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1. Introduction

In the last three decades, many analyses confirmed that the statistical hadronization model
(SHM) successfully reproduces particle abundances and transverse momentum spectra in high en-
ergy collisions (

√
s& 10 GeV) of elementary particles and heavy ions [1, 2]. These results triggered

a debate about the interpretation of the model [3, 4, 5, 6, 7].In fact, the fundamental assumption
of statistical equilibrium, cannot be explained, at least in elementary particles collisions, in terms
of a collisional processes at the level of formed hadrons because the system expands too quickly,
and also in heavy ions collisions kinetic calculations seems to confirm this fact [6]. Therefore, the
apparent statistical equilibrium, must be an inherent property of the hadronization process itself (as
was pointed out by Hagedorn many years ago [8]), that is: hadrons are born at equilibrium.

Apart from agenuinestatistical equilibrium within a finite volume, another scenario has been
proposed to account for this peculiar feature of hadron production: the so-calledphase space dom-
inance[5]. According to this model, the apparent statistical equilibrium is the result of a special
property of the dynamical matrix element governing hadron emission from pre-hadronic massive
clusters, which weakly depends on final state momenta and particle species. Thereby, a statistical-
like emission ensues [7] which has nothing to do with a properly defined statistical system, i.e.
there is no finite volume and neither entropy nor temperaturecan be introduced.

As has been discussed in detail in [7] (and briefly summarizedin the following), both genuine
statistical equilibrium and phase space dominance are highly non-trivial hypotheses, and before
discussing possible mechanisms responsible for the apparent equilibrium features it would be at
least desirable to discriminate between the two aforementioned scenarios.

Another fascinating explanation of the observed statistical equilibrium has been recently put
forward in refs. [4, 9] where the authors argue an analogy between hadron emission and the Unruh-
Hawking effect. However, the discussion of the latter hypothesis goes beyond our scopes.

The aim of this work is to describe a more stringent test of genuine statistical equilibrium.
For this purpose, we have analyzed the production rates of exclusive channels, which have been
proposed in [7] as a more effective probe with respect to inclusive hadron multiplicities. In fact,
being far less inclusive quantities, exclusive rates couldbe sensitive enough to finite-volume and
dynamical effects to allow drawing some conclusion.

Exclusive rates measurements are available at energies significantly below 10 GeV. In calcu-
lating model predictions in this scenario, none of the relevant conservation laws, including energy-
momentum, angular momentum, parity and isospin can be neglected, as pointed out in ref. [10].
Therefore, in a statistical mechanics language, one must calculate themost general microcanonical
ensemblewhere all these quantities are properly conserved.

In two recent publications [11, 12], the microcanonical partition function has been calculated
in a field theory framework (in order to account for small-volume effects) enforcing the conser-
vation of the maximal set of observables pertaining to space-time symmetries (the orthochronous
Poincaré group): energy-momentum, spin, helicity, parity.

Taking advantage of the formalism developed therein, we calculated the probability of exclu-
sive channels also enforcing the conservation of the internal quantities conserved by strong inter-
action (isospin, C-parity and abelian charges). We then made a preliminary test on pp annihilation
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at rest also comparing our results with the corresponding predictions of the phase space dominance
model.

2. Statistical hadronization and phase space dominance

In the modern formulation of the statistical hadronizationmodel, as a consequence of a colli-
sion, a set of extended massive objects (calledclustersor fireballs) is formed. Each cluster decay
into hadrons in a purely statistical fashion, that is, any multi-hadronic state within the cluster com-
patible with its quantum numbers is equally likely. The collection of all state within the cluster
defines the microcanonical ensemble of the cluster itself, which is the best suited framework for
evaluating observable quantities as statistical averages. Nevertheless, because of difficulties arising
in microcanonical calculations, a comparison with the dataas been mostly made as yet by intro-
ducing simplifying assumptions in the canonical (or grand-canonical) ensemble, which is far easier
to handle, thereby introducing temperature through a saddle-point expansion [13, 14]. In the case
of hadron gas, this is possible at relatively low values of masses and volumes [14, 15], around 8
GeV and 20 fm3.

Apart from the genuine statistical equilibrium (and from explanations based on other physical
models), the main option arising to account for these observations is the phase space dominance
model. Its fundamental idea is the similarity between the (classical) phase space volume of a set
of particles, orchannel, {Nj} ≡ N1, . . . ,Nk (whereNj stands for the multiplicity of the speciesj)
and the general expression of the decay rate of a massive particle (cluster) in relativistic quantum
mechanics.

