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1. Introduction

The Large Hadron Collider (LHC) at CERN will probe our understanding of electroweak
symmetry breaking and explore physics in the TeV region. A detailed theoretical knowledge of
various kinds of Standard Model backgrounds is indispensable for these studies. Especially in the
startup-phase when it is necessary to calibrate detectors using multi-jet signatures, preferably with
identifiable leptons, Standard Model processes will play an important role. Precise predictions
for such multi-partonic cross sections are only possible by including higher order corrections such
that renormalisation and factorisation scale dependencies are tamed. While corrections at next-to-
leading order in the strong coupling constant αs are known to basically all relevant 2→ 2 processes,
the situation for 2 → N processes whith N ≥ 3 is less satisfactory, although tremendous progress
has been made in the last few years. For 2 → 3 processes, various methods have been used recently
to obtain NLO QCD predictions for multi-boson production pp → ZZZ,WWZ,HHH [1, 2, 3, 4],
processes in the context of weak boson fusion, like pp → WW j j,W Z j j [5, 6], pp → H j j with
effective gluon-Higgs couplings [7], gg → Hqq̄ [8], and pp → t t̄ j [9].

Many different techniques are used for the evaluation of multi-particle processes, as a result of
recent developments which were triggered by the observation that the standard Passarino-Veltman
reduction in general does not lead to numerically stable amplitude representations for the reduction
of five-point integrals. Apart from Feynman diagrammatic approaches which apply new reduction
techniques for some or all scalar and tensor integrals [10, 11, 12] the evaluation of one loop am-
plitudes by extracting the coefficients of a certain basis set of scalar integrals using unitarity based
methods [13] both in algebraic [14, 15, 16] and numerical[17, 18, 19] variants has seen substantial
progress recently. Purely numerical approaches based on Feynman diagrams, which do not use any
reduction to “basis integrals” are also viable [1, 20, 21, 22].

In [11] we have proposed a framework for the evaluation of one-loop multi-leg amplitudes,
based on reduction formulas in Feynman parameter space [23, 24] in the context of dimensional
regularisation. The reduction of rank R N-point to rank R-1 (N-1)-point integrals can be obtained
algebraically for N > 5. For N ≤ 5 we provide form factor representations which are expressed in
terms of 3- and 4-point scalar integrals with Feynman parameters in the numerator. The dimension-
ality of the box functions is such that all IR divergences, i.e. poles in 1/(n−4), are isolated into the
triangle functions. For all IR divergent triangle functions explicit representations can be obtained.
We have coded all formulas up to N = 6 for massless internal kinematics into a FORTRAN90 code,
called golem90 [32]. The code allows to switch between a semi-numerical and completely nu-
merical evaluation of the basis functions. The latter is preferable in exceptional phase space regions
where certain basis integrals can become linearly dependent. In this way the problems of instabil-
ities due to inverse Gram determinants can be tamed. Optionally, our reduction formalism also
allows a reduction to a scalar integral basis of 1-, 2-, 3-point functions in n dimensions and 4-point
functions in n+2 dimensions, denoted by In

1 , In
2 , In

3 In+2
4 . This fully algebraic reduction is to be used

away from exceptional phase space points, where it is fast and reliable.

In the following we will discuss three applications of our method relevant for LHC phe-
nomenology.
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Figure 1: The ∆φ j j-distribution for various flavour and helicity-configurations. The purple histogram la-
belled “Sum” indicates the sum over the four contributions shown. The sum over all flavour and helicity
assignments including all sea flavours is shown in the black histogram. WBF cuts have been used [27].

2. Interference term for pp → H j j at order O(α2α3
s )

Weak boson fusion is one of the most promising discovery channels for the Higgs boson. As
such it deserves a careful consideration of higher order effects. Very recently, the electroweak
corrections, including a recalculation of QCD corrections have been evaluated in [25]. A Born
level interference term between the gluon fusion and weak boson fusion is only allowed by colour
conservation if the in- and outgoing quarks are crossed in the t ↔ u-channel, which is kinematically
disfavoured. Such interference terms are included in the calculations of [26, 25]. However, the
exchange of an extra gluon between the quark lines opens up a viable colour channel. We have
obtained a fully analytic result of this one-loop interference term between gluon fusion and weak
boson fusion [27], and implemented the evaluation in a flexible C++ Monte Carlo programme.

Figure 1 displays the contribution to the distribution in ∆φ j j from the interference terms for
various helicity and flavour configurations for a Higgs boson mass of 115 GeV.

Note that the integral of the absolute value of the ∆φ j j distribution,
∫ π

−π
d∆φ j j|

dσ
d∆φ j j

| ,

is a useful measure of the impact of the interference effect on the extraction of the ZZH-vertex.
This integral evaluates to 9.1 ab. The total integral over the absolute value of the fully differential
cross section leads to 29.6 ab. We conclude that the interference term can be safely neglected in
phenomenological studies, but this needed to be checked by doing the explicit calculation.

