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Mixed virtual and real IR-singularities Tord Riemann

1. Introduction

We study the infrared (IR) singularities of some massive one-loopn-point Feynman integrals,

I =
eεγE

iπd/2

∫

ddk T(k)

(q2
1−m2

1)
ν1 . . .(q2

i −m2
i )

ν j . . .(q2
n−m2

n)
νn

, (1.1)

by representing them with standard Feynman parameter integrals with characteristic F and U
forms:

I =
eεγE(−1)Nν Γ

(

Nν − d
2

)

∏n
i=1 Γ(νi)

∫ 1

0

n

∏
j=1

dxj x
ν j−1
j δ (1−

n

∑
i=1

xi)
U(x)Nν−d

F(x)Nν−d/2
P(T),

(1.2)

with Nν = ∑n
i=1 νi . For one loop integrals, theU = ∑xi may be set to one. TheF-form is bilinear

in the xi and may be represented in turn by a multiple Mellin-Barnes (MB) integral, usingthe
representation:

1
(A(x)+B(x))ν =

1
2π i

i∞+R
∫

−i∞+R

dz A(x)z B(x)−ν−z Γ(−z)Γ(ν +z)
Γ(ν)

, (1.3)

where the integration contour separates the poles of theΓ-functions.
Afterwards, the Feynman parameters may be integrated out and one has to solve the resulting

MB integral. This is in general quite non-trivial. However, there is an interesting kind of problems
where a systematic approach might be developed, namely the evaluation of theIR divergent parts
of the Feynman integrals. They are at the begin of theε-expansion (ε = (4−d)/2) of the Feynman
integral and so of smaller dimensionality in the variablesz. In fact, usually one subtracts them from
the rest of the integral and treats them separately.

The MB representation allows to do this in a special way which might be of some practical
usefulness. We will discuss here only scalar one-loop functions,T(k) = 1, but tensors don’t show
additional problems. For basic definitions and formulae we refer to [1 – 3] and references cited
therein. We use here and in the following the Mathematica packages AMBRE [1] and MB [4]
for the derivations of the MB representations and for theε-expansions. In section 2 we apply the
MB-approach to the massive Bhabha vertex and box functions and extract theirε-poles. Section 3
contains the treatment of both the virtualε-poles and the endpoint singularities from an unresolved,
massless particles in a pentagon diagram of massive Bhabha scattering. The method may be gen-
eralized to more complex cases, including higher loop orders, but explicit evaluations become then
more and more complicated.

2. Simple ε-poles: Massive QED vertex and box

We will setm= 1, ands, t are the usual Mandelstam variables. The QED vertex function has
theF-form:

F(s) = [X[2]+X[3]]2 +[−s] X[2]X[3], (2.1)
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Mixed virtual and real IR-singularities Tord Riemann

leading, without a continuation inε, to a one-dimensional MB representation and a series over
residues [2]:

V(s) =
1

2sε
eεγE

2π i

−i∞−1/2
∫

−i∞−1/2

dz (−s)−zΓ2(−z)Γ(−z+ ε)Γ(1+z)
Γ(−2z)

= −
eεγE

2ε

∞

∑
n=0

sn

(2n
n

)

(2n+1)

Γ(n+1+ ε)

Γ(n+1)
. (2.2)

The complete series may be summed directly with Mathematica1, and the vertex becomes:

V(s) = −
eεγE

2ε
Γ(1+ ε) 2F1 [1,1+ ε;3/2;s/4] . (2.3)

Alternatively, one may derive theε-expansion by exploiting the well-known relation with harmonic
numbersSk(n) = ∑n

i=11/ik:

Γ(n+aε)

Γ(n)
= Γ(1+aε)exp

[

−
∞

∑
k=1

(−aε)k

k
Sk(n−1)

]

. (2.4)

The product exp(εγE)Γ(1+ ε) = 1+ 1
2ζ [2]ε2 +O(ε3) yields expressions with zeta numbersζ [n],

and, taking all terms together, one gets a collection of inverse binomial sums2; the first of them is
the IR divergent part:

V(s) =
V−1(s)

ε
+V0(s)+ · · · (2.5)

V−1(s) =
1
2

∞

∑
n=0

sn

(2n
n

)

(2n+1)
=

1
2

4arcsin(
√

s/2)
√

4−s
√

s
. (2.6)

This procedure applies similarly to the Bhabha box diagram [7]. We take fordefiniteness the
schannel scalar loop integral. TheF-form is (again withm= 1):

