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Electroweak corrections to hadronic gauge boson production at large pT A. Kulesza

Gauge boson production belongs to the most important processes at hadron colliders. In par-
ticular, at the Large Hadron Collider (LHC) theW andZ boson, as well as direct photon production
will be a benchmark process of great significance for e.g. the measurement of the parton distribu-
tion functions, measurement of the strong coupling constantαS or calibrating the response of the
detectors. For the first time, it will be possible to produce gauge bosons in partonic collisions with
the center-of-mass energy of a few TeV, and consequently, explore production of gauge bosons
with transverse momentum (pT) in the TeV range. Given the relatively high cross sections for
the leading-order (LO)pT-distributions of gauge bosons, indicating small statistical errors of the
future measurements, it is essential to improve the theoretical knowledge of these quantities by
calculating higher-order radiative corrections. In the TeV regime, the logarithmic terms of the form
αk log2k−i(ŝ/M2

W) (i ≥ 0), known as the electroweak (EW) Sudakov logarithms, provide dominant
contributions to the cross section and may well be responsible for corrections of several tens of
percents. A survey of the literature on EW logarithms can be found in [1]. In particular, EW
corrections to the hadronicW-boson production were studied in [2, 3, 4], whereas theZ-boson
and prompt photon production at largepT were investigated in [5, 6, 7]. Numerical results for the
one-loop corrections to the latter two processes can be also found in Ref.[8]. In the following we
briefly report on the calculations of the gauge boson (V) production in association with a jet (j) in
the processp p

(−) →V j, presented in Refs. [2, 3, 6, 7].

1. Calculation of the electroweak corrections

The nature of theO(α) corrections to the processp p
(−) → V j, differs significantly between

neutral (V = Z,γ) and charged (V = W+,W−) gauge boson production. For the latter, the elec-
tromagnetic contributions cannot be separated from the weak ones in a gauge-invariant manner,
hence making it necessary to include them in the calculations. In contrast to the corrections due to
emission of massive gauge bosons, the contributions due to emission of realand virtual photons are
separately singular and both have to be calculated. Effects due to real massive gauge boson emis-
sion are not included in our calculations ofW±, Z or γ cross sections.1 For W-boson production
we study thepT-distributions at the next-to-leading (NLO) order inα which at the partonic level
are given by

dσ̂ab→W±k(γ)

dpT
=

∫

dΦ2∑|M ab→W±k|2FO,2(ΦW±
2 )+

∫

dΦ3∑|M ab→W±kγ |2FO,3(ΦW±
3 ). (1.1)

In the calculations ofO(α) corrections topT -distributions for neutral gauge bosonV0 = Z, γ only
the weak contribution is considered and

dσ̂ab→V0k(γ)

dpT
=

∫

dΦ2∑|M ab→V0k|2FO,2(ΦV0

2 ) . (1.2)

ΦV
N (N = 2,3) above denotes the phase-space measure andFO,N is the observable function

FO,N(ΦV
N) = δ (pT − pT,V)θ(pT, j − pmin

T, j ) . (1.3)

1Such corrections topT-distributions forZ j andγ j final states have been studied in [9].
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Our observable of interest is then thepT-distribution of a gauge boson produced in association with
a jet carrying momentumpT, j ≥ pmin

T, j . Note that forW-boson production, this is a more exclusive
observable than that studied in [4]. In particular, events with bothW andγ at highpT in the final
state do not contribute to the cross section. Our calculations are LO inαS and the QCD corrections
are not included.

