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Recurrence relations [1] are widely used tool for calculations in perturbative quantum filed
theory. Integration by parts provide us with some difference relations

R(I−, I+,d)F(n1, ...,nk,d) = 0

where F(n1, ...,nk,d) are Feynman integrals with propagators raised to integer (maybe negative)
powers ni and d is space-time dimension. In many cases these relations can be rebuilt in the
recurrence form, thus allowing reduction procedure with the result

F(n,d) = C1(n,d)F1 + ...+Ck(n,d)Fk

where Fi are “basic” or “irreducible” integrals with fixed values of ni. Lets assume that we know
how to calculate universal set Fi and concentrate on Ci which consist of specific for some physical
problem information.

Unfortunately, direct reduction mentioned above not always possible. Rebuilding in recurrent
form is nontrivial work in many-parametric case: hundreds of difficult sub-cases should be con-
sidered. Moreover, even constructed, reduction procedure involves long substitutions which can
easily overflow any computer available.

The idea is to calculate Ci directly, without reduction. Note that Ci(n,d) are rational in d and
obey the same difference relations:

R(I−, I+)Ci(n,d) = 0

with boundary conditions Ci(n,d) = 0 if nl ≤ 0 for at least one line of the basic integral associated
with Ci. In the following we will call such associated lines or indexes “hard”, and others “soft”.
Lets expand in 1/d → 0:

R(I−, I+) = R(0) +
1
d

R(1)

Ci = C(0)
i +

1
d

C(1)
i +

1
d2C(2)

i + ...

0 = R(I−, I+)Ci ⇒

0 = R(0)C(0)
i

0 = R(0)C(1)
i +R(1)C(0)

i

...

0 = R(0)C(k)
i +R(1)C(k−1)

i

...

The hope is that these equations are simpler so one can calculate sufficiently many coefficients
and then reconstruct exact rational d dependence.

Lets check it with 1-dimensional example:

fn =

∞∫

−∞

(x2 +2x+2)d/xn dx

2



P
o
S
(
R
A
D
 
C
O
R
 
2
0
0
7
)
0
2
2

Recurrence relations in the large space-time dimension limit P.A.Baikov

n fn+1 = (d +1−n) fn +(d +1−n/2) fn−1

Direct reduction is trivial, but let’s try 1/d:

0 = ( fn + fn−1)
︸ ︷︷ ︸

R(0) f

+ 1/d ((1−n/2) fn−1 +(1−n) fn −n fn+1)
︸ ︷︷ ︸

R(1) f

0 = R(0) f (0) = f (0)
n + f (0)

n−1 ⇒ f (0)
n = (−1)n

0 = R(0) f (1) +R(1) f (0)

= f (1)
n + f (1)

n−1 +n/2(−1)n ⇒ f (1)
n = 1/4(n2 +n)(−1)n

For simplicity we skip contributions which reflect fn → c(d) fn uncertainty. In this example
leading order equation involves only I− operators (no explicit ni coefficients). Such equations can
be solved in multi-dimensional case:

R(I−)Ci = 0 ⇒ Ci(n) = Πa r−na
a , where R(ra) = 0.

Indeed: R(I−a )Ci = R(ra)Ci = 0. Shortly speaking equations without explicit ni coefficients simpler
then general ones like algebraic equations simpler then differential ones.

Lets now consider Feynman integrals

F(n,d) =
∫

dd p1..d
d pL/(E

n1
1 · · ·Ena

a ),

Ea = Aik
a (pi pk)+m2

a.

Integration by parts

0 =
∫

dd p1..d
d pL ∂pi(pk · · ·),

∂pi (pk ·) = d δ i
k + pk(∂pi ·) = d δ i

k +(AA)a
b Ea (∂Eb ·),

(AA)a
b = 2(A−1)a

klA
li
b

provide us with the difference equations

0 = d δ i
k F +(AA)a

b Ea ∂Eb F.

If we now define

0 = d δ i
k F +(AAi

k)
a
b Ea ∂Eb F

R(0)? R(1)?

we will face with trivial solution only

0 = R(0)C(0) = δ i
k C(0)

n ⇒ C(0)
n = 0 ??
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In fact it means that there are no solutions in the simple form Ci = C(0)
i + 1

dC(1)
i + .... Indeed,

Ck ≈ d−S(n), where S(n) is the sum of the “hard” ni.
In practice we apply 1/d expansion to the sub-case when all “hard” ni = 1 (ni > 1 can be

reduced to ni = 1 by direct recursion [2, 3, 4]). Lets modify our relations in order to decouple “hard”
and “soft” indexes. For that consider integration by parts with additional insertion in numerator (it
is equivalent to recombination of original relations with polynomial in Ea factors):

0 =
∫

dd p1..d
d pL ∂pi(pkΠik(Ea) · · ·).

With some polynomials Πik we come to diagonalized relations

0 = ∂Ea(P(E) F)− (d −L−1)/2 (∂EaP(E)) F,

R(1) large R(0)

where P(E) = detik(pi pk(Ea)). Equations with “hard” ∂Ea can be used for na → 1 reduction. In
the equations with “soft” ∂Ea we can set “hard” Ea = 0 (these operators shift na from 1 to 0, and
by definition Ci = 0 if at least one “hard” ni is non-positive). So for “soft” ∂Ea for leading order in
1/d → 0 limit we got non-trivial equations

0 = R(0)F(0) = (∂EaP(E))F(0).

In principle one can proceed further as with toy 1-dimensional example, but we found more efficient
to calculate C(k)

i (n) by expanding auxiliary integrals in 1/d → 0 limit [4]

C(k)
i (n) =

∫

dx1.. dxa/(x
n1
1 .. xna

a )P(x)(d−L−1)/2.

In 1/d → 0 they expand to Gaussian type integrals

∫

dx1.. dxa xk1
1 .. xka

a exp(−Aikxixk)

which can be efficiently evaluated in gamma-functions.
Let us now briefly discuss possible applications of the method. The ideal case is massless

0-scale problems: 1/d coefficients are pure numbers and the set of basic integrals are relatively
small. As the result it was successfully applied to the calculation of the variety of 4– and 5–loop
quantities in QCD [5].

One can also try 1-mass 0-scale problems, but in this case number of basic integrals increases,
which means that more contributions should be calculated and total efforts (setup + CPU demands)
became comparable to other approaches [6]; nevertheless cross-checks still will be useful. Finally,
the method potentially applicable to the reduction of multi-scale integrals, but in this case the
calculation of basic integrals became very complicated (being the key problem).

To summarize, the expansion of the difference equations for Feynman integrals in the limit
of large d allows to solve them in systematic way. The mathematical complexity of the original
equations is partially transformed to the additional computer resources demands, but the variety of
physically relevant 4– and 5–loop problems are reachable.
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