F(s, t) = [X[2]+X[4]]2 +[−s] X[1]X[3]+ [−t] X[2]X[4], (2.7)

and an MB representation is, after continuation to smallε, a sum of two terms:

B(s, t) =
(−s)−ε

2st
Γ[1+ ε]Γ[−ε]2

Γ[−2ε]

eεγE

2π i

+i∞−7/16
∫

−i∞−7/16

dz1(−t)−z1
Γ3[−z1]Γ[1+z1]

Γ[−2z1]
(2.8)

+
1
t2

1
Γ[−2ε]

eεγE

(2π i)2

+i∞−3/4
∫

−i∞−3/4

dz1

(s
t

)z1
Γ[−z1]Γ[−2(1+ ε +z1)]Γ[1+z1]

2

×

+i∞−7/16
∫

−i∞−7/16

dz2(−t)−ε−z2Γ[−z2]
Γ[−1− ε −z1−z2]

2

Γ[−2(1+ ε +z1 +z2)]
Γ[2+ ε +z1 +z2].

1The expression forV(s) was also derived in [5]; see additionally [6].
2For the first four terms of theε-expansion in terms of inverse binomial sums or of polylogarithmic functions, see

[2].
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Mixed virtual and real IR-singularities Tord Riemann

Due to the pre-factors,Γ[−ε]2/Γ[−2ε] =−2/ε +2ζ [2]ε +O(ε2) and 1/Γ[−2ε] =−2ε +4γEε2+

O(ε3), only the first integral contributes to the first two terms of theε-expansion,

B(s, t) =

[

1
ε − ln(−s)

]

V−1(t)
(−s)

+)(ε), (2.9)

whereV−1 is from (2.6), and the IR divergency is:

B−1(s, t) =
V−1(t)
(−s)

. (2.10)

We reproduce here the well-known fact that IR-divergences of vertices and boxes are algebraically
related, see e.g. [3].

3. Mixed virtual and real IR-singularities: massive Bhabha pentagon

Things become more interesting for pentagon diagrams (se also [3, 8, 9]).We again use Bhabha
scattering as an example. A compactF-form is:

F(s, t, t ′,V2,V4) = (x2 +x4 +x5)
2 +[−s]x1x3 +[−V4]x3x5 +[−t]x2x4 +[−t ′]x2x5 +[−V2]x1x4.

(3.1)

It exhibits a set of five invariants (out of a set of 10 scalar products atchoice) describing the
kinematics of a 2→ 3 process (here assuming a final state emission of an unresolved photon from
an s channel box diagram). Thes, t, t ′ are the usual Mandelstam variables for the fermions in
e+e− → e+e−γ, and:

Vi = 2pfi pγ , i = 1, . . .4. (3.2)

TheVi are proportional to the energy of the potentially unresolved massless particle.
From a subsequent phase space integration, we have to expect endpoint singularities arising

from terms proportional to1/V2 ∼ 1/Eγ and1/V4 ∼ 1/Eγ , so we have to control, for a complete
treatment of the IR-problem, not only theε-expansion, but also the first terms of the V2,V4 expan-
sions for small V2,V4.

In fact, theF-form (3.1), written here in its shortest form, depends on those two of the fourVi

which are related to the phase space of the given topology.
The MB-representation is a useful tool for that problem. For the IR limit, we may approximate

t ′ = t, and the scalar pentagon may be written as:

I5 =
−eεγE

(2π i)4

4

∏
i=1

+i∞+ui
∫

−i∞+ui

dzi(−s)z2(−t)z4(−V2)
z3(−V4)

−3−ε−z1−z2−z3−z4

12
∏
j=1

Γ j

Γ0Γ13Γ14
,

(3.3)

with ui = (−5/8,−7/8, ...) and with a normalizationΓ0 = Γ[−1−2ε], and the otherΓ-functions
are:

Γ1 = Γ[−z1], Γ2 = Γ[−z2], Γ3 = Γ[−z3], Γ4 = Γ[1+z3],

4
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Mixed virtual and real IR-singularities Tord Riemann

Γ5 = Γ[1+z2 +z3], Γ6 = Γ[−z4], Γ7 = Γ[1+z4], Γ8 = Γ[−1− ε −z1−z2],

Γ9 = Γ[−2− ε −z1−z2−z3−z4], Γ10 = Γ[−2− ε −z1−z3−z4],

Γ11 = Γ[−ε +z1−z2 +z4], Γ12 = Γ[3+ ε +z1 +z2 +z3 +z4], (3.4)

and, in the denominator:

