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1. Introduction

The search for new-physics particles—including the Standard Model Higgs boson—will be
the primary task in high-energy physics after the start of the LHC that is planned for 2008. The
extremely complicated hadron collider environment does not only require sufficiently precise pre-
dictions for new-physics signals, but also for many complicated background reactions that can-
not entirely be measured from data. Among such background processes, several involve three,
four, or even more particles in the final state, rendering thenecessary next-to-leading-order (NLO)
calculations in QCD very complicated. This problem lead to the creation of an “experimenters’
wishlist for NLO calculations” [1] that are still missing for successful LHC analyses. The process
pp→ W+W−+jet+X made it to the top of this list.

The process of WW+jet production is an important source for background to the production
of a Higgs boson that subsequently decays into a W-boson pair, where additional jet activity might
arise from the production or a hadronically decaying W boson[2]. WW+jet production delivers
also potential background to new-physics searches, such assupersymmetric particles, because of
leptons and missing transverse momentum from the W decays. Last but not least the process is
interesting in its own right, since W-pair production processes enable a direct precise analysis of
the non-abelian gauge-boson self-interactions, and a large fraction of W pairs will show up with
additional jet activity at the LHC.

In these proceedings we briefly report on our recent calculation [3] of NLO QCD corrections
to WW+jet production at the Tevatron and the LHC, but here we discuss results for the LHC only.
Parallel to our work, another NLO study [4] of pp→ W+W−+jet+X at the LHC appeared. A
comparison of results of the two groups is in progress.

2. Details of the NLO calculation

At leading order (LO), hadronic WW+jet production receives contributions from the partonic
processesqq̄ → W+W−g, qg → W+W−q, andq̄g → W+W−q̄, whereq stands for up- or down-
type quarks. Note that the amplitudes forq = u,d are not the same, even for vanishing light quark
masses. All three channels are related by crossing symmetry. The LO diagrams for a specific
partonic process are shown in Figure 1.

In order to prove the correctness of our results we have evaluated each ingredient twice us-
ing independent calculations based—as far as possible—on different methods, yielding results in
mutual agreement.

2.1 Virtual corrections

The virtual corrections modify the partonic processes thatare already present at LO. At NLO
these corrections are induced by self-energy, vertex, box (4-point), and pentagon (5-point) correc-
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Figure 1: LO diagrams for the partonic process uū→ W+W−g.
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Figure 2: Pentagon diagrams for the partonic process uū→ W+W−g.

tions. For illustration the pentagon graphs, which are the most complicated diagrams, are shown in
Figure 2 for a specific partonic channel. At one loop WW+jet production also serves as an off-shell
continuation of the loop-induced process of Higgs+jet production with the Higgs boson decaying
into a W-boson pair. In this subprocess the off-shell Higgs boson is coupled via a heavy-quark loop
to two gluons.

Version 1 of the virtual corrections is essentially obtained as for the related processes of tt̄H [5]
and t̄t+jet [6] production. Feynman diagrams and amplitudes are generated withFeynArts1.0
[7] and further processed with in-houseMathematicaroutines, which automatically create an out-
put in Fortran. The IR (soft and collinear) singularities are treated in dimensional regularization
and analytically separated from the finite remainder as described in Refs. [5, 8]. The pentagon
tensor integrals are directly reduced to box integrals following Ref. [9]. This method does not in-
troduce inverse Gram determinants in this step, thereby avoiding numerical instabilities in regions
where these determinants become small. Box and lower-pointintegrals are reduced à la Passarino–
Veltman [10] to scalar integrals, which are either calculated analytically or using the results of
Refs. [11]. Sufficient numerical stability is already achieved in this way, but further improvements
with the methods of Ref. [12] are in progress.

Version 2 of the evaluation of loop diagrams starts with the generation of diagrams and ampli-
tudes viaFeynArts3.2 [13], which is independent of version 1.0 [7]. The amplitudes are further
manipulated withFormCalc5.2 [14] and eventually automatically translated intoFortrancode. The
whole reduction of tensor to scalar integrals is done with the help of theLoopToolslibrary [14],
which also employs the method of Ref. [9] for the 5-point tensor integrals, Passarino–Veltman [10]
reduction for the lower-point tensors, and theFF package [15] for the evaluation of regular scalar
integrals. The dimensionally regularized soft or collinear singular 3- and 4-point integrals had to
be added to this library. To this end, the explicit results ofRef. [8] for the vertex and of Ref. [16]
for the box integrals (with appropriate analytical continuations) are taken.

2.2 Real corrections

The matrix elements for the real corrections are given by 0→ W+W−qq̄gg and 0→
W+W−qq̄q′q̄′ with a large variety of flavour insertions for the light quarks q and q′. The par-
tonic processes are obtained from these matrix elements by all possible crossings of quarks and
gluons into the initial state. The evaluation of the real-emission amplitudes is performed in two
independent ways. Both evaluations employ (independent implementations of) the dipole subtrac-
tion formalism [17] for the extraction of IR singularities and for their combination with the virtual
corrections.

