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Measurements of new physics at the forthcoming experirhgmtgram at CERN’s Large
Hadron Collider (LHC) will require a precise understandofgprocesses at next-to-leading order
(NLO). This places increased demands for the computatiarenaf one-loop amplitudes. This in
turn has spurred recent developments towards improvedlatiial techniques.

Direct calculations using Feynman diagrams are in geneefficient. Developments of more
efficient techniques have usually centred around unitteithiiniques [1], where tree amplitudes are
effectively “glued” together to form loops. The most stiaifgrward application of this method, in
which the cut loop momentum is D = 4, allows for the computation of “cut-constructible” terms
only, i.e. (poly)logarithmic containing terms and any tethconstants. QCD amplitudes contain,
in addition to such terms, rational pieces which cannot beel using such cuts. These “missing”
rational parts can be extracted using cut loop momenia-ind — 2¢ [2]. The greater difficulty of
such calculations has restricted the application of thi@gch, although recent developments [3,
4] have provided new promise for this technique.

Recently the application of on-shell recursion relatidsis$ obtaining the “missing” rational
parts of one-loop processes [6] has provided an alternaéive promising solution to this prob-
lem. In combination with unitarity methods an “on-shell ksicap” approach provides an efficient
technique for computing complete one-loop QCD amplitudésAdditionally other new methods
have also proved fruitful for calculating rational term$. [8

Such developments have again refocused attention on timisgiion of the derivation of
the cut-constructable pieces of the amplitude. Derivingcomstructible terms for any one-loop
amplitude reduces to the computation of coefficients of afetalar bubble, scalar triangle and
scalar box integral functions. Box coefficients may be fouwrith very little work, directly from
the quadruple cut of the relevant box function [9]. A uniquex lcoefficient contributes to each
distinct quadruple cut. Unfortunately triangle and bulbtgefficients cannot be derived in quite so
direct a manner. Multiple scalar integral coefficients apprside a two-particle cut or triple cut.
It is therefore necessary to disentangle the relevant buiibiriangle coefficients from any other
coefficients sharing the same cut [1, 4, 10, 11]. The largebauraf NLO processes of interest for
the LHC suggests that a completely automated computatmnakdure is highly desired. To this
end we discuss, in this proceeding, a recently proposedau¢il2, 13] for the direct, efficient and
systematic extraction of bubble and triangle coefficiertgctvis well suited to automation.

1. Triangle coefficients

Following in the spirit of the box coefficient [9] we would &kto apply a triple cut to extract
a triangle coefficient. Such a triple cut isolates a uniqiengle coefficient but also contains
contributions from scalar box integrals which share thifdbeir four propagators with the triangle.
The separation of the coefficient of a particular scalangia integral from any box coefficients
can be effected by

co = —[InfALAAS] (1)) . (1.1)

Equation 1.1 instructs us to start by taking the triple cuhefdesired triangle coefficient,

A&reeAtzreeAgeE(t) = Agge—ecl-i-Z(_I €Ly (C3 - 1)7 Il)Agze—ng-&-Z(_IJ-? C35--05 (CZ - 1)7 IZ)

X AT eira(—12,C, . (C1— 1)1, (1.2)
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shown in figure 1(a), withy =1 — Ky andl, =1 + K5, whereK; andK; are sums of external mo-
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Figure 1: a) The triple cut used to compute a scalar triangle coefficibih The two-particle cut used to
calculate a scalar bubble coefficient.

menta. The cut momentuhof the triple cut depends on a single paramétand is parameterised
in the specific form [11, 12],

S(Yy-S) S(y-S)
(Y’ -S9) (V> —SS)t

Here we have expressed the cut momentum in terms of a contdsasis of null vector& and
Kz

_ b,— b,— b b
(7] =tKy [+ (K~ (7= Ky + (K. (1.3)

K —(S/yKE o _ KE—(S/y)K]
1-(8S/)° 7 1-(8%/Y)°

with two solutions fory = (K; - K2) + VA with A = (Ky - Kp)? — KZK3.

