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1. Chiral Symmetry Breaking

As an introduction let me start with the question: How do we know that chiral symmetry is
broken? To set the stage let’s first look at a symmetry which isnot spontaneously broken (except
for a small explicit breaking): the isospin symmetry based on the groupSUV(2). A continuous
symmetry based on such a non-Abelian group demands the existence of multiplets, i.e. degener-
ate states. Much celebrated examples are e.g. the iso-doublet (p,n) or the iso-triplet(π+,π0,π−).
However, the symmetry tells much more than simply the degeneracy of single-body states. Whole
spectra corresponding to different currents must be identical. An isospin transformation turns e.g.
the neutral currentjµV = 1

2(ūγµu− d̄γµd) into the charged one ¯uγµd. The spectral information
contained in the former current is available from the reaction e+e− →hadrons, provided one prop-
erly subtracts the isoscalar contributions. On the other hand, the spectral information contained
in the charged current is accessible via tau decays. Indeed,to a very good approximation both
spectra show the same structure (cf. e.g. [1]). Next let us turn to the chiral symmetry with respect
to SUA(2). Transformations turn the vector–isovector currentjµV into the axial-vector–isovector
current~jµA = q̄~τγ5γµq. The consequence of a chirally symmetric worldwould be, that the cor-
responding spectra should be degenerate. Both spectra can be studied in tau decays. The weak
processτ → ντ +hadrons involves the differencejµV − jµA . On account of the different G-parity of
jµV and jµA one has access on both spectra separately. The results are shown in Fig. 1. Obviously,
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Figure 1: Spectral information contained in the vector–isovector current (l.h.s. [1]) and in the axial-vector–
isovector current (r.h.s. [1]).

the spectra are not the same — not even approximately. (Recall that chiral symmetry is explicitly
broken by the finite quark masses.) One can see that even more clearly by looking at the difference
of the two spectra as shown in Fig. 2. This indicates that chiral symmetry is spontaneously broken.

Typically spontaneous symmetry breaking is lifted at some temperature/density. (The classical
example is the ferro magnet with its broken rotational invariance. The symmetry is restored at
the Curie temperature.) We expect that this happens also forthe chiral symmetry. Thus, at the
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Figure 2: One of the clearest signs of chiral symmetry breaking: The difference of the vector and axial-
vector spectra [2].

point of chiral restoration we must find the same (in-medium)spectral information in the vector
and in the axial-vector channel. From Figs. 1 and 2 we recall how different the spectra are in
vacuum. Consequently we expect drastic in-medium changes in both spectra to accommodate for
the demand that they become the same at the restoration temperature/density. One should be aware
of the fact that this is aqualitativeexpectation. Quantitatively we (still) need models to describe
these changes due to our present lack of understanding of non-perturbative QCD.

Recalling that the vector current couples to dileptons we come to thefirst connectionbetween
chiral symmetry, dileptons and resonances:We expect qualitatively that the dilepton spectrum
should drastically change in a medium on account of chiral restoration.

2. Chiral Restoration and Hadronic Resonances

As a next step let me recall an interesting relation between chiral restoration and deconfine-
ment. Lattice QCD tells us that (at least for vanishing net baryon density) three phenomena occur
at the same temperature [3]: The pressure drastically rises(i.e. the number of the relevant degrees
of freedom changes), the two-quark condensate drasticallydrops (the corresponding susceptibility
peaks) and the order parameter of deconfinement, the Polyakov loop also rises. These changes are
displayed in Fig. 3 (for more recent figures cf. the talk by F. Karsch).

Let us see whether one can get insight into these coincidences from the low-temperature
hadronic point of view: At (very) low (particle or energy) densities a strongly interacting sys-
tem can be described by a free gas of (stable) hadrons. The reason is that all interactions come with
higher powers in the particle densities. At higher densities, of course, interactions or in other words
correlations become important. Obviously strong correlations occur whenever hadronic resonances
are formed. Thus one mightapproximatethe strongly interacting system at higher densities by a
free gas of resonances. (What we describe here is, of course,the much celebrated virial expansion
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Figure 3: Lattice results for the pressure (top), the two-quark condensate (bottom, left) and the Polyakov
loop (bottom, right) [3]. Note that the temperature scales with the lattice parameterβ (especiallyβ should
not be mistaken for the inverse temperature).

and the resonance approximation to it [4].) On the other hand, the hadronic resonances (and the
stable hadrons) are composite objects and not point-like. Thus, at higher densities the hadrons oc-
cupy a large fraction of the available volume. This suggestsa percolation transition to take place:
As soon as there is enough overlap between the hadrons, quarks cannot decide anymore to which
hadron they belong and can move more or less freely without getting outside of the occupied vol-
ume [5]. Such a scenario would explain why the liberation of quarks and gluons (which leads to
the rise in the pressure and in the Polyakov loop) happens at the same temperature as the chiral
restoration.