If we let P be the initial four-momentum,V the volume and letpn ≡ (εn,pn) be the four
momentum of the particlen; the phase space volumeΩ{Nj} of the channel{Nj} turns out to be [13]
(in Boltzmann statistics):

Ω{Nj} =
VN

(2π)3N

{

∏
j

1
Nj !

[

∫

d3p

]Nj
}

δ4
(

P−∑
n

pn

)

(2.1)

whereN = ∑ j Nj . This quantity is proportional to the probability of observing the channel{Nj} as
a consequence of the decay of a cluster of volumeV and momentumP.

On the other hand, the expression of the decay rate into the channel{Nj} of a massive particle
in relativistic quantum mechanics reads:

Γ{Nj} =
1

(2π)3N

{

∏
j

1
Nj !

[

∫

d3p
2ε j

]Nj
}

δ4
(

P−∑
n

pn

)

|M f i|2 (2.2)

whereM f i is the Lorentz-invariant dynamical matrix element governing the decay. Assuming, for
sake of simplicity, spinless particles,|M f i|2 may in principle depend on all relativistic invariants
formed out of the four-momenta of theN particles, as well as on all possible isoscalars formed out
of the isovector operators. Nevertheless, if we assumeM f i to be weakly dependent on kinematical
variables, expression (2.2) becomes quite similar to (2.1)were not for the invariant measure (the
so-calledinvariant momentum spaced3p/2ε instead of the proper phase spaceVd3p) and for the
absence of any parameter connected to spacial extension.
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This phenomenon is calledphase space dominancebecause the decay rate is governed by the
available phase space volume rather than dynamical matrix element. For instance, if we assume that
|M f i |2 = α N, the whole dynamics reduces to the same multiplicative constantα for each particle in
the channel, it can be then shown that the expression of the mean number of particles of the species
j is well approximated, at largeN, by:

〈n〉 j ≃
α

(2π)3

∫

d3p
2ε j

e−βε j (2.3)

which is very similar to a thermal distribution which one obtains from (2.1) at large multiplicities:

〈n〉 j ≃
V

(2π)3

∫

d3p e−βε j (2.4)

whereβ = 1/T is the inverse temperature. Conversely the constantβ in Eq. (2.3) is not a tem-
perature, rather a parameter which is related to the hadronization scale. Yet, the ratios of average
multiplicities of particles of different species mimic a thermodynamic behavior. The authors of
ref. [5] work out a more specific example based on QED and they conclude, quite reasonably, that
a fairly good fit to particle multiplicities may be obtained if integral expressions like (2.3) are used
instead of an actual Boltzmann integral.

It should be emphasized that phase space dominance is a highly non-trivial assumption. In
fact, the recovery of a thermal-like expression like (2.3) owes to a very special form of the matrix
element|M f i|2, where both the dependence on kinematical and isospin invariants was disregarded.
If a different form, still perfectly legitimate and possible, is assumed, the thermal-like behavior is
spoiled. Therefore, an observed phase space dominance in multihadron production is not a trivial
fact and tells us something important about the characteristics of non perturbative QCD dynamics,
besides providing us with an empirically good model.

We conclude that a deeper test of the model is needed in order to identify a genuine statistical-
thermal behavior and distinguish between it and possible pseudo-statistical models like phase space
dominance. Indeed, the study of average inclusive multiplicities or inclusivepT spectra does not
allow to draw clearcut conclusions because these observables are not sensitive enough to different
integration measures (i.e.Vd3p versus d3p/2ε respectively in (2.4) and (2.3)) and much informa-
tion is integrated away. We will then study the production rates of exclusive channels, that is the
relative probability of observing a well defined set of particles (channel) in the final state of a col-
lision. Thereby, we would compare directly with the experimental data expressions like(2.1) and
(2.2) which are more sensitive to the integration measure in the momentum integrals and the shape
of dynamical matrix element.

3. Probability of exclusive channels

A nice feature of low-energy exclusive-channels data is that, to a very good approximation, all
collision energy is spent into particle production. This means that one can assume the formation of a
single cluster at rest in the centre-of-mass frame (see the pictorial sketch in fig. (1)), in clear contrast
with the physical picture of hadronization at high energy, where the production of multiple clusters
proceeding from perturbative parton showers occurs. The big advantage of having a single cluster is
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that the initial kinematical state is completely known, being the cluster’s mass and internal quantum
numbers fixed by

√
sand the initial state conditions. On the other hand, the relatively small volume

Figure 1: Pictorial representation of a low energy (. 5 GeV) collision in the statistical model. One single
cluster is formed at rest with a massM =

√
sand with quantum numbers given by the initial state conditions.