The Inf is instructing us to series expand this cut integrand arduace. Thet® component
of this series expansion gives the desired triangle coeffici For the three-mass case described
above we must also average over the two solutiong. ténalytic continuation of to complex
momenta allows one- and two-mass triangles, containiregthoint vertices, to be computed in a
similar manner after setting the relevant masses in eq) &h@ eq. (1.4) to zero. In these cases
only one solution tg/ survives.

This procedure succeeds because of the specific momentamegi@isation we have chosen.
The series expansion of the {nfould in general give us rational coefficiergismultiplying inte-
grals over powers df. Seen schematically this is

KyH = (1.4)

a,/dtt'+ao/dt+a1/dtt+ +amax/dttmax (1.5)

|——00

and we would expect contributions to the scalar triangldfimbent from every term. It is easy to
show though that all integrals ovewill vanish, eliminating any such contributions. For exdejp

(K3 |NKy ™ ~ ~ ~ ~
[~ [an le‘lz’lz D TRV + KKKV 5 =0, (1)

with a similar result for other non-zero powerstofThe%; are Passarino-Veltman reduction coef-
ficients.
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2. Bubble coefficients

A similar procedure applies to the extraction of bubble fickehts. To compute the coefficient
of a particular bubble we use a two-particle cut and musintiseyle our desired coefficient from
the scalar boxes and triangles which this will also contslie. start from the generic two-particle

CUtATEATE(t,y) = ATSe. (=1, (ci+1),...,C2,11) AlPe. L »(—l1,(C2+1),...,C1,1) shown in fig-

ure 1(b), withl; =1 — K;. Having isolated a single bubble coefficient we paramegelie cut loop
momentum , which now depends upon two free parameteandy, using
_ S _
e e e S I e | 2.1)

This is expressed in terms of a basis of massless on-shellemami and x. x is an arbitrary
free vector, which the final result is independent of, usedetineK}* = K — (S /y) x* with
= (X*[Kalx*®) = (x* K3 ]x5).
The equivalent expression to eq. (1.1) is then given by

bo=—i[Inf; [Inf,A1A] ()] (1)

0y L [InfiAsAoAs] (t)| . (2.2)

2 tm—T(m)

m+1

The first term is the natural extension of the single Uffeq. (1.1) to the case of two free parame-
ters. In this double series expansion we expand arguach and thert = o and again drop terms
proportional ta, because the corresponding integrals disappear. Insegraty are non-vanishing
though and are related to the scalar bubble inte@K?), via [ dyy" = Bo(K?)/(m+1).

The naively unexpected second term of eq. (2.2) involvesraater all the triangle%; that
contain the original two-particle cut. Writing the two-pale cut integrand schematically in the
form

AL(Yi (1), DARMYI(1),1)
& (y—vyi(t)) ’ (23)

allows us to understand why contributions from triangldsear Solving(l (y,t) — K2)? = 0, the
additional propagator present in the triangles in the kashtabove, gives ug(t). Inserting this
solution into the momentum parameterisation given by eqg. (2.1) leaves us with the momentum
parametrisation of the triangles that we wish to separate fihe bubble. This parametrisation
differs importantly from eq. (1.3) in that the integrals o¥edo not vanish, as can be seen for
example with

ao(t) +a1(t)y+. .. + amax(t)y"™™+

1tr|

MKy ~ ~
/ dit ~ /d4| ILILIZ ~ (X IKalK] )1+ (X [KalKy )62 0. (2.4)

The remaining contributions to the bubble coefficient aemttound by relating these non-vanishing
integrals ovet to scalar bubbles using

my—IK h,—\m . m-1/m -1
T(m):<i> X Ralkd )y Ko (I;%ml (KFW >Bgut(Kf)7 25)

y
andT (0) = 0. The coefficient&,y are given by
1 3 3 1 A 5 5 5
tu=5, ta=-g Cn=-g = K K2 tig =g “B=1g
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