The virtual corrections are calculated by reducing the one-loop diagramsto a minimal set of
coupling structures, standard matrix elements and scalar integrals. The details of the calculation
together with the discussion of the renormalization procedure and complete analytical results can
be found in Refs. [3], [6], [7] for theW-, Z-boson andγ production processes, respectively. For
W-boson production, soft and collinear singularities due to virtual photonsare regularized by either
introducing small photon and fermion masses or using dimensional regularization. These singular-
ities cancel against IR-singularities present in the real corrections. Two independent calculations
combining real and virtual corrections are performed. They use the dipole subtraction formalism in
the formulation which employs either dimensional regularization [11] or small photon and fermion
masses [10] in order to regularize the singularities. The initial-state collinear singularities, remain-
ing in the expressions forW cross section after the subtraction procedure, are absorbed into the defi-
nition of the parton distribution functions (PDFs) using theMS scheme with the scaleµQED = MW.
The contribution with photons in the initial state is not included in this analysis of theW-boson
production; they have been studied in [4]. Also in the case ofW-boson production, the emission
of photons from the final-state (anti-)quarks in processes of the typeqg→ W±q′γ gives rise to
collinear singularities. In order to avoid them we recombine the quark and photon momenta if the
azimuthal-angle and pseudorapidity separation variableR=

√

(ηq−ηγ)2 +(φq−φγ)2 is smaller
than the separation parameterRsep, i.e. R< Rsep. In this case we definepT, j ≡

√

(~pT,q +~pT,γ)2,
otherwisepT, j ≡ pT,q or pT, j ≡ pT,g if the final-state particle (k) is a gluon. As demonstrated
in [3], different treatment of the quark and gluon final states leads to numerically irrelevant effects,
therefore providing a viable approach to calculate predictions for our observable.

Apart from calculating the fullO(α) correction for the gauge boson production process, in [6,
7, 3] we also provide compact expressions for high-energy approximations of these results up to
the next-to-next-to-leading logarithmic (NNLL) accuracy. In the high-energy regime the Sudakov
logarithms are dominating terms in the one-loop corrections and the NNLL expressions deliver
an excellent approximation of the full result. Moreover, we also calculate the next-to-leading-
logarithmic (NLL) approximation of the two-loop cross section. To illustrate the appearance of
the Sudakov logarithms in the expressions for thep p

(−) → V j process, here we present this NLL
asymptotic behaviour of the EW corrections for the specific caseV = W±. For a discussion of
the calculation we refer to [3]. The same class of corrections has been computed forZ-boson
production in [5] andγ production in [7]. The presented results are for the IR-finite part of the
EW corrections, obtained after subtraction of IR singularities. As discussed in [3], at one loop this
subtraction is performed in such a way that, to NLL accuracy, the IR-finite part corresponds to the
complete EW correction regularized with a fictitious photon massMγ = MW. The same prescription
is adopted at the two-loop level.

The unpolarized squared matrix element for ¯qq′ →W±g process2 , including NLL terms up to

2Results for other partonic subprocesses contributing top p
(−) →W± j are obtained via crossing and CP-symmetries.
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the two-loop level, has the general form

∑|M q̄q′→W±g
2 |2 = 64π2ααS

t̂2 + û2

t̂ û

[

A(0) +
( α

2π

)

A(1) +
( α

2π

)2
A(2)

]

(1.4)

with t̂ = (pq̄ − pW)2, û = (pq′ − pW)2. The Born contribution readsA(0) = 1/(2s2
W), with the

shorthandsW = sinθW for the weak mixing angleθW. At one loop, the NLL part consists of
double- and single-logarithmic terms and reads

A(1) NLL
= − 1

2s2
W

[

Cew
qL

(

L2
ŝ −3Lŝ

)

+
CA

2s2
W

(

L2
t̂ +L2

û−L2
ŝ

)

]

. (1.5)

Here we used the shorthand Lk
r̂ = lnk(|r̂|/M2

W) for the logarithms andCew
qL

= Y2
qL

/(4c2
W)+CF/s2

W,
CF = 3/4, CA = 2. This expression is consistent with the process-independent results of[12] as
well as with the NLL part of the one-loop asymptotic expressions presentedin [3]. At two loops
we obtain

A(2) NLL
=

1
2s2

W

{

1
2

(

Cew
qL

+
CA

2s2
W

)

[

Cew
qL

(

L4
ŝ −6L3

ŝ

)

+
CA

2s2
W

(

L4
t̂ +L4

û−L4
ŝ

)

]

+
1
6

[

b1

c2
W

(

YqL

2

)2

+
b2

s2
W

(

CF +
CA

2

)

]

L3
ŝ

}

, (1.6)

whereb1 = −41/(6c2
W) with c2

W = 1−s2
W andb2 = 19/(6s2

W) denote the one-loopβ -function coef-
ficients associated with the U(1) and SU(2) couplings, respectively.