(O(10) fm3) of the cluster, entails some difficulties in the definition of the probability of a channel,
or a general final state, with respect to the high-energy case. In fact, the basic postulate of the
SHM tells us thatlocalized statescompatible with cluster’s quantum numbers are equiprobable,
but these states do not coincide with observable free-particle asymptotic states. Such difference
is, for practical purposes, not an issue when the volume is sufficiently large, but it is relevant in
principle and may result in quantitative differences when the volume is comparable with the pion
Compton wavelength.

The SHM assumes that the cluster can be described as a normal statistical mixture of multi-
hadronic states|hV〉 compatible with its initial quantum numbers. Accordingly,we can write down
a microcanonical partition functionΩ [7]:

Ω = ∑
hV

〈hV |Pi |hV〉 (3.1)

Pi being the projector on the initial state of the cluster:

Pi = PPJλ ΠPII3PCPQ (3.2)

whereI andI3 are the isospin and its third component,C is the C-parity1, Q = (Q1, . . . ,QM) a set
of M abelian charges (in fact they are 2, baryonic number and strangeness) and wherePPJλ Π is
the projector over the maximal set of space-time observables, i.e. an irreducible state of the or-
thochronous Poincaré group: four-momentumP; spinJ and its third componentλ ; parity Π. The

1Of course, the projectionPC makes sense only ifI3 = 0 andQ = 0; in this case,PC commutes with all other
projectors

5



P
o
S
(
C
P
O
D
0
7
)
0
5
0

A test of statistical hadronization with exclusive rates inpp annihilation at rest Lorenzo Ferroni

internal symmetry group we are considering in this work is the isospin group SU(2) and U(1)’s
related to baryonic number and strangeness, thus, we assumeSU(3) flavour symmetry to be com-
pletely broken, i.e. SU(3)→ SU(2)⊗U(1).

It must be emphasized, that the states|hV〉 in (3.1) are not the observable asymptotic free states
| f 〉 of the Fock space. Instead, a suitable probability definition should involve these states. To do
this, one can first recast the microcanonical partition function (3.1) by using the completeness of
states| f 〉:

Ω = ∑
hV

〈hV |∑
f

| f 〉〈 f |Pi |hV〉

= ∑
f

〈 f |Pi ∑
hV

|hV〉〈hV | f 〉 ≡∑
f

〈 f |PiPV | f 〉 (3.3)

wherePV ≡ ∑hV
|hV〉〈hV | is the projector onto localized states. We note that the lastexpression of

Ω in Eq. (3.3) is a proper trace, whereas it was not in Eq. (3.1) as the states|hV〉 do not form a
complete set of the full Hilbert space.

In [16] (and also in a forthcoming publication [17]), it has been shown that, for a cluster at rest
and spherical in shape, a good definition of the probability (for the ideal gas) is:

ρ f =
〈 f |PiPV | f 〉

Ω
. (3.4)

According to Eq. (3.3), the microcanonical partition function can be then expressed as a sum over
all possible free multiparticle states| f 〉 of thestate weightωf :

Ω ≡∑
f

ωf where ωf ≡ 〈 f |PiPV | f 〉 (3.5)

is proportional to the probability of an asymptotic state| f 〉:

ρ f =
ωf

Ω
. (3.6)

In turn, the microcanonical partition function can be calculated as an expansion over all possible
channels:

Ω = ∑
{Nj}

Ω{Nj} (3.7)

The quantityΩ{Nj} is defined as themicrocanonical channel weightand it is obtained integrating
the state weightωf on kinematical variables. In formula, writing a multiparticle state as| f 〉 ≡
|{Nj},{p}〉 where{p} stands for set of kinematical variables (momenta and helicities) of particles
in the channel, we have:

Ω{Nj} = ∑
{p}

ωf = ∑
{p}

〈{Nj},{p}|PiPV |{Nj},{p}〉 . (3.8)

The channel weightΩ{Nj} is proportional to the decay probability in the channel{Nj} of a
cluster with volumeV and internal quantum numbers defined byPi. Ω{Nj} has been calculated in
ref. [12] for the ideal relativistic gas, enforcing the maximal set of space-time symmetries, i.e. for

6
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the projectorPi ≡PPJλ Π , that is the projector on an irreducible state of the orthochronous Poincaré
group IO(1,3)↑.

