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proaches to QCD evolution equations, I present a recent k-factorized matrix formulation in which
quarks and gluons are treated on the same ground and exact NLO and NLx calculations are incor-
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1. Generalizing BFKL and DGLAP equations in matrix form

The physical question underlying this talk is, at large, to provide a reliable description of rising
“hard” cross sections and structure functions at high energies, and a precise determination of parton
splitting functions at small-x, while keeping their well known behaviour at larger-x. More precisely,
I will deal with the problem of providing a small-x resummation of parton evolution in matrix [1]
form, so as to treat by k-factorization [2] quarks and gluons on the same ground and in a collinear
factorization scheme as close as possible to MS.

The issue of a small-x generalization of DGLAP [3] and BFKL [4] evolutions has a long story
[5, 6, 7, 8, 9], whose outcome is, at present, a certain consensus on the criteria and the mechanism
of the evolution-kernel construction. Here I will summarize their application to the matrix case and
the ensuing resummed results for the partonic splitting function matrix.

The BFKL equation (1976) predicts rising cross-sections but leading log predictions overesti-
mate the hard Pomeron exponent, while NLL corrections are large and negative [5] , and may make
it ill-defined. On the other hand, low order DGLAP evolution is consistent with the rise of HERA
SF, with marginal problems (hints of a negative gluon density). Therefore, we need to reconcile
BFKL and DGLAP approaches: in the last decade, various (doubly) resummed approaches have
been devised [6, ?, 8, 9] whose main idea is to incorporate RG constraints in the BFKL kernel, by
calculating some effective (resummed) BFKL eigenvalue χe f f (γ) or the “dual” DGLAP anoma-
lous dimension Γe f f (ω). So far, only the gluon channel has been treated self-consistently, while
the quark channel is added by k-factorization of the q− q̄ dipole.

The purpose of our matrix approach is to generalize DGLAP self-consistent evolution for
quarks and gluons in k-factorized matrix form, so as to be consistent, at small x, with BFKL
gluon evolution. One of the outcomes is to define, by construction, some unintegrated partonic
densities at any x, even if the general issue of their factorization [10] is not actually treated. The
main construction criteria for our matrix kernel are to incorporate exactly NLO DGLAP matrix
evolution and the NLx BFKL kernel and to satisfy RG constraints in both ordered and antiordered
collinear regions, and thus the γ ↔ 1− γ + ω symmetry [6]. An important role is played also by
what I will call the minimal-pole assumption in the γ- and ω- expansions, as explained below.

Let me recall that the DGLAP evolution equations for the PDFs fa(Q2) in the hard scale Q2

define the anomalous dimension matrix Γ(ω), with the moment index ω = ∂/∂Y conjugated to
Y = log1/x:

∂
∂ t

fa =
∂

∂ logQ2 fa = [Γ(ω)]ab fb (1.1)

On the other hand, the BFKL evolution equation in Y for the unintegrated gluon PDF F (Y,k2)

defines the kernel K (γ), with γ = ∂/∂ t conjugated to t = logk2:

ωF =
∂

∂Y
F = K (γ)F (1.2)

If k-factorization is used, DGLAP evolution of the Green’s function G corresponds to either the or-
dered k � k′ � ...k0 or the antiordered momenta, while BFKL incorporates all possible orderings.

At frozen αs, our RG-improved matrix kernel, generalizing the above evolutions, is expanded
in the form K (ᾱs,γ ,ω) = ᾱsK0(γ ,ω)+ ᾱ2

s K1(γ ,ω) and satisfies the minimal-pole assumption in
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the γ- and ω- expansions (γ = 0 ↔ ordered k’s)

K (ᾱs,γ ,ω) = (1/γ) K
(0)(ᾱs,ω)+K

(1)(ᾱs,ω)+O(γ) (1.3)
= (1/ω) 0K (ᾱs,γ)+ 1K (ᾱs,γ)+O(ω)

from which DGLAP anomalous dimension matrix Γ and BFKL kernel χ are derived

Γ0 = K
(0)