Γ13 = Γ[−1− ε −z1−z2−z4], Γ14 = Γ[−ε −z1−z2 +z4]. (3.5)

Leaving out here the details of derivation (see [3] for that), we just mention that we have to consider,
after continuation inε, eleven MB-integrals, being at most 4-dimensional (fort ′ = t). The resulting
IR-sensible part is:

I IR
5 = I IR

5 (V2)+ I IR
5 (V4), (3.6)

I IR
5 (Vi) =

Is
−1(Vi)

ε
+ Is

0(Vi). (3.7)

Theε-pole is again proportional to that of the vertex:

Is
−1(Vi)

ε
=

1
2sViε

∞

∑
n=0

(t)n
(

2n
n

)

(2n+1)

=
V−1(t)
sViε

, (3.8)

and:

Is
0(Vi) =

1
2sVi

∞

∑
n=0

(t)n
(

2n
n

)

(2n+1)

[−2ln(−Vi)−3S1(n)+2S1(2n+1)] , (3.9)

where we have to understand ln(−Vi) = ln(Vi/s)+ ln[−(s+ iδ )/m2]. The series forIs
0(Vi) may be

summed up in terms of polylogarithmic functions with the aid of Table 1 of Appendix Dof [10],
see also [3].

Equations (3.6) – (3.9) are the main physical result of the study. One mayexpress the complete
IR-divergent part of an amplitude with 5-point functions in terms of those expressions, subtract
it from the complete, divergent amplitude and get a matrix element, which is integrable in four
dimensions.

In the rest of this short write-up we would like to demonstrate why we have here besides
the harmonic numbersS1(n) also those of the kindS1(2n+ 1). As mentioned, the scalar 5-point
function may be written as a sum of eleven MB-integrals afterε-continuation, beforeε-expansion.
Two types of them contribute to the IR-part (there are four such integrals[in an ad-hoc notations
J3,J4,J7,J9], but with a symmetryV2 ↔V4). The first one is:

J7 = −
(V2/s)2ε

sV4
Γ[−2ε]Γ[1+2ε]

eεγE

2π i

+i∞−5/8
∫

−i∞−5/8

dz(−t)−1−zΓ[ε −z]Γ[2ε −z]Γ[−z]Γ[1+z]
Γ[2ε −2z]

= −
(V2/s)2ε

sV4

eεγE ε
√

π
22ε

Γ[−2ε]Γ[2ε]Γ[1+2ε]

Γ[3/2+ ε]
2F1[1,1+2ε,3/2+ ε, t/4]

5
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Mixed virtual and real IR-singularities Tord Riemann

= −
(V2/s)2ε

sV4
eεγE Γ[−2ε]Γ[1+2ε]

∞

∑
n=1

tn−1 Γ[ε +n]Γ[2ε +n]

Γ[2ε +2n]
. (3.10)

TheJ7 is proportional to 1/V4. We have a second integral of the same type, being proportional to
1/V2:

J3 = J7(V4 ↔V2). (3.11)

The other type of integralsJ4,J9, with:

J4 = J9(V4 ↔V2), (3.12)

are two-fold MB-integrals:

J9 =
Γ[−2ε]

Γ[−1−2ε]

eεγE

(2π i)2

+i∞−5/8
∫

−i∞−5/8

dz1

+i∞−7/8
∫

−i∞−7/8

dz2(−s)z2(−t)ε−z1+z2(−V2)
−1−2ε−z2(−V4)

−2−z2

× Γ[−z1]ΓA[−1−z2]Γ[−2ε −z2]Γ[−1− ε −z1−z2]ΓC[−ε +z1−z2]Γ[−z2]

×
Γ[2+z2] ΓB[1+2ε +z2] Γ[1+ ε −z1 +z2]

Γ[−2z1] Γ[−1−2ε −2z2]
. (3.13)

The integral looks like being, in the limitV4 → 0, too singular. This limit is an endpoint of the
phase space integration. Let us close the contour to the left. Weshift now the integration contour
in z2 to the left, raising in this way the (real part of the) power of(−V4) to a value which makes
the photon phase space integral explicitely integrable atV4 → 0 in d = 3−2ε space dimensions. If
singularities of the integrand (fromΓ-functions) at some valuesz2 = zR are crossed one has to add
the corresponding residuesJR