The projectorPV , has been studied in detail in ref. [11] where it has been defined in a quantum
field theory framework in order to properly take into accountrelativistic effects due to the finite
volume. In fact, for systems whose linear extension is comparable to the Compton wavelength of
involved particles, a fixed number particle description of confined states is not appropriate. One
must rather identify localized states as states|φ〉 of the quantum fields associated to particles within
the system region. For instance, in case of only one scalar particle:

PV =
∫

V
Dφ|φ〉〈φ| (3.9)

where|φ〉 ≡ ⊗x|φ(x)〉 andDφ is the functional measure; the functional integration mustbe per-
formed getting rid of the degrees of freedom outside the system regionV [11]. A generalization of
Eq. (3.9) to particles endowed with spin has been provided inref. [12].

As discussed in [12, 16], the state weight of a cluster which is spherically symmetric in shape,
does not depend on its polarizationλ . Since we will assume the cluster to be a sharp sphere, we
will use a state weight which has been summed overλ and divided by(2J+ 1). Finally, if we let
N be the total number of particles in the channel, i.e.∑k

j=1 Nj = N; Sj andη j respectively the spin
and the intrinsic parity of thej-th particle species,pn the four-momentum of the n-th particle, the
final expression for a cluster at rest is [12]:

Ω{Nj} = ∑
ρρρ

[

k

∏
j=1

χ(ρ j)
bj

Nj !

]

1
4π

∫ 4π

0
dψ

[

k

∏
j=1

Nj

∏
nj=1

∫

d3pnj

]

(3.10)

× δ4

(

P−
N

∑
n=1

pn

)

sin
ψ
2

sin

[(

J+
1
2

)

ψ
] k

∏
j=1





Nj

∏
nj=1

[

sin[(Sj +
1
2)n jψ]

sin(nj ψ
2 )

]hnj (ρ j )




×
(

k

∏
j=1

Nj

∏
nj=1

F(s)
V (pρ j (nj ) −R

−1
3 (ψ)pnj )+ΠΠ f

k

∏
j=1

Nj

∏
nj=1

F(s)
V (pρ j (nj ) +R

−1
3 (ψ)pnj )

)

where

Π f =
k

∏
j=1

η Nj
j (3.11)

andρρρ = (ρ1, . . . ,ρk) is a set of permutations,ρ j belonging to the permutation groupSNj ; χ(ρ j) is
the parity of thej-th permutation andb j = 0,1 if the speciesj is a boson or a fermion respectively;
the symbolhnj (ρ j) in (3.10) stands for the number of cyclic permutation withn j elements inρ j so

that∑∞
nj=1n jhnj (ρ j) = Nj

2. In Eq. (3.10),F (s)
V ’s are Fourier integrals over a spherically symmetric

volume, and for a sharp sphere they read:

F(◦)
V (pρ(n)−R

−1
3 (ψ)pn) =

1
(2π)3

∫

V
d3x eix·(pρ(n)−R

−1
3 (ψ)pn) (3.12)

=
R2

2π2

j1(|pρ(n)−R
−1
3 (ψ)pn|R)

|pρ(n)−R
−1
3 (ψ)pn|

2The set of integersh1, . . . ,hN ≡ {hn}, is usually defined as apartition of the integerN in the multiplicity represen-
tation.
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R being the radius,j1 the spherical Bessel function of the first kind andR3(ψ) a rotation of an
angleψ along thezaxis.

We will give here the generalization of (3.10) where also internal quantum numbers are fully
conserved. The calculation has been made in [16] and will be shown in detail in a forthcoming
paper [17].

In order to write the general expression of the channel microcanonical weight one needs to first
introduce the concept oftypeandspeciesof particles: particles species differ by whatever quantum
number whereas particles belong to the same type if they are light-flavoured mesons belonging to
the same isospin multiplet or if they are particle-antiparticle pair. Thus, ifN is the total number of
particles in a channel{Nj} = (N1, . . . ,NK), we have:

N =
k

∑
j=1

Nj =
K

∑
j=1

L j

Nj being the multiplicity of speciesj andL j the multiplicity of the typej; k be the total number of
species andK be total number of types.

