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Figure 1: Un-renormalized zero temperature potentials for different values ofβ and renormalized overall
T = 0-potential (lower black points) in units ofr0. The solid line shows the string potential as discussed in
the text.

1. Introduction

In-medium properties of heavy quarks and heavy quark bound states are of fundamental inter-
est for the understanding of strongly interacting matter at high temperaturesand densities probed
in current and future heavy ion collision experiments at RHIC, FAIR and LHC. The temperature
dependence of heavy quark free energies, potential energies as well as screening masses and radii
are important ingredients for studies on strongly coupled quark gluon plasma, possible existence
of heavy quark bound states in the QGP as well as on transport properties of heavy quarks in the
high temperature phase.
We present preliminary results on heavy quark free energies [1] that are based on an analysis of
gauge field configurations generated by the RBC-Bielefeld collaboration in(2+1)-flavor QCD for
the calculation of the QCD equation of state [2]. The pion mass is about 220 MeV and the strange
quark mass is adjusted to its physical value. The calculations were performed with improved stag-
gered fermions on lattices with temporal extentNτ = 4 and 6 accompanied by high statistics zero
temperature calculations to set the scale and to extract the zero temperature potential and corre-
sponding renormalization constants.
We perform a renormalization of the finite temperature heavy quark free energies and of the
Polyakov loop using the renormalization constants obtained at zero temperature. We will dis-
cuss the relation between heavy quark free energies, entropy and internal energy contributions
and analyze their critical behavior in the transition region. The temperature dependence of the
interaction between static quark anti-quark pairs will be analyzed in terms of,in general distance
and temperature dependent, running couplings and screening masses. Apreparatory study of the
density dependence of screening masses in 2-flavor QCD with large quark masses indicates that
non-perturbative effects in the behavior of screening is dominated by thegluonic sector.

2. Zero temperature potential

In fig. 1 we show the zero temperature potential,Vq̄q(r), in units of the distance scaler0 for
various values of the couplingβ corresponding to different values of the lattice cut-off varying
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Figure 2: Renormalization constants,Zren(β ), obtained from the matching of the zero temperature potentials
(left). Dimensionless combinations,r0/r1 and r0

√
σ . The lower axis denotes the scale(r0/a)−1 and the

upper axis the lattice cut-off in physical units. The lines are explained in the text (right).

from a≃ 0.3 fm down toa≃ 0.05 fm. The scaler0/a is define by the slope of the potential,
(

r2dVq̄q(r)

dr

)

r=r0

= 1.65, (2.1)

and can be used to convert to physical scales with a valuer0 = 0.469(7) fm [3]. Additional param-
eters obtained from the slope ofVq̄q(r) are the string tension,σa2, andr1/a defined by replacing
1.65 by 1.0 in (2.1). The dimensionless combinations of these parameters displayed in fig. 2 show
only small cut-off effect, e.g.r0

√
σ stays constant in the entire range of couplings in which the

lattice spacing changes by a factor of 6. Using a quadratic fit Ansatz fora ≤ 0.15fm we obtain
r0
√

σ = 1.1034(40) andr0/r1 = 1.4636(60). For both ratios we observe thatO(a2) corrections
are small.
The potentials as calculated on the lattice are ultraviolet divergent and needto be renormalized. We
have matched all potentials to a common value at large distances,r/r0 = 1.5, taken to be identical
to the large distance string potential which in units ofr0 is given by

r0Vstring(r/r0) = −
π

12r/r0
+(σ r2

0)
r
r0

, (2.2)

where we have used the valuer0
√

σ quoted above. The result of this renormalization is shown
in the lower part of fig. 1. The good matching of all potential data over the whole distance range
again shows that cut-off effects are small in this observable.
The matching procedure provides renormalization constants for the static quark potential which we
will use for the renormalization of Polyakov loops and heavy quark free energies at finite tempera-
tures. They are defined asZren(β ) = exp((c(β )a)/2), wherec(β ) denotes the constant shift for the
corresponding zero temperature potential. Already note here that no additional divergencies arise
when going from zero to finite temperatures. The solid line in fig. 1 shows the string potential.
Note that the deviations of the potentialVq̄q(r) from Vstring(r) at small distances shows the effect
of the QCD running coupling while the Coulombic term in the string potential stems from large
distance corrections in the string model. Furthermore we do not observe string breaking here which
is due the operator used in our analysis and the limited distance range analyzed here.
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Figure 3: Renormalized heavy quark free energies,F1(r,T), for different values of the temperature (left).
The solid line shows the zero temperature potentialV1(r). Asymptotic values for the heavy quark free
energies (right),F1(r = ∞,T), for (2+1) flavors compared to earlier results for pure gaugetheory and 2-
flavor [4, 5, 6].