0 (ω); Γ1 = K
(0)

1 (ω)+K
(1)

0 (ω)Γ0(ω); ... (1.4)
χ0 = [0K0(γ)]gg; χ1 = [0K1(γ)+ 0K0(γ) 1K0(γ)]gg; ... (1.5)

Such expressions are used to constrain K0 and K1 iteratively to yield the known NLO and
NLx evolutions, and approximate momentum conservation. Furthermore, the RG constraints in
both ordered and antiordered collinear regions are met by the γ ↔ 1 + ω − γ symmetry of the
kernel which corresponds, in (k,x) space, to the k ↔ k′ and x ↔ xk2/k′2 symmetry of the ma-
trix elements and thus relates the ordered and antiordered regions mentioned before. Finally, the
running coupling is introduced by setting

K (k,k′;x) = ᾱs(k2
>)K0(k,k′;x)+ ᾱ2

s (k2
>)K1(k,k′;x) (1.6)

where we understand that the scale k2
> ≡max(k2,k′2) is replaced by (k−k′)2 in front of the BFKL

kernel χω
0 .

We remark that reproducing both low order DGLAP and BFKL evolutions provides novel
consistency relations between the matrix k-factorization scheme and the MS scheme. They turn
out to be satisfied at NLO/NLx accuracy, while a small violation would appear at NNLO. In fact,
the simple- pole assumption in ω-space implies [1] that [Γ2]gq = (CF/CA)[Γ2]gg at order α3

s /ω2,
violated by (n f /N2

c )-suppressed terms (≤ 0.5 % for n f ≤ 6) in MS [11]. For this reason we do not
attempt full inclusion of the NNLO in our scheme.

2. Results for the resummed eigenvalues and the splitting matrix

There are two, frozen αs, resummed eigenvalue functions: ω = χ±(αs,γ), corresponding to
the leading and subleading anomalous dimensions γ±(ω ,αs), as depicted in Fig. 1.
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The leading eigenvalue function shows fixed points at γ = 0,2 and ω = 1, corresponding to
momentum conservation in both collinear and anti-collinear limits. Due to the matrix structure for
n f 6= 0, a new subleading eigenvalue χ− appears. The n f -dependence of χ+(αs,γ) is modest, and
the NLx-LO scheme recovers the known gluon-channel result (in agreement with [8]) at n f = 0.
Finally, a level crossing of χ− and χ+, present in the n f = 0 limit, disappears at n f = 4.
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The results for the splitting function matrix Pab(x), including running coupling effects, are
shown in Fig. 2 for αs = 0.2, and compared to NLO entries. The NLO+ scheme includes, besides
NLO, also NNLO terms ∼ α3

s /ω2, while scheme B refers to previous results [7] for the gluon
channel only. We have numerically checked that the infrared cutoff independence insures (matrix)
collinear factorization We note that, at intermediate x ' 10−3, the resummed Pgg and Pgq entries
show a shallow dip, similarly to the one-channel case. Furthermore, the small-x rise of the novel
Pqg and Pqq entries is delayed down to x ' 10−4. Finally, the scale uncertainty band (for a rescaling
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parameter 0.25<x2
µ <4) is larger for the (small) Pqa entries, as perhaps expected from the fact that,

in this case, the constant small-x behaviour starts at NLO.
To sum up, we have proposed a small-x evolution scheme in matrix form in which quarks

and gluons are treated on the same ground and the splitting functions are already (closely) in the
MS scheme. We fix the NLO/NLx matrix factorization scheme by further requiring “ordering-
antiordering symmetry” and “minimal poles”. We find that the Hard Pomeron and the leading
eigenvalue function are stable, with modest n f -dependence, while a new subleading eigenvalue is
obtained. The resummed splitting functions Pga show a shallow dip, and the smallx increase of Pqa

is delayed to x ' 10−4. Overall, we find a gentle matching of low order with resummation. In order
to complete this program, we still need coefficients with comparable accuracy; but we could take
first the LO impact factors with “exact kinematics” [12]. On the whole, it looks quite nice!
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