If χC denotes the product of all intrinsic C-parities3 of particles in the channel, the micro-
canonical channel weight reads:

Ω{Nj} = ∑
{ρ j}

[

K

∏
j=1

χ(ρ j)
bj

]

1
8π

∫ 4π

0
dψ

[

k

∏
j=1

1
Nj !

Nj

∏
nj=1

∫

d3pnj

]

(3.13)

×δ4

(

P−
N

∑
n=1

pn

)

sin
ψ
2

sin

[(

J+
1
2

)

ψ
] K

∏
j=1





L j

∏
l j=1

[

sin[(Sj +
1
2)l jψ]

sin( l j ψ
2 )

]hl j (ρ j )




×
(

K

∏
j=1

L j

∏
l j=1

F(◦)
V (pρ j (l j )−R

−1
3 (ψ)pl j )+ΠΠ f

K

∏
j=1

L j

∏
l j=1

F(◦)
V (pρ j (l j ) +R

−1
3 (ψ)pl j )

)

×
(

I
{Nj}

ρρρ (I , I3)
K

∏
j=1

L j

∏
l j=1

δαρ j (l j )
α l j

+CχCI
{Nj}
ρρρ (I , I3)

K

∏
j=1

L j

∏
l j=1

δ−αρ j (l j )
α l j

)

where the factors:

I
{Nj}

ρρρ (I , I3) ≡
[

K

∏
j=1

〈I j ,{I
l j

3 }|
]

|I , I3〉〈I , I3|
[

K

∏
j=1

|{I j , I
ρ j (l j )
3 }〉

]

(3.14)

I
{Nj}
ρρρ (I , I3) ≡

[

K

∏
j=1

〈I j ,{I
l j

3 }|
]

|I , I3〉〈I , I3|
[

K

∏
j=1

|I j ,{−I
ρ j (l j )
3 }〉

]

are isospin coefficients which can be calculated numerically as a sum of recoupling coefficients,
and the Kroneker’sδ factors in (3.13)δ

ql j
−qρ j (l j )

and δ
ql j
qρ j (l j )

come from vanishing scalar products
between single particle states with different baryonic number and strangeness. Indeed, integrals
over particle momenta in Eq. (3.10) cannot be solved analytically. The only attempt to evaluate
a similar expression for a gas of spinless particles in the large volume limit was made in [18] by
using a Monte-Carlo method. We used a similar numerical method for the calculation of Eq. (3.10)
which is described in [16].

3This factor includes additional charge conjugation phase factors of light-flavoured mesons.
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4. Interacting hadron gas

In this work we will account for interactions treating on an equal footing (as free particles)
resonances and stable hadrons with respect to strong interactions, by using the definition (3.4) for
the probability. This approach, known as thehadron resonance gasmodel, is quite popular and well
known because matches the physical intuition (in the zero width limit, it is a natural expectation
that resonances behave like stable particles), whereas it is not so for its theoretical basis which
has been given by Dashen, Ma and Bernstein in the late 60’s in ref. [19] and it is known as the
Dashen Ma Bernstein theorem (DMB). Particularly, the authors wrote the microcanonical partition
function in a very convenient way as the sum of the free microcanonical partition function plus
an interaction term involving the scattering matrix. A moredetailed discussion of this theorem is
postponed to a forthcoming publication [20], nevertheless, it is worth to stress in advance some
important aspects. First of all, it must be mentioned that the DMB theorem (thus the hadron
resonance gas model) is valid in the infinite-volume limit. In fact, a derivation of the theorem
for a finite volume seems still to be unpractical, therefore,one should keep in mind that, in what
follows, finite-volume corrections of the interactions contribution are neglected. Secondly, in the
simple hadron resonance gas model (as it will be shown in [20]) part of the interaction term is
not included as it depend on unknown coefficients and also interference terms between nearby
overlapping resonances are neglected.

Unfortunately, a precise quantitative estimation of theseapproximations on the production rate
of exclusive channels is still an open issue. However, thereare arguments (whose discussion will
be in [20]) to argue that our final results shouldn’t be dramatically affected by them. This is also
supported by the success of the hadron resonance gas model inaccounting for interactions among
hadrons in high energy collisions, where many quantitativeanalyses have been made [1, 2].

In order to get the microcanonical weight of afinal channelwith only strongly stable hadrons
one should then make a weighted sum of free microcanonical weights (3.13) of channels including
both hadrons and resonances (handled as free particles withdistributed mass) eventually decaying
into the final hadrons of the channel.