3. Heavy quark free energies

The heavy quark free energy of a static quark-antiquark pair in a colorsinglet state separated
by distancer is defined by

F1(~r,T)

T
= − log

(

Tr
(

Lren(~0)Lren(~r)
))

, (3.1)

whereLren is the renormalized Polyakov loop,

Lren(~x) = (Zren(β ))Nτ Lbare=
Nτ−1

∏
x0=0

Zren(β )U(~x,x0),0 . (3.2)

The operator used in (3.1) in general is gauge dependent and we fix to Coulomb gauge accord-
ing to arguments based on [7, 8]. As already noted we are using the renormalization constants,
Zren(β ), obtained at zero temperature for the renormalization of the Polyakov loop.In this way
also the heavy quark free energies are properly renormalized, which isevident from fig. 3 (left)
whereF1(r,T) for different temperatures is shown. The solid line is the zero temperature potential
Vq̄q(r).
The free energies become temperature independent at small separationsand coincide withVq̄q(r)
showing the correct renormalization. At larger distances temperature effects set in, belowTc due
to string breaking and aboveTc due to screening of the static sources in the thermal deconfined
medium. The onset of this temperature effects is shifted towards smaller distances with increasing
temperature. The asymptotic values,F1(r = ∞,T), are show in fig. 3 (right) compared to previous
results from quenched and 2-flavor QCD with larger quark masses [4, 5, 6]. The qualitative be-
havior is comparable in all those theories. Note thatF∞ is infinite for the quenched theory below
the critical temperature. With dynamical quarks below the critical temperatureF∞ is already close
to the value estimated from zero temperature (indicated by the black band), it shows a strong de-
crease aroundTc and a quite linear behavior at high temperatures. This temperature dependence
already indicates that entropy contributions play an important role especiallyaround the transition
temperature.
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Figure 4: The renormalized Polyakov loop for different temporal lattice extents,Nτ = 4,6 and 8 (left). The
vertical lines show the location of the transition temperature determined in [2] on lattices with temporal
extentNτ = 4 (right line) andNτ = 6 (left line), respectively. Comparison to earlier results(right) for pure
gauge theory and 2-flavor [4, 5, 6].

4. Renormalized Polyakov loop

As already discussed in the previous section, the renormalization constantsobtained at zero
temperature can be used for the renormalization of the Polyakov loop at finitetemperature ac-
cording to (3.2). Due to the cluster property this renormalization is equivalent to a definition
of Lren using the asymptotic value of the heavy quark free energy,F∞(T) = F1(r = ∞,T), i.e.
Lren = exp(−F(r = ∞,T)/2T). While Lren is zero below the critical temperature in pure SU(3)
gauge theory and has a finite gap atTc due to the first order transition in this theory, it is non-zero
in QCD with dynamical quarks even in the low temperature phase. Although the temperature de-
pendence is continuous here,Lren shows a pronounced rise around the transition region from small
to large values in the high temperature phase.
We note that the most rapid change is in good agreement with the region wherethe chiral con-

densate as well as bulk thermodynamic quantities, e.g. energy and entropy densities change most
rapidly [2]. Furthermore the cut-off dependence ofLren on lattices with temporal extentNτ = 4
and 6 is small, which is in agreement with results obtained in studies ofLren in pure SU(3) gauge
theories [5, 9]. The large cut-off dependence observed in a study withthe 1-link stout smeared stag-
gered action used in [10] mainly seems to arise from the cut-off dependence of the zero temperature
observable (fK) used to set the temperature scale. The fact that the renormalized Polyakov loop
becomes larger than one at high temperatures was already observed in thequenched theory and
is predicted by perturbation theory where the high temperature limit,Lren(T = ∞) = 1, is reached
from above [11, 12]. Note that the renormalized Polyakov loop as defined in (3.2) is no longer a
SU(3) matrix.

