a statistical fluctuation. The numerical results ob-
tained with the series (2.11) are presented in Fig. 2, left side. We note that the effect of the departure
of f ∗2 from ε is strongest at lowε and lown.

The evaluation of the second moment in theq variable yields
∫

qdqdα q2 f (q,α) =
1+(n−1)ε2

n
. (2.13)

From Eqs. (2.11,2.13) we can now obtain the variance of the distribution of the variable-axes mo-
ment. Again, a simple formula follows for the caseε = 0, where var( f ∗2 ) = (1− π

4 )/n. The scaled
variance and scaled standard deviation are

var( f ∗2 )

f ∗2
=

2√
π −

√
π

2√
n

,
σ( f ∗2 )

f ∗2
=

√

4
π
−1≃ 0.523, (ε = 0). (2.14)

Note that in this case there is no dependence of the scaled standard deviation onn. The case of
generalε obtained numerically for various values ofn is shown in Fig. 2, right side. According to

Eq. (2.14), all curves approach the limit
√

4
π −1 asε → 0. At the other end, in the limit ofnε2 → ∞

we have the expansionsf ∗2 = ε +1/(4εn)+ . . . andσ( f ∗2 )/ f ∗2 = [1/(2ε)− ε ]/n+ . . . .
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Figure 2: Toy model. Left: Dependence of the variable-axes momentf ∗2 on the fixed-axes harmonic moment
ε for several values of the number of particlesn. As n increases, we pass from top to bottom with the
presented curves. The straight line is then→ ∞ limit, i.e. f∗2 = ε. Right: the same for the scaled standard
deviation.

3. The general case

In the general case the analysis can be carried out in full analogy to the toy model [1]. For
simplicity, in our analytic study we neglect correlations between locations of sources. If such corre-
lations are strong, their analytic inclusion is difficult and one has to resort to numerical simulations
such as those presented below. Compared to the toy model, thefull two-dimensional case involves
the fixed-axes momentsIk,l =

∫ ∞
0 2πρdρ fl (ρ)ρk/n, wheren is the number of sources. We have

chosen the normalization
∫ ∞

0 2πρdρ f0(ρ) = n. Generally, in analogy to Eq. (2.11)

ε∗ =

√
2σ2

Y2

Ik,0
√

πσX2

∞

∑
m=0

(2δσ2
Y2

)m
Γ
(

m+ 1
2

)

Γ
(

m+ 3
2

)

1F1

(

−1
2;m+1;− Ȳ2

2
2σ2

Y2

)

m!2 , (3.1)

where

Ȳ2 = Ik,2, σ2
Y2

=
1
2n

(I2k,0−2I2
k,2 + I2k,4), σ2

X2
=

1
2n

(I2k,0− I2k,4), δ =
1

2σ2
Y2

− 1

2σ2
X2

. (3.2)

For the special case of central collisions we have the very simple results

ε∗ =

√

πI2k,0

2Ik,0
√

n
,

σ(ε∗)
ε∗ =

√

4
π
−1≃ 0.523, (b = 0). (3.3)

Since correlations between the location of sources effectively reduce the number of sourcesn, they
lead to an increase ofε∗, but keep itsn-independent scaled variance practically constant, as shown
by the simulations of the next Section. Ref. [1] contains more discussion.

4. Numerical simulations in various Glauber models

We have studied a few variants of Glauber-like models. In thestandard wounded-nucleon
model [15] the weightw= 1/2 is attributed to the point in the transverse plane at the position of the
wounded nucleon. The wounding cross section is 42 mb. For binary collisions the weightw = 1 is
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Figure 3: Left: The momentε and its scaled standard deviation for the analyzed models plotted as functions
of the impact parameter. Gold-gold collisions. Right: the same forε∗. The results for the color-glass
condensate come from Ref. [14] (dot-dashed line in top left figure) and Ref. [20] (circles in lower right
figure).

attributed to each collision point. We remark that only relative magnitude of weights is important in
studies of fluctuations. A successful description of the RHIC multiplicities has been achieved with
a mixedmodel, amending wounded nucleons with some admixture of binary collisions [16, 17].
Then the wounded nucleon obtains the weightw = (1−α)/2, and the binary collision the weight
w = α . The total weight averaged over events is then(1−α)Nw/2+ αNbin. The fits to particle
multiplicities of Ref. [17] giveα = 0.145 at

√
sNN = 200 GeV. We also consider a model with

hot spotsin the spirit of Ref. [18], assuming that the cross section for a semi-hard binary colli-
sions producing a hot-spot is tiny,σhot−spot = 0.5 mb, however when such a rare collision occurs
it produces on the average a very large amount of the transverse energy equal toασw/σhot−spot.
Each source from the previously described models deposits the transverse energy with a certain
probability distribution. To incorporate this effect, we superimpose theΓ distribution, multiplying
the weights of the considered model with the randomly distributed number from the gamma distri-
bution g(w,κ) = wκ−1κκ exp(−κw)/Γ(κ). Here we do this superposition on the hot-spot model,
labeledhot-spot+Γ. Thus, we take the weights(1−α)g(w,κ)/2 for the wounded nucleons and
αg(w,κ)σw/σhot−spot for the binary collisions. We setκ = 0.5, which gives var(w) = 5. The four

6
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considered models (wounded-nucleon, mixed, hot-spot, andhot-spot+Γ) differ substantially by the
number of sources and the amount of the built-in fluctuations.