Next one should ask whether one can find quantitative indications for such a scenario to be
true. Indeed, as shown in [6], lattice results for thermodynamic quantities below the transition tem-
perature can be reproduced very well by a free resonance gas (cf. Fig. 4, l.h.s.). It might appear,
however, that thermodynamic quantities are simply not decisive enough. There is still the possibil-
ity that the resonance gas approximation is inappropriate for quantities specifically related to the
chiral symmetry restoration. Hence, one has to look at orderparameters of chiral symmetry break-
ing. Two such order parameters will be studied in the following, namely the two-quark condensate
and a specific four-quark condensate which is related to the second moment of the differencev−a
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Figure 4: L.h.s.: Comparison of lattice results and a free resonance gas [6]. R.h.s.: Drop of the two-quark
condensate using chiral perturbation theory for interacting pions and in addition a free resonance gas [7].

depicted in Fig. 2 [8]:

s0∫

0

dss2 [v(s)−a(s)] = 〈O4q〉µ=
√

s0 for sufficiently larges0. (2.1)

The temperature dependence of the two-quark condensate hasbeen investigated already some
time ago in [7]. It has been demonstrated that an interactingpion gas (described by chiral pertur-
bation theory) leads to a drop of the condensate. The effect is, however, not strong enough. In
contrast, the sheer presence of non-interacting hadron resonances (together with the pion gas) is
sufficient to obtain a very reasonable transition temperature in the range of 180 to 200 MeV. This
is demonstrated in Fig. 4, right panel. This provides a further indication that the resonance gas sce-
nario is reasonable. Still one might argue that also the two-quark condensate is not specific enough
since it is directly related to a thermodynamic quantity, the pressurep: 〈q̄q〉 ∼ ∂ p

∂mq
.

A completely different order parameter is provided by the four-quark condensate which ap-
pears on the r.h.s. of (2.1). Obviously the differencev− a which appears on the l.h.s. of (2.1)
provides an order parameter for chiral symmetry breaking: As discussed in Sec. 1 it has to vanish
in a chirally restored system. In [8] the dependence of the four-quark condensate on temperatureT
and baryo-chemical potentialµ is investigated within a resonance gas approximation. Results are
shown in Figs. 5 and 6. Especially in Fig. 6 the line where the four-quark condensate vanishes
is depicted. A word of caution is in order here: At low temperatures (and chemical potentials on
the order of the nucleon mass) the hadron gas reduces to a gas of nucleons. Here the results are
not trustable any more. At low temperatures the dominant correlations are nucleon-nucleon corre-
lations and not hadronic resonances. Thus the whole picturebreaks down. The results of Fig. 6 are
reasonable, however, at not too low temperatures (a conservative estimate might beT > 100MeV).
Indeed, one gets a very reasonable value for the transition temperature atµ = 0 (cf. the talks by
F. Karsch and S. Fodor). Fig. 6, right panel reveals another very interesting aspect: The transition
basically happens at a fixed energy density independent of the net baryon density. (The deviation
from this behavior happens at high baryon densities. This area corresponds to very low temper-
atures where the resonance gas approximation becomes invalid, as discussed before.) Thus the
energy density appears to be the control parameter of the transition.
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Figure 5: Ratio of in-medium to vacuum four-quark condensate as a function of temperatureT and baryo-
chemical potentialµ . L.h.s.: 3-d plot. R.h.s.: Cuts for fixed chemical potentials (µ = 0,400,800MeV from
right to left) [8].

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

T
 
[
M
e
V
]

µ [MeV]

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

ε 
[
G
e
V
/
f
m
3
]

ρB [1/fm
3
]

Figure 6: Vanishing of the four-quark condensate in theT-µ plane (left panel) and in theε-ρ plane (right
panel) with the energy densityε and the net baryon densityρ [8].