5. Entropy and internal energy contributions

The temperature dependence of the heavy quark-antiquark free energy at asymptotic large dis-
tances,F∞(T), already indicated that entropy contributions play an important role especially in the
vicinity of the transition region. Thus it becomes important for discussions onstrongly coupled
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Figure 5: Asymptotic large distance values for internal energy (left) and entropy (right) compared to heavy
quark free energies. The left band indicates the zero temperature limit of the energy and the red line shows
the vanishingT = 0 limit for TS∞.

quark gluon plasma (SQGP) [13, 14, 15], the possible existence of heavy quark bound states that
might survive above deconfinement [16, 17, 18, 19, 20, 21] as well as on transport properties [22]
in the high temperature phase.
Here we will only discuss the asymptotic large distance behavior of these quantities, i.e.S∞(T) =

S1(r = ∞,T) andU∞(T) = U1(r = ∞,T). To separate entropy,S∞, and internal energy,U∞, contri-
butions from heavy quark free energies we use standard thermodynamicrelations,

S∞(T) = −
∂F∞(T)

∂T
and U∞(T) = −

∂F∞(T)/T
∂T

, (5.1)

to calculated their asymptotic behavior. In fig. 5 we compare internal energy(left) and entropy
(right) to the asymptotic behavior of the free energy. The band at the left axis indicates the value of
the energy in the zero temperature limit and the line in the right figure indicates that entropy,TS∞,
vanishes at zero temperature.
In contrast to the monotonic decrease observed forF∞, bothU∞ andTS∞ show qualitative different
(critical) behavior in the transition region. While at small temperatures they rapidly approach
values close to their zero temperature limits, both show a pronounced peak,U∞(T ≃ Tc)≃ 4.5 GeV
andTS∞(T ≃Tc)≃ 4 GeV, which again decreases rapidly toward smaller values and become rather
flat above 1.5 Tc. Note that the temperature where both observables attain their maximum is in
good agreement with the critical temperature obtained using different observables in [2]. Similar
behavior was already observed in previous studies withnf =2 and 3 with larger quark masses in
[6, 23].

6. Effective running coupling constant

As already discussed, the heavy quark-antiquark free energies become temperature indepen-
dent at small separations. To analyze the onset of temperature effects itis more appropriate to study
the effective distance and temperature dependent running coupling defined through

αeff(r,T) ≡
3
4

r2dF1(r,T)

dr
. (6.1)

6



P
o
S
(
C
P
O
D
0
7
)
0
4
3

Screening at finite temperature and density Olaf Kaczmarek

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0.70.60.50.40.30.20.1

αeff(r,T)

r[fm]

T[MeV]     
156
186
197
200
203
215
226
240
259
281
326
365
424
459
548

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  1.5  2  2.5  3

αmax(T)

T/Tc

nf=0
nf=2

nf=2+1 Nt=6
nf=2+1 Nt=4

Figure 6: The effective (distance dependent) running coupling (left). The solid line shows the zero tem-
perature running coupling calculated from the zero temperature potential. Effective temperature dependent
coupling (right),αmax(T), define by the maximum ofαeff(r,T) as explained in the text for (2+1) flavor com-
pared to 2-flavor and pure gauge theory [4, 5, 6]. The lines show a perturbative inspired fit-Ansatz for high
temperatures.

In fig. 6 (left) results for various temperatures are compared to the zero temperature running cou-
pling, αT=0(r), defined in the same way (solid line). Note that the quadratic rise ofαT=0 is a
non-perturbative effect that stems from the linear rising string tension term in the potential, while
at small distances the logarithmic weakening of the coupling is visible and at sufficiently small
distances it should reach the perturbative (asymptotic free) behavior.
At finite temperatures,αeff(r,T) follows this zero temperature behavior to relatively large distances,
before screening sets in leading to a maximum and a decrease at larger distances. Although the on-
set of temperature effects and the maximum is shifted towards smaller distanceswith increasing
temperature, at temperatures slightly above the critical one,αeff(r,T) still follows the quadratic
behavior quite far, indicating that even aboveTc remnants of confinement forces are present.
We have used the value of the maximum of the running coupling,αmax(T), to define an effective
temperature dependent coupling constant that can be used to indicate an effective coupling strength
at distances where the screening of the static quark-antiquark pair sets in. The results are shown
in fig. 6 (right) in comparison with pure SU(3) gauge theory and 2-flavor QCD results from [5].
The solid lines show results of a fit with an Ansatz using the two-loop perturbative coupling at
temperaturesT ≥ 1.2Tc. Note that the 2-flavor results are calculated for rather large quark masses
(m/T = 0.4). Therefore the increase ofαmax for (2+1)-flavor is rather a quark mass effect than
a flavor effect. The comparison of the results for temporal extentNτ = 4 and 6 again shows that
cut-off effects also in this observable are quite small. The large value of thecoupling close to the
critical temperature should not be identified with a large Coulombic coupling butclearly includes
non-perturbative effects.

7. Debye screening at finite temperature and density

We follow the commonly used approach to define the non-perturbative (Debye) screening
mass,mD(T), and temperature dependent coupling constant,α(T), using a screened Coulomb fit
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Figure 7: Debye screening masses in units of the temperature (left) for different number of flavors. The
solid lines and error band show the fit of a perturbative Ansatz including a scale factorA as described in the
text. Effective T-dependent Coulombic couplings (right) as obtained from the same fits compared toαmax.