Therefore, given a final channel{Nj}, one should find all possiblesparent channelswhose
hadrons and resonances decay into it. The search for all parent channels is a multi-step recursive
problem in that many generations can be involved. If we denote by{Nj}(1) a channel which can
directly decay into the channel{Nj}, by {Nj}(2) a channel which can directly decay in{Nj}(1) and
so on, one has to find all possible decay trees like those shownin Fig. (2). In view of the large
number of resonances, this task is not a trivial one; a suitable algorithm has been devised which is
described in [16]. The probabilityρ{Nj} of observing a final channel{Nj} can then be expressed as
a finite sum:

ρ{Nj} ∝ ω{Nj} ≡ Ω{Nj} +BR(1)Ω{Nj}(1)
+BR(2)BR(1)Ω{Nj}(2)

+ . . .

+ BR(1)′Ω{Nj}(1)′ +BR(2)′BR(1)′Ω{Nj}(2)′ + . . . (4.1)

where BR(i) is the product of branching ratios of particles in the channel {Nj}(i) decaying into
particles in the channel{Nj}(i−1) and whereω{Nj} is the channel weight where contributions of
parent channels are included.

9
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Figure 2: Examples of possible decay trees for a four particles channel. Circles encompass decay products
of the particle at higher level.

4.1 Strangeness suppression factor

We allow deviations from statistical equilibrium of channels involving particles with strange
valence quarks introducing a phenomenological parameter,thestrangeness suppression factorγS.
This parameter has been widely used in inclusive hadron multiplicity analyses and it is likely to be
needed also in the analysis of exclusive rates at low energy.In order to have agreement with the
γS definition in the canonical and grand-canonical limit, one should multiply the microcanonical
weight of a channel byγsj

S sj being the number of valence strange quarks of each particle:

Ω{Nj} →
[

k

∏
j=1

(

γsj

S

)Nj

]

Ω{Nj} (4.2)

TheγS factor also applies to neutral mesons with valence strange quarks likeη , φ etc. Since the
wavefunction of such particles is in general a superposition like Cuuu+Cddd+Csss with |Cu|2 +

|Cd|2 + |Cs|2 = 1, only the component ss of the wavefunction is suppressed, i.e. we multiply by:

|Cs|2γ2
S +(1−|Cs|2) .

We have used mixing angles quoted by the Particle Data Book [21].

5. Antiproton-proton annihilation at rest

In the past, there have been several attempts to reproduce hadron multiplicities and some
multi-pion(kaon) channel production ratios in low energy e+e− collisions [22] and pp annihilation
at rest [10] by using statistical-thermodynamical or statistical-inspired models. Yet, to simplify
numerical calculations, none of them properly took into account the full set of conservation laws,
which is a clear drawback because in few body decays all of them are indispensable. Nowadays,
thanks to the increased computing power and to the purposelydevised numerical techniques, we are
in a position to make a thorough test of the statisticalansatzin a more rigorous formulation, taking
into account properly conserved quantities and the finite volume of the hadron-emitting source.

Antiproton-proton annihilation at rest is the system wheremuch data on exclusive decays
channels in 2, 3 and 4 bodies have been collected. However, the annihilation proceeds from a
mostly unknown mixture of angular momentum and isospin states and the quantitative analysis
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turns out to be quite complicated. Most of the data analyzed were taken by stopping low-energy
antiprotons beams in liquid hydrogen. In this situation, a protonium atomic state is formed, and
the annihilation takes place with the orbital angular momentum l = 0 or l = 1, whereas states with
higher values of the angular momentum are strongly suppressed [23]. Forl = 0 the initial states
are the spin-singlet1S0 and the spin triplet3S1 with quantum numbers:

JPC(1S0) = 0−+ and JPC(3S1) = 1−− (5.1)

whereas forl = 1 we have:

JPC(1P1) = 1+−, JPC(3P0) = 0++, JPC(3P1) = 1++, JPC(3P2) = 2++. (5.2)

Altogether, there are two initial wavefunctions for annihilations occurring inS−wave and four wave
functions for annihilations occurring inP−wave. The precise fraction ofP−wave annihilations in
liquid (that we will denote withfP) has been the subject of a longstanding controversy as it was
measured by several groups with inconsistent results [23].>From the latest data coming from the
Crystal Barrel experiment, the value one obtains isfP = (13±4)% [23].