All these results indicate that the resonance gas approximation yields a reasonable description
of a strongly interacting system below the transition to thequark-gluon plasma (for not too low
temperatures). Since it deals with hadronic degrees of freedom only, it is clear that it does not work
above the transition point. One sees the deviation already in Fig. 4. The same is true for the order
parameters: Within the resonance gas approximation the order parameters would not level off or
stay at zero as they should, but drop further to negative values. Therefore, we can at best expect
that the resonance gas approximation describes the system until close to the transition point, but it
does not describe the transition itself.

To summarize this section we find thesecond connectionbetween chiral symmetry, dileptons
and resonances:The resonance gas approximation describes the way to chiralrestoration.

3. Dileptons and Hadronic Resonances

Having seen that the resonance gas approximation works wellfor bulk properties and for chiral
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Figure 7: Four generic processes for dilepton production which entere.g. in-medium hadronic many-body
calculations.ℓ± denote dileptons.

order parameters, we can ask about the importance of resonances for the dilepton production.
Here we have to consider the resonances which couple directly to dileptons,but alsothe Dalitz
decays of resonances. To understand the differences and similarities let us look at four generic
processes depicted in Fig. 7 which are driven by resonances.From a conceptual/technical point
of view one would group together the processes shown in the first line on the one hand side and
the processes of the second line on the other hand side. Indeed, for the first group the reaction
probabilities can be inferred from the measured back reactions in vacuum. In addition, the total
invariant mass of the hadrons translates to the invariant mass of the dilepton pair. In contrast, for
the Dalitz decay type processes of the second group part of the available energy is taken away
by the hadron which accompanies the dilepton. Therefore such processes populate the low-mass
dilepton region. Indeed, in many-body calculations (e.g. [9]) these processes are responsible for
the low-mass enhancement. (A full quantitative description might require to iterate these processes
as self energies in a Dyson-Schwinger framework.)

Technically, the dilepton production can be related in an equilibrated medium to the dilepton
annihilation (i.e. for the following remarks the processesof Fig. 7 have to be read from right to
left). The annihilation can be calculated within a virial expansion (cf. e.g. [10]) or, using vector
meson dominance, within a spectral function approach (cf. e.g. [11, 12]). The trivial part of such
calculations are indeed the vacuum reactions shown in the first line of Fig. 7. Corrections come
from the diagrams shown in the second line where the dileptons scatter on one medium constituent.
For that reason many people regard the processes of the first line as trivial in-medium effects and
the ones from the second line as non-trivial. On the other hand, from the point of view of dilepton
production such a distinction is questionable: After all, both processes on the l.h.s. of Fig. 7 are
two-body reactions. One is as trivial as the other and both are actually genuine in-medium processes
since they have pions in the entrance channel. From that point of view the only difference is that
the importance of the reactionπ+π→ ℓ+ℓ− can be judged from the measured back reaction while
the reactionπ+ N → ℓ+ℓ− + N is not sufficiently known. As already pointed out such processes
are regarded as responsible for the low-mass enhancement. This should be motivation enough to
measure the reactionπ+ N → ℓ+ℓ− + N as accurate as possible to constrain or crosscheck the
elementary input which enters hadronic many-body calculations.
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While the processes on the l.h.s. of Fig. 7 are two-body reactions, the diagrams on the r.h.s.
display rather non-trivial many-body reactions. Clearly the role of such processes can only be as-
sessed in heavy-ion processes. The importance of the process 4π→ ℓ+ℓ− for the dilepton spectrum
above 1 GeV has been stressed recently in [9]. A second aspectwhich also is especially relevant for
heavy-ion physics is related to unitarity: Aρ-meson which is produced (as an intermediate state)
e.g. in the reactionπ+π→ ρ knows about the other production mechanisms (e.g.π+N → ρ +N
displayed in Fig. 7, bottom, left). A proper treatment leadsto a depletion of the dilepton spectrum
around theρ-meson peak. Actually, the whole issue of many-body reactions and unitarity would
provide material for a second talk. Therefore, I will stop here and refer to [13, 14].

Obviously, the issue of resonances becomes more involved when studying dilepton production.
Nonetheless, we have again seen the important role of resonances which leads us to thethird
connectionbetween chiral symmetry, dileptons and resonances:The resonances cause the low-
mass enhancement in the dilepton spectrum.

4. Vacuum Properties of Hadronic Resonances — thea1-Meson

For a deeper understanding of dilepton production one key ingredient are definitely the vacuum
properties of resonances which decay into dileptons (either directly or via Dalitz decays). The
most elementary (and probably the most interesting) question one can ask is: What is the nature
of a given resonance? Is it merely of molecule type made out ofother hadrons or is it a quark-
antiquark or three-quark state, respectively. These questions are lively discussed in the literature for
several hadronic resonances (see e.g. [15]). Chiral symmetry breaking plays an important role in the
molecule calculations by constraining the possible interactions between the hadronic constituents.