Ansatz for the large distance part of the heavy quark free energies normalized by its asymptotic
large distance value,

F1(r,T)−F1(r = ∞,T) = −
4
3

α(T)

r
e−mD(T)r . (7.1)

Our results for the screening masses are summarized in fig. 7 (left) as function of T/Tc and are
compared to results in pure gauge theory and 2-flavor QCD from [5].
Although we are not expecting perturbation theory to hold at the small temperatures analyzed here,
the enhancement for increasing number of flavors is in qualitative agreement with leading order
perturbation theory, i.e.

mD(T)

T
= A

(

1+
Nf

6

)1/2

g(T). (7.2)

Here we have already introduced a multiplicative constantA to allow for non-perturbative contri-
butions (A = 1 in perturbation theory). Using a two-loop perturbative definition ofg(T) a best fit
analysis formD(T)/T for temperaturesT ≥ 1.2Tc leads toA = 1.52(2), 1,42(2) and 1.66(2) for
NF = 0, 2 and(2+1), respectively. The results including an error band are shown by the solid lines
in fig. 7 (left).
The large value ofA indicates that non-perturbative contributions are important in the temperature
range analyzed here. Note that a study in pure gauge theory up to temperatures as high as 24Tc led
to an only slightly smaller value,A = 1.39(2), revealing that even at such high temperatures the
screening mass still is far from being perturbative.
The results for the coupling,α(T), are shown in fig. 7 (right) in comparison withαmax as discussed
in the previous section. The large values ofα(T), especially close to the transition region, de-
scribes the large distance behavior of heavy quark free energies andshould not be confused with
the couplingαmax that characterizes the short distance part ofF1(r,T). The latter is almost temper-
ature independent and can to some extent be described by the zero temperature coupling.

So far we have only discussed results for vanishing baryon number densities. In leading order per-
turbation theory, the dependence of the Debye mass on temperature and quark chemical potential
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Figure 8: Zero (left) and second (right) order density coefficients ofthe Taylor expansion of heavy quark
free energies in 2-flavor QCD [24]. The solid line in the left figure shows the fit and in the right figure the
leading order perturbative result as explained in the text.

is given by

mD(T,µq)

T
= g(T)

√

1+
Nf

6
+

Nf

2π2

(µq

T

)2
. (7.3)

Here we will discuss results for two-flavor QCD with large quark masses [24]. The extension to
non-zero densities in terms of a Taylor expansion in the quark chemical potential is straightforward
and comparable to the Taylor expansion for bulk thermodynamic observables [25],

mD(T,µq) = m0(T)+m2(T)
(µq

T

)2
+O(µ4

q), (7.4)

wherem0(T) is the zero-order (zero density) contribution as already discussed above andm2(T) is
the second order Taylor coefficient. Note that for a ¯qq-system the odd order coefficients vanish.
The results form0(T) andm2(T) are shown in fig. 8 (left) and (right), respectively. The solid line in
the left figure shows the fit result form0 as discussed above and the line in the right figure shows the
second order expansion coefficient from the perturbative leading order expression (7.3). While the
zero order coefficient clearly shows non-perturbative behavior upto high temperatures, the good
agreement of the second order coefficient with the perturbative expectation at temperatures above
1.5Tc indicates that non-perturbative contributions to screening in the high temperature phase of
QCD are dominated by the gluonic sector.
The density dependence of screening masses so far was only analyzedfor 2-flavor QCD and large
quark masses. For a more realistic description the analysis will be carried out for (2+1)-flavor QCD
with almost realistic quark masses in the future.

8. Conclusions

We have analyzed heavy quark free energies, their temperature dependence and screening
properties for (2+1)-flavor QCD with almost realistic quark masses. The renormalization of the
free energies as well as the Polyakov loop was performed using renormalization constants obtained
at zero temperatures. For the asymptotic large distance behavior, entropyand internal energy con-
tributions were separated from the free energies and show critical behavior around the transition
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region.
From the analysis of the effective running coupling constants the onset of medium effects on a
heavy quark-antiquark pair was analyzed and from the large distance behavior of the free energies
we extracted screening properties at vanishing density. The extension tofinite baryon densities so
far is limited to the case of 2-flavor QCD and large quarks masses. The agreement of the second
order expansion coefficient with perturbation theory at temperatures above 1.5Tc indicates that the
main non-perturbative contributions to screening stems from the gluonic sector while fermionic
contributions seem to be small. This behavior has to be confirmed for (2+1)-flavor QCD with
almost realistic quark masses in the future.
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