Version 1 employs the Weyl–van-der-Waerden formalism (as describedin Ref. [18]) for the cal-
culation of the helicity amplitudes. The phase-space integration is performed by a multi-channel
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process σ [pb] σSherpa[pb] ∆σ/stat. error

pp→ WW+1jet 46.453(16) 46.4399(94) +0.70

pp→ WW+2jets 31.555(17) 31.5747(63) −1.08

Table 1: Comparison of LO cross sections withSherpa(taken from Ref. [24]).

Monte Carlo integrator [19] with weight optimization [20] written in C++, which is constructed
similar toRacoonWW[21]. The results for cross sections with two resolved hard jets have been
checked against results obtained withWhizard1.50 [22] andSherpa1.0.8 [23]. Details on this part
of the calculation can be found in Ref. [24], the comparison to Sherparesults is briefly illustrated
in Table 1.1 In order to improve the integration, additional channels are included for the integration
of the difference of the real-emission matrix elements and the subtraction terms.

Version 2 is based on scattering amplitudes calculated withMadgraph[25] generated code. The
code has been modified to allow for a non-diagonal quark mixing matrix and the extraction of the
required colour and spin structure. The latter enter the evaluation of the dipoles in the Catani–
Seymour subtraction method. The evaluation of the individual dipoles was performed using aC++
library developed during the calculation of the NLO corrections for t̄t+jet [6]. For the phase-space
integration a simple mapping has been used where the phase space is generated from a sequential
splitting.

3. Numerical results

We consistently use the CTEQ6 [26] set of parton distribution functions (PDFs), i.e. we take
CTEQ6L1 PDFs with a 1-loop runningαs in LO and CTEQ6M PDFs with a 2-loop runningαs

in NLO. We do not include bottom quarks in the initial or final states, because the bottom PDF is
suppressed w.r.t. to the others; outgoing bb̄ pairs add little to the cross section and can be exper-
imentally further excluded by anti-b-tagging. Quark mixing between the first two generations is
introduced via a Cabibbo angleθC = 0.227. In the strong coupling constant the number of active
flavours isNF = 5, and the respective QCD parameters areΛLO

5 = 165MeV andΛMS
5 = 226MeV.

The top-quark loop in the gluon self-energy is subtracted atzero momentum. The running ofαs

is, thus, generated solely by the contributions of the lightquark and gluon loops. The top-quark
mass ismt = 174.3GeV, the masses of all other quarks are neglected. The weak boson masses are
MW = 80.425GeV,MZ = 91.1876GeV, andMH = 150GeV. The weak mixing angle is set to its
on-shell value, i.e. fixed byc2

w = 1− s2
w = M2

W/M2
Z, and the electromagnetic coupling constantα

is derived from Fermi’s constantGµ = 1.16637×10−5GeV−2 according toα =
√

2GµM2
Ws2

w/π .
We apply the jet algorithm of Ref. [27] withR = 1 for the definition of the tagged hard jet

and restrict the transverse momentum of the hardest jet bypT,jet > pT,jet,cut. In contrast to the real
corrections the LO prediction and the virtual corrections are not influenced by the jet algorithm. In
our default setup, a possible second hard jet (originating from the real corrections) does not affect

1The input parameters of Ref. [24] are set as below, apart fromαs(MZ) = 0.1187 (1-loop evolved to the scale
µren= µfact = MW), and a CKM matrix in Wolfenstein parametrization (to 2nd order inλ ) with λ = 0.22. The transverse
momenta of additional jets are restricted bypT,jet > 20GeV, and the jet–jet invariant mass byM(jet, jet) > 20GeV. No
jet algorithm is applied, since genuine LO quantities are considered in Ref. [24].
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Figure 3: LO and NLO cross sections for WW+jet production at the LHC: scale dependence with renor-
malization and factorization scales set equal toµ (lhs) and cut dependence (rhs) (taken from Ref. [3]).

the event selection, but alternatively we also consider mere WW+jet events with “no 2nd separable
jet” where only the first hard jet is allowed to pass thepT,jet cut but not the second.

The left-hand side of Figure 3 shows the scale dependence of the integrated LO and NLO
cross sections at the LHC forpT,jet,cut = 100GeV.2 The renormalization and factorization scales
are identified here (µ = µren = µfact), and the variation ranges fromµ = 0.1 MW to µ = 10 MW.
The dependence is rather large in LO, illustrating the well-known fact that the LO predictions can
only provide a rough estimate. Varying the scales simultaneously by a factor of 4 (10) changes the
LO cross section by about 35% (70%).

Only a modest reduction of the scale dependence to 25% (60%) is observed in the transi-
tion from LO to NLO if W pairs in association with two hard jetsare taken into account. This
large residual scale dependence in NLO, which is mainly due to qg-scattering channels, can be
significantly suppressed upon applying the veto of having “no 2nd separable jet”. In this case the
uncertainty is 10% (15%) if the scale is varied by a factor of 4(10). The relevance of a jet veto in or-
der to suppress the scale dependence at NLO was also realized[28] for genuine W-pair production
at hadron colliders.

Finally, we show the integrated LO and NLO cross sections as functions ofpT,jet,cut on the
right-hand side of Figure 3. The widths of the bands, which correspond to scale variations within
MW/2 < µ < 2MW, reflect the behaviour discussed above for fixed value ofpT,jet,cut. For the LHC
the reduction of the scale uncertainty is only mild unless WW+2jets events are vetoed.
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