3. The virtual O(αs) corrections to pp → ZZ j

During the Les Houches 2005 workshop the process pp → VV j was identified as one of the
most important missing NLO calculations [28]. The process with a charged vector boson pair has
been evaluated very recently by two independent groups [29, 30]. The evaluation for ZZ plus jet is
still missing. The process is composed of three partonic reactions

qq̄ → ZZg , gq → ZZq , gq̄ → ZZq̄ , (3.1)
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Figure 2: The finite virtual NLO contribution to the helicity component −−+++ of the partonic process
qq̄ → ZZg. The invariant mass of the Z pair is shown on the left and the pT distribution on the right. We use
the cut pT, jet > 20 GeV and a parton and beam pipe separation cut of θi j > 1.50.

With our methods we have obtained the virtual order O(αs) corrections for all helicity amplitudes
of both processes. Using spinor helicity methods we have obtained analytical formulas for the
coefficients of all basis scalar integrals. We work in dimensional regularisation and treat γ5 by
applying the ’t Hooft-Veltman scheme. As an illustration we show the contribution of the virtual
correction to some typical distributions. Only the contributions which are related to finite basis
integrals are plotted. For the full result the real emission corrections remain to be included [31].

4. The amplitude uū → dd̄ss̄

Not a single NLO 2 → 4 process relevant for LHC phenomenology has been evaluated so
far. As a test case for our reduction methods we have evaluated the 6-photon amplitude [15] and
have compared our result with an evaluation using a fully numerical approach [21] and unitarity
based methods [18, 16]. The same set-up can be used to attack now processes like pp → j j j j and
pp → bb̄bb̄ which are of relevance for background studies at the LHC. As an example we show
the result of one colour factor of the finite virtual NLO contribution to the uū → d d̄ss̄ amplitude
in massless QCD. The calculation has been carried out using spinor helicity amplitudes in the
’t Hooft-Veltman scheme. We have chosen a convenient colour basis, which allows to split the
amplitude as follows

∑
λ

6

∑
i=1

CiAλ
i (p1, . . . , p6), (4.1)

where Aλ
c are the helicity and colour sub-amplitudes. In particular we chose the colour structures

~C = (δ c2
c1 δ c3

c4 δ c5
c6 ,δ c2

c1 δ c5
c4 δ c3

c6 ,δ c5
c1 δ c2

c4 δ c3
c6 ,δ c5

c1 δ c3
c4 δ c2

c6 ,δ c3
c1 δ c5

c4 δ c2
c6 ,δ c3

c1 δ c2
c4 δ c5

c6 ). (4.2)

In our notation λ is the vector (λ1, . . . ,λ6), and λ j = ±1 is the helicity of the particle with momen-
tum p j of which the colour index is c j . In the six-quark amplitude one can identify two independent
helicity configurations, λ a = (+,+,+,+,+,+) and λ b = (+,+,+,+,−,−).

We reduced the tensor integrals to form factors as outlined above (for more details see [11]),
and deal with the spinor algebra by completing spinor lines to traces. The expressions for the
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Figure 3: Six-quark amplitude. The finite parts of the two helicity configurations s|Aλ a

1 |α−3
s (solid) and

s|Aλ b

1 |α−3
s (dashed) are plotted for an arbitrary kinematical point where the final state momenta have been

rotated about the y-axis by an angle θ .

diagrams are transformed into a Fortran90 program. The golem90 library is used for the
numerical evaluation of the form factors. The code returns the sub-amplitudes in the form

Aλ
i (p1, . . . , p6) =

g6
s

4π2
1
s

(

A
ε2 +

B
ε

+C +O(ε)

)

(4.3)

for each of the six colour structures and for all non-zero helicities, where A, B and C are complex
coefficients. As an example in Fig. 3 we plot the amplitude s|Aλ

c |α−3
s for the colour structure c = 1

and the two helicity configurations λ a and λ b. The initial state momenta have been fixed to be
aligned with the z-axis while the final state momenta have been rotated about the y-axis by an angle
θ . For θ = 0 the momenta are chosen as in Ref. [21]. In the chosen units the renormalisation scale
is µ = 1. The amplitude has been evaluated at 50 successive points between θ = 0 and θ = 2π ,
which took 2.4 seconds per point and helicity on an Intel Pentium 4 CPU (3.2 GHz).

5. Conclusion

The LHC demands next-to-leading order precision for many multi-particle processes. We
have presented in this talk some recent results using our one-loop reduction methods, ranging from
completely massless amplitudes to ones with several mass scales. The progress which has been
made in the last years in the context of precision phenomenology by many groups is good news for
the LHC. Many relevant predictions beyond leading order are or will become available in the near
future and there is a clear movement towards largely automated NLO tools as well as combining
NLO amplitudes with parton showers.
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