2. Numerical predictions

The hadronic cross sections are obtained using LO MRST2001 PDFs [14]3. We choosep2
T as

the QCD factorization scale and, similarly, as the scale at which the running strong coupling con-
stant is evaluated. We also adopt the valueαS(M2

Z) = 0.13 and use the one-loop running expression
for αS(µ2), in accordance with the LO PDF extraction method of the MRST collaboration. For the
exact values of the EW input parameters the reader is referred to [3, 6,7]. TheW-boson hadronic
cross section was obtained with the following choices of the value of the cut on pT of the jet:
pmin

T, j = 100GeV for LHC andpmin
T, j = 50GeV for Tevatron. The value of the separation parameter

below which the recombination procedure is applied was taken to beRsep= 0.4.
In Fig. 1 we present the relative NLO and NLL two-loop EW corrections to thepT-integrated

cross sections forW+-, Z-boson andγ production inpp collisions at
√

s= 14TeV (left column),
as well asW+(−), Z andγ production inpp̄ collisions at

√
s= 2TeV (right column). The correc-

tions are shown as a function ofpcut
T , the lower limit of the integration of the distribution inpT.

To underline the relevance of the corrections, we also plot an estimate of thestatistical error, ob-
tained assuming branching ratiosBR= 2/9 for W-boson production andBR= 0.306 forZ-boson

3In order to consistently includeO(α) corrections in the calculation of hadronicW-boson production, PDFs used in
the calculation should take into account QED evolution. The currently available NLO QED PDFs, i.e. MRST2004QED,
include QCD effects at NLO. Since our calculation is LO in QCD we choose to use the LO QCD set (MRST2001) and
take the QED factorization scaleµQED = MW for which the neglected QED effects are small, as discussed in [3].
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production as well as asumming integrated luminosity of 300fb−1 for the LHC and 11fb−1 for
the Tevatron. The NLO corrections are negative and grow in size withpT. They reach−46% for
W+ production and−39% forZ production atpcut

T = 2TeV at the LHC. Their size is much bigger
than the corresponding statistical error for all values ofpT at the LHC. In the case of direct photon
production at the LHC, the integrated EW corrections reach−18% atpcut

T = 2TeV, showing qual-
itatively the same behaviour wrt. the statistical error as observed for massive boson production.
The contributions from the two-loop corrections (referred to in Fig. 1 as “NNLO”) are positive.
At pcut

T = 2TeV at the LHC they amount to 10%, 9% and 4% for theW+-boson,Z-boson andγ
production, respectively. In terms of the estimated statistical error, these two-loop contributions
amount to 1−3 standard deviations forpT of O(1TeV). The NLO and NNLO EW corrections for
W− production at the LHC are quantitatively very similar to those forW+ production. The plots
in the right column in Fig. 1 show results of the similar analysis for the gauge boson production
at the Tevatron. The size of the NLO EW corrections is comparable with the expected statistical
error for a significant range ofpT values of interest, the impact of the two-loop corrections appears
negligible. These conclusions remain valid also for the smaller value of the integrated Tevatron
luminosity,L = 7fb−1.

Summarizing, at the LHC the NLO EW corrections to the processpp→ V j where a gauge
bosonV is produced with transverse momentum in the TeV range are large i.e. of the order of tens
of percents. Their size is driven by the Sudakov logarithmic terms, dominatingthe one-loop virtual
contributions. The two-loop NLL contributions are important for the correct interpretation of the
results for the high-pT gauge boson production at the LHC. At the Tevatron, the EW corrections
are of lesser relevance, though the NLO EW corrections should be included in the analysis when
considering precision measurements.
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the project and to S. Dittmaier, B. Jäger and P. Uwer for helpful discussions. A.K. would like to
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Figure 1: NLO and NNLO EW corrections topT-integrated cross section for gauge boson production at
hadron colliders versus estimated statistical error. Fromtop to bottom, left column: predictions forpp→
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Tevatron.
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