W
ν

φ

V

ρ

τ

π

π

π

W

ν

a1

φ

V

ρ
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π
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Figure 8: L.h.s.: Coupling of the weak current to two-particle stateswhich are subject to final state inter-
action (indicated by the blob). R.h.s.: Direct coupling of the weak current to an elementarya1. φ denotes a
Goldstone boson which can beπ or K whileV can beρ or K∗.

In the following I will not talk about arbitrary resonances anymore, but concentrate on a par-
ticular one, namely thea1-meson. The reason is that there exist excellent data for this meson. It
appears as a broad structure in the decayτ → ντ +3π which is free of hadronic initial state interac-
tions (cf. Fig. 1, right panel). With such a clean reaction athand one has an excellent framework to
study the conjecture that thea1 is dynamically generated, i.e. a coupled-channel meson-molecule
(as suggested for the first time in [15]). This issue has been addressed in a recent work with M.
Wagner [16]. We have tested the possibility that thea1 is a quark-antiquark state against the sce-
nario that thea1 is dynamically generated. We have found strong indicationsthat the latter is true.
In this scenario the dominant role is played by the coupling of the weak current toπρ (and to
some extent toKK∗). Thea1-bump which appears in the data is caused by the final state interac-
tion between these two-body states (cf. Fig. 8, l.h.s.). Thestrength of this final state interaction
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is fixed in lowest order of the involved momenta by chiral symmetry breaking. It is the famous
Weinberg-Tomozawa (WT) interaction. Following [15] for the description of the final state inter-
action, it turns out that there is only one free parameter in the calculation. This parameter regulates
the entrance loopW → φV whereφ denotes the Goldstone bosonπ or K andV the vector meson
ρ or K∗ (cf. Fig. 8, l.h.s.). Fig. 9, left panel shows the results of such a calculation varying the
single free parameterµ2 (for details see [16]). Obviously one obtains a reasonable description of
the data in view of the fact that the one free parameter adjusts the height and the width of the curve
at the same time. (The peak position is fairly insensitive toµ2.) A close to perfect agreement with
the data can be obtained, if the WT interaction is supplemented by higher order terms in the chiral
expansion [16].
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Figure 9: Description of the reactionτ → ντ +3π with a dynamically generateda1 based on the Weinberg-
Tomozawa (WT) interaction (l.h.s.) and with an elementarya1 field (r.h.s.). Note that the WT interaction is
also included for the second case.

In contrast to this good agreement the inclusion of an elementary a1 (i.e. considering both
processes of Fig. 8) worsens the result as demonstrated in Fig. 9, r.h.s. It is important to stress that
also for these calculations the final state WT interaction isincluded, since it is a prediction from
chiral symmetry and there is no obvious reason why it should vanish in the considered energy range.
However, we have used the freedom to chooseµ2 to minimize the influence of the WT interaction.
Still it is so strong that typically a double hump structure appears (set 1 in Fig. 9, r.h.s.). Only if
the additional parameters of the elementarya1 are fine-tuned one can obtain a one-peak structure
(set 2) — with a wrong width, however. We conclude that the taudecay data suggest that thea1 is
a coupled-channel meson-molecule.

Our study of thea1-meson — where the Weinberg-Tomozawa interaction plays a central role
— leads to thefourth connection between chiral symmetry, dileptons and resonances:The nature
of some (or even many?) resonances is dictated by chiral symmetry breaking.

5. Summary and Outlook

To summarize we have shown four connections between chiral symmetry, dileptons and hadronic
resonances. They are marked by bold letters throughout the text and we do not repeat them here.

As an outlook we note that one has to look for further justifications for the resonance gas
scenario. In addition, it would be interesting to develop models for the chiral restoration which de-
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scribe also the transition itself and not only the way towards it (as the resonance gas approximation
does since it contains only hadronic degrees of freedom moreor less fixed to their vacuum proper-
ties). In that context we note, however, that the inclusion of the chiral restoration is pretty simple in
schematic models which do not have the plethora of degrees offreedom, but it is fairly complicated
for realistic models. Also in that context it is, of course, important to figure out which resonances
are dynamically generated and which are more elementary quark-antiquark or three-quark states,
respectively.
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