9 (zR), so getting one-dimensional MB-integrals to be considered:

J9 = 2π i ∑
zR

JR
9 (zR)+Jshi f t

9 . (3.14)

The resulting integralJshi f t
9 differs from J9 only by the shifted integration path, but will now not

contribute to the IR-singular part and will not be considered here any more. We see that only the
residues of crossed singular points inz2 contain the IR-relevant endpoint singularities inV2,V4.
Here, two of them (atz2 = −1 [argument ofΓA in (3.13)] and atz2 = −1−2ε [argument ofΓBin
(3.13)]) contribute due to a shift fromℜz2 = −7/8 toℜz2 = −7/8−1= −15/8. The first of them
is:

J9A = −
(−V2)

−2ε

sV4

Γ[−2ε]ΓB[2ε]

Γ[−1−2ε]

eεγE

2π i

×

+i∞−5/8
∫

−i∞−5/8

dz1(−t)−1−z1
Γ[−2ε −z1]Γ[−ε −z1]Γ[−z1]ΓC[1+z1])

Γ[−1−2ε]Γ[−2ε −2z1)]

=
(−V2)

−2ε22ε

sV4
eεγE

ε
√

πΓ[−2ε]2ΓB[2ε]

Γ[−1−2ε]Γ[3/2− ε]
2F1[1,1−2ε,3/2− ε, t/4]. (3.15)

We performed here an irrelevant shiftz1 → z1+ε in order to make the argument ofΓC independent
of ε. This will be here the onlyΓ-function producing residues inz1 when closing again the contour

6
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to the left. The explicitε-expansion of the hypergeometric function in (3.15) may be obtained with
the Mathematica package HypExp2 [11, 5]. Alternatively, we may performthe sum of residues
arising fromΓC(1+z1) directly:

J9A = −
(−V2)

−2ε

sV4
eεγE

Γ[−2ε]Γ[2ε]

Γ[−1−2ε]

∞

∑
n=1

tn−1 Γ[−2ε +n]Γ[−ε +n]

Γ[−2ε +2n]
, (3.16)

and apply then (2.4) to it. It is here where we may see why the harmonic numbers S1(2n+ 1)

appear, which were not contributing to the vertex or the box: There was no Γ-function with an
ε-shifted, doubled argument in the denominator of the final sums, while here this appears. In the
general massive case, this will usually happen.

The second residue crossed by the contour shifting in thez2-plane gives the third kind of
contribution to be added; after a shiftz1 → z1− ε:

J9B =
(V4/s)2ε

sV4
Γ[1−2ε]Γ[−2ε]ΓA[2ε]

eεγE

2π i

+i∞−5/8
∫

−i∞−5/8

dz1(−t)−1−z1

×
Γ[ε −z1]Γ[2ε −z1]Γ[−z1]ΓC[1+z1]

Γ[−1−2ε]Γ[2ε −2z1]

=
(V4/s)2ε

sV4
eεγE ε

√
π

Γ[1−2ε]Γ[−2ε]Γ[2ε]2

22εΓ[−1−2ε]Γ[3/2+ ε]
2F1[1,1+2ε,3/2+ ε, t/4]

=
(V4/s)2ε

sV4
eεγE

Γ[1−2ε]Γ[−2ε]Γ[2ε]

Γ[−1−2ε]

∞

∑
n=1

tn−1 Γ[ε +n]Γ[2ε +n]

Γ[2ε +2n]
(3.17)

Again, this may be expanded into anε-series over inverse binomial sums by use of (2.4).
Collecting everything together, we rediscover (3.6) (plus additional terms of no relevance for

the IR-treatment):

J3 +J4A +J4B +J7 +J9A +J9B =
1
ε
[

Is
−1(V2)+ Is

−1(V4)
]

+ Is
0(V2)+ Is

0(V4)+ · · · (3.18)

4. Conclusions

We gave a pedagogical introduction to the treatment of mixed real and virtualIR-singularities.
This kind of problems arises in NNLO problems, where one has to treat the unresolved mass-
less particle phase space for loop integrals. The presented method was exemplified for a scalar
integral, but it may be easily applied to general tensor functions. For the QED pentagon, this
is discussed in [3], which may be considered as an introduction to this presentation. A deriva-
tion of MB-representations for highern point functions or for multi-loop integrals is more or less
straightforward, although ananalytical evaluationwill become more and more troublesome. It
is an interesting open question how useful the MB techniques might appear for realistic, so far
unsolved applications.
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