We observe that in all four modelsε is practically independent of the model (top left panel
of Fig. 3). On the other hand, the scaled standard deviation (lower left panel of Fig. 3) displays
a strong dependence on the model at low values ofb, with the hot-spot+Γ model yielding about
twice as much as the mixed model. We also notice a very strong dependence onb. At b = 0 the
curves diverge due to dividing by the vanishing value ofε . The fluctuations are larger in models
effectively having the lower number of sources, which is obvious from the statistical point of view.

As already noted in Refs. [14, 19], the value ofε obtained with the color glass condensate
(CGC) is substantially higher than in all Glauber-like models reported here (upper curve in the left
top panel of Fig. 3).

The harmonic momentε∗ and its scaled standard deviation are show on the right side of Fig. 3
We observe a strong model dependence ofε∗ at low values ofb, with models having effectively
lower number of sources yielding higher values. Atb = 0 the hot-spot+Γ model yields three times
more than the wounded-nucleon model. For all models the scaled standard deviation is close to
the value 0.5 for central collisions (in agreement with the results (3.3)) and drops to about 0.3
at b = 14 fm. At intermediate values ofb the relative difference inσ(ε∗)/ε∗ between various
considered models is at the level of 10-15%, which is not a very strong effect. The CGC result of
Ref. [20] is lower than in the Glauber models (circles in the right bottom panel of Fig. 3).

The harmonic profilesfl (ρ) and f ∗l (ρ) are displayed in Ref. [1]

5. Jet quenching

We have used the model of Refs. [21, 22] of the jet energy loss in order to explore the role
of the event-by-event rotated absorbing medium. In order totake into account the variable-axes
geometry, we usef ∗(ρ ,φ) as the density of the scattering centers for the propagatingparton. The

x

y

jets

absorbent

0

0.05

0.1

0 100 200 300 400
Nw

v 2

Figure 4: Left: the variable axes geometry of the absorbent vs. the fixed-axes geometry of the jet production
point. Right: v2 at highpT as a function of the number of wounded nucleons, obtained with the variable-
axes densityf ∗(ρ) for the hot-spot scenario (dashed line), and with the fixed-axes density of the wounded
nucleonsf (ρ) (solid line). The dotted line represents the result for the variable-axes density but without the
shift and rotation of the opaque medium.
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rare jet production event is distributed according to the fixed-axes profile, see Fig. (4), left side. The
resulting increase of the eccentricity of the absorbent is expected to increase the asymmetry of the
jet absorption. A very similar effect has been discussed forprofiles calculated in the CGC model
[23], where an increase inv2 by about 10−15% has been found. The absorbing medium formed in
each event is rotated and also shifted. The elliptic flow (seeFig. 4, right side) at centralities larger
than 20% calculated with the wounded-nucleon model in the fixed-axes frame (solid line), which
serves as a reference, comes out similar to the result of the hot-spot model in the variable-axes
frame (dashed line). Only if the shift and rotation of the opaque medium were neglected (dotted
line) the modification of the shape leads to an increase of thehigh pT elliptic flow coefficientv2 by
about 10− 15%. The cancellation of the effects of the increased eccentricity of the medium and
of the shift and rotation happens also for the other considered models (at larger centralities). The
rotation of the absorbing medium yields about 2/3, and the shift about 1/3 of the total cancellation
effect.

6. Fluctuations of the elliptic flow

The fluctuations of the elliptic flow, which are an important probe of the nature of the early-
stage dynamics of the system [24], have recently been measured at RHIC [10, 11, 12]. The ex-
perimental procedure used in these analyses identifies the elliptic flow coefficient with the variable
axesv2, here denoted asv∗2. The relevance of studies of fluctuations of the initial shape comes from
the well-known fact that for small elliptic asymmetry one expects on hydrodynamic grounds the
relation

σ(v∗2)
v∗2

=
σ(ε∗)

ε∗ . (6.1)

As argued in Ref. [25], the result (6.1) indicates that the mean free path in the matter created in
the initial stages of the heavy-ion collisions is very small, although turbulence does not develop.

 wN0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0

0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

P H O B O S  
S T A R  
w o u n d e d  D e * / e *

D v
2*/
v 2* p - p

h o t  s p o t  +  G  D e * / e *

Figure 5: Fluctuations ofv∗2 from the Glauber approach. Data from Refs. [10, 11, 12].
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Comparison of the data to our Glauber calculations is made inFig. 5. For central collisions we
expect

σ(v∗2)
v∗2

(b = 0) ≃ σ(ε∗)
ε∗ (b = 0) ≃

√

4
π
−1≃ 0.52, (6.2)

which is compatible to the data, although the error bars are large.