In order to write the branching ratio of a certain final channel ch simplifying the notations as
much as possible, let us label with 1 and 2 the states in (5.1) so thatJPC(1) = 0−+ with J1 = 0
and JPC(2) = 1−− with J2 = 1. Accordingly, the states in (5.2) will be labeled with 3, 4,5, 6
respectively. Altogether, if we let BRi(ch) be the branching ratio in the final channelch of a given
initial statei, the total branching ratio tuns out to be:

BR(ch) = (1− fP)
i=2

∑
i=1

wS
i eiBRi(ch)+ fP

i=6

∑
i=3

wP
i eiBRi(ch) (5.3)

where the first and the second sum account respectively forS−wave andP−wave annihilations.
The symbolswS

i andwP
i in (5.3) stand for the purely statistical weights of the various initial wave-

funtions, namely:

wS
i =

2Ji +1
4

, wP
i =

2Ji +1
12

, (5.4)

whereas the factorsei are calledenhancement factorsand describe the departure from a pure sta-
tistical population (ei = 1). This phenomenon is due to the strong Stark mixing which constantly
repopulates the fine and hyperfine levels in liquid hydrogen [23]. These factors have been calcu-
lated in ref. [24] with an x-ray cascade calculation by usingthree different optical potential models
of the pp interaction: DR1, DR2 [25] and KW [26]. In tab. 1 the values obtained therein are
reported.

The eq. (5.3) takes into account all possible annihilation spin states. Yet, also total isospin can
assume two values:I = 0 andI = 1. Therefore, we will assume an unknown statistical mixtureof
I = 0 andI = 1 initial state disregarding interference terms and introducing a free parameterfI=0,
i.e. the fraction ofI = 0 state:

fI=0|0,0〉〈0,0|+(1− fI=0)|1,0〉〈1,0|

where isospin states have been denoted has|I , I3〉.

11
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DR1 DR2 KW

e1 1.032 1.028 1.060

e2 0.989 0.991 0.980

e3 0.856 0.933 0.809

e4 2.556 2.076 2.176

e5 0.685 0.541 0.703

e6 0.964 1.041 1.058

Table 1: Enhancement factors obtained with an x-ray cascade calculation by using three different optical
potential models: DR1, DR2 [25] and KW [26]

f 1
I=0 f 2

I=0 f 3
I=0 f 4

I=0 f 5
I=0 f 6

I=0

0.56 0.56 0.62 0.95 0.13 0.60

Table 2: Isospin probabilities for pp atomic states.

Therefore, the full expression of the branching ratio turnsout to be:

BR(ch) = (1− fP)
i=2

∑
i=1

wS
i ei
[

f i
I=0BRI=0

i (ch)+ (1− f i
I=0)BRI=1

i (ch)
]

+ fP
i=6

∑
i=3

wP
i ei
[

f i
I=0BRI=0

i (ch)+ (1− f i
I=0)BRI=1

i (ch)
]

. (5.5)

where BRI=0
i (ch) and BRI=1

i (ch) are the branching ratio in the final channelchwhen the spin state
is i and the isospin state is respectivelyI = 0 andI = 1. The factorf i

I=0 is the probability that the
statei has isospin 0 and, in principle, it can vary from 0 to 1. For a pure pp initial state we have
f i
I=0 = 1/2 for anyi. Nevertheless, at short distances (r . 1 fm), the neutron-antineutron admixture

in the protonium wave function can dramatically affect the sharing of theI = 0 andI = 1 states
within a givenJPC state. These probabilities have been calculated in [27] by introducing meson-
exchange potentials to describe the pp interaction. Their values reported in tab. 2 refers to DR2
optical model with 2π+ω exchange potential.

In order to calculate the branching ratio in eq. (5.5) with SHM, one need the branching ratios
in each possibleJPC and isospin state. In other words, for a given final channel{Nj}, we must
evaluate:

BRI
i ({Nj}) ≡ ρ I ,i

{Nj} =
ωI ,i
{Nj}

ΩI ,i
I = 0,1; i = 1, . . . ,6 (5.6)

whereρ I ,i
{Nj} andωI ,i

{Nj} are the probability and the channel weight defined in (4.1), and ΩI ,i is the
microcanonical partition function, which is obtained as a sum over all possible channels according
to eq. (3.7). In eq. (5.6),I stands for the isospin (I = 0 or I = 1) and the indexi labels the six
possibleJPC states in (5.1) and (5.2).

As a first analysis, we made a preliminary comparison with a set of two-mesons exclusive
channels. In this case the channel weightωI ,i

{Nj} coincide withΩI ,i
{Nj} (see eq.(4.1)). The result we
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obtained is shown in fig. 3. This plot has been obtained performing a coarse scan of the parameters
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Figure 3: Comparison between measured branching ratios (black dots)of various two-mesons channels
and the prediction of the SHM (white squares). We used experimental data quoted in ref. [23]. Branching
ratios (where not differently specified) refer to measures made in liquid hydrogen without any initial-state
selection. Conversely, when the symbols1S0,3S1 and(P) appear, only annihilations from1S0, 3S1 orP−wave
initial state have been selected.

γs and theenergy densityρ defined as:

ρ ≡ M
V

=
3M

4πR3 (5.7)

whereM ≡√
s is the cluster’s mass. We allowed the parametersei to vary between the minimum

and the maximum value predicted by the different optical potentials (see tab. 1) enforcing the
normalizing conditions:

i=2

∑
i=1

eiw
S
i = 1,

i=6

∑
i=3

eiw
P
i = 1 . (5.8)

The parametersf i
I=0 have been also allowed to vary within reasonable limits given by the minimum

and maximum values in tab. 3; whereas forfP we have chosen the range 0.5%≤ fP ≤ 17%: The
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Figure 4: Comparison between measured branching ratios (black dots)of various two-mesons channels
and the prediction of the Phase space dominance model (whitesquares). We used experimental data quoted
in ref. [23]. Branching ratios (where not differently specified) refer to measures made in liquid hydrogen
without any initial-state selection. Conversely, when thesymbols1S0,3S1 and(P) appear, only annihilations
from 1S0, 3S1 or P−wave initial state have been selected.

f 1
I=0 f 2

I=0 f 3
I=0 f 4

I=0 f 5
I=0 f 6

I=0

min 0.5 0.5 0.6 0.9 0.05 0.5

max 0.6 0.6 0.7 1.0 0.2 0.7

Table 3: Maximum and minimum allowed values of the isospin probabilities.

best values of the whole set parameters as been chosen as the set that minimize the functionχ2

defined as:

χ2 = ∑
ch

(BRexp.(ch)−BRSHM(ch))2

σexp.(ch)2 +σSHM(ch)2 (5.9)

where the sum runs over all measured two-mesons channels. Ineq. (5.9),
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σexp.(ch) andσSHM(ch) are the uncertainties on measured branching ratios and on the model
calculation respectively. The latter being nothing but thestatistical error owing to the finite num-
ber of sampling in Monte-Carlo integration. The same analysis has been repeated by assuming
the phase space dominance model (fig. 4). As one can see, in both cases, the order of magnitude
of exclusive ratios is fairly reproduced although some channel shows significant discrepancies.
This might owe to a too simple description of interactions among stable hadrons (with the hadron-
resonance gas model), or to neglected effects like isospin interference. Indeed, also the very fact
that proton and antiproton are particles endowed by inner structure could play an important role.
This argument is also supported by ongoing analyses of SHM one+e− collisions at

√
s. 2.5 GeV

(that will be shown in a forthcoming paper [17]) that seems toshow a good agreement with exper-
imental data. However, if from one side this result seems to be encouraging as both models catch
a large part of the phenomenology, on the other side this testcannot help us to distinguish between
phase space dominance and SHM. In fact, though a closer look reveals that the SHM calculation is
slightly closer to the data, both models give too similar results and no clearcut conclusions can be
drawn.

6. Conclusions

We have performed a preliminary test of the SHM on productionrates of exclusive channels
in pp annihilation at rest. The calculation of such quantities required a formulation of the SHM
in its fundamental microcanonical framework, enforcing the maximal set of conservation laws
relevant to strong interaction and space-time symmetries according to the formalism developed in
refs. [11, 12]. The complication of the annihilation process, which proceeds from many initial
pp atomic bound states, required the introduction of severalfree parameters, which made the test
not as clean as it would have been desirable. Altogether, theSHM fairly reproduces the general
trend of the experimental data although large discrepancies appear for some channels. The analysis
has been repeated by assuming the phase space dominance model, that is the main option (besides
SHM) to account for the apparent thermal-like features of the hadronization process. The result we
obtained is qualitatively the same as SHM and, unfortunately, this specific test proved to be unfit to
discriminate between these two different scenarios.
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