Amusingly, the limiting value of Eq. (6.2) is also obtained for peripheral collisions, if these
form a collection of several independentpp collisions (of course, no hydro here). In each such
collision particles are emitted with a certain momentum distribution, which is cylindrically sym-
metric. Thus, the same effect as discussed for the shape fluctuations occurs for the momentum
fluctuations. In other words, we replace the coordinates with momenta in our analysis, and get
σ(v∗2)/v∗2(peripheral) ≃ 0.52. This value is represented by a blob in Fig. 5. Some transition from
hydro to independentppcollisions must occur, which is indicated by the interpolating dashed lines
in the figure.

We end this talk with some comments on the derivation of Eq. (6.1) as well as on higher-
harmonic probes. Perturbation theory applied to smooth (i.e. linearization is sensible) hydrody-
namics together with hierarchy of relaxation times for subsequent harmonics,e.g. τ2 ≫ τ4, leads
to further results [1]. In particular,

v∗4 ∼ ε∗2 ∼ v∗2
2 . (6.3)

In Ref. [27] the variablev4/v2
2 has been suggested as a sensitive probe of the hydrodynamic evo-

lution. The simulations of Refs. [26, 27] show that with increasing time the value ofv2 saturates,
while v4 quickly assumes the value proportional tov2

2, supporting the assumptionτ2 ≫ τ4 used in
the above argumentation. For the fluctuations one gets immediately from Eq. (6.3) the prediction

σ(v∗4)
v∗4

= 2
σ(v∗2)

v∗2
. (6.4)

Relation (6.4), if verified experimentally, would support the scenario of smooth hydro evolution
with the mentioned hierarchy of scales. On similar grounds,for the azimuthal Hanbury-Brown–
Twiss (HBT) correlation radius,RHBT(φ), one expects

RHBT
4 ∼ (RHBT

2 )2, (6.5)

whereRHBT(φ) = RHBT
0 +2RHBT

2 cos(2φ)+2RHBT
4 cos(4φ)+ . . . .

7. Conclusions

Here are our main points:

• We have analyzed four Glauber-like models, with different degree of fluctuation: the wounded-
nucleon model, the mixed model, the hot-spot model, and the hot-spot model with the super-
imposedΓ distribution.
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• We have obtained numerically the fixed-axes and variable-axes harmonic profiles [1] and
analyzed their moments. The variable-axes momentsε∗, and the fixed-axes scaled standard
deviationσ(ε)/ε are sensitive to the choice of the model, whileσ(ε∗)/ε∗ is not, changing
at most by 10-15% from model to model at intermediate values of b.

• Analytic formulas explain certain features of the simulations, in particular, they show that at
b = 0 the multiple-axes scaled variances are close to the value 0.5, insensitive of the model
used, the collision energy, the mass number of the collidingnuclei, or the number of particle
sources. The behavior ofσ(ε∗)/ε∗ at low b is thus largelygoverned by the statistics

• Fixed-reaction-plane experimental analyses would revealmore information on the system
and would allow to discriminate the theoretical predictions, as fluctuations ofε are sensitive
to the chosen model.

• For the jetv2 we find that the effect of the increased variable-axes eccentricity is largely
canceled by the shift of the center of mass and the rotation ofthe principal axes of the
absorbing medium. This leads to practically no change of thejet emission asymmetry at
intermediate and large impact parameters. Only at smallb the increase of the deformation
takes over the relatively less important shift and rotation.

• On hydrodynamic grounds, the analysis of the variable-axesmoments in the coordinate space
carries over to the collective flow and analysis ofv∗2. In particular, Eq. (6.2) holds for the
variable-axes elliptic flow coefficient at central collisions.

• The same value is also obtained for peripheral collisions, since these consist of of several
independentpp collisions. In each such collision particles are emitted from a cylindrically
symmetric momentum distribution. Replacing coordinates with momenta in our analysis
yields to σ(v∗2)/v∗2(peripheral) ≃ 0.52. Thus, statistics fixes the two end-point values in
Fig. 6.2.

• Under assumptions of smoothness, perturbation theory madeon top of azimuthally symmet-
ric hydro leads to sensitivity of higher-harmonic late-time measures,v∗4, RHBT

4 , etc., to the
initial quadrupoledeformationε∗(t0) only. Higher harmonics of the initial shape deforma-
tion are irrelevant, as they presumably are damped fast. A number of relations follows for
various measures and their event-by-event fluctuations,e.g.Eq. (6.4).

• It would be a challenge to measure thev∗4 fluctuations and test the smooth hydro assumption
by verifying relation (6.4).

One of us (WB) thanks Paul Sorensen, Constantin Loizides, and Wit Busza for useful discus-
sions concerning the experimental determination ofv2 and its fluctuations.
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