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                                                                      Abstract 

We present the recent developments in exact amplitude-based resummation methods for non-
Abelian gauge theories as they relate to precision LHC physics.  We discuss QED⊗QCD 
exponentiation, shower/ME matching, IR-improved DGLAP-CS theory and implications, as 
developed by one of us (BFLW), for a UV finite theory of quantum general relativity.  
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1. Introduction 

        The impending start-up of the LHC makes urgent the calculation, in a practical 
way, precision predictions, at or better than 1% precision, for the Standard Model and 
certain beyond the Standard Model processes relevant in LHC scenarios. In direct 
terms, exact results are needed at the O (2s) Ln, O (s) Ln’ , O(2) Ln’’ , where n, n’ =0, 1, 2, 
and n’’ = 1, 2, with consistent soft gluon  and soft photon resummation in the presence of parton 
showers. Here, L represents the big logs that characterize the specific process under study, some 
of which reflect for example the realistic effects of experimental cuts. In what follows, we 
present the recent progress in the QED⊗QCD resummation platform which we have developed 
[1] to address such precision LHC physics.  
         We stress here that any platform which purports to realize 1% or better precision in QCD 
in the presence of the now clear large effects from electroweak corrections for LHC processes 
[2] must have a clear proof of control over the error budget for both physical and technical 
precision components. Our platform, based ultimately as it is on multiple gluon and multiple 
photon MC methods, affords us such control, as we explain more completely presently. 
        We proceed as follows with the discussion. In the next Section, we review the exact 
amplitude-based resummation theory for QCD. Section 3 presents its extension to QED⊗QCD 
and quantum gravity. Section 4 presents applications and recent developments for the LHC 
physics and Section 5 discusses applications of general theoretical framework by one of us 
(BFLW) to the final state of Hawking radiation[3] in quantum gravity.   

2. Exact Amplitude-Based Resummation for QCD 

       In the case of QED, it has been shown in Refs.[4] that the amplitude-based resummation 
calculus of Yennie, Frautschi and Suura (YFS) [5] allows practical, precision Monte Carlo 
simulation of higher order radiative processes on an event-by-event basis with realistic multiple 
n(γ) radiation in which infrared (IR) singularities are cancelled to all orders in . This 
amplitude-based approach to resummation theory in quantum field theory has been extended to 
QCD in Refs. [6]. We now review this extension.  
       The authors in Refs. [6] have shown that, for the process such as 

q(p1)+q’(q1)→q”(p2)q’’’(q2)+n(G), we have the differential cross section, derived from extending 

the YFS theory to QCD,  
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where infrared functions SUMIR(QCD) and DQCD and hard gluon residuals nβ
~

are defined in 

Refs.[6] – the latter are free of IR singularities to all orders in s.  
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        The exponent in (1) corresponds to the N=1 term in the exponent in Gatheral’s non-
Abelian eikonal formula [7] wherein everything that does not eikonalize and exponentiate is 
dropped – our result in (1) is exact. There is no problem at all to include all of Gatheral’s 

exponent in (1), as it would amount to a corresponding change in the residuals nβ
~

. 

       The result in (1) has to be DGLAP-CS synthesized[6,8] via the QCD factorization theorem 
at a scale μ to be convoluted with parton densities at such scale. In general, this means that the 
infrared functions SUMIR(QCD) and DQCD , as explained in [6,8], are replaced with the DGLAP-
CS synthesized functions SUMIR

nls(QCD) and Dnls
QCD, where we note 

),~(,~2Re2)( )()()()()( nls
QCDQCD

nls
QCD

nls
QCDs

nls
QCDs

nls
IR SDDBBQCDSUM =+=   αα  

with the infrared functions  QCD
nls

QCD
nls

QCD
nls

QCD DSBB   and)()()( ~,~, defined in [6].  

3.   Extension to QED⊗QCD  and Quantum Gravity 

        In Refs.[1], we have extended the master formula in (1) to treat the simultaneous amplitude 
resummation of QED and QCD together, in view of the relatively large electroweak effects that 
obtain in LHC physics scenarios in the 1% QCD regime, and one of us (BFLW)[9] has extended 
(1) to treat resummation of quantum gravity in view of the similarity between the soft gluon and 
soft graviton limits in quantum field theory, as explained in Refs.[9].  We now review these 
results. 

        For the case of the QED⊗QCD resummation, we show in Ref. [1] that the master formula 

for the resummed cross section is  

(2)                                              *                                            
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where now we have the IR functions  
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with the identifications AQCED = AQCD+AQED for  Here, we 
have introduced the QED IR functions familiar from the original work in Ref. [5]. The new 

residuals 

.~,,~, )()()()( nlsnlsnlsnls SDBBA  and =

mn,

~
β  are for n hard gluons and m hard photons and are free of IR singularities to all 

orders in both s  and  .  The relative sizes of the two latter coupling parameters cause the QCD 
emission to occur an order of magnitude earlier than does the respective QED emission in the 
soft regime[1]. After DGLAP-CS synthesization, the residuals are then truly perturbative and 

the leading term )0,0(
0,0

~
β  gives us a good estimate of the size of the effects we study. 
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       Applying the master formula (1) to quantum general relativity one finds[9] that the 
propagator for a massive scalar field has the representation 

(3)                                                                       resummed εikmk
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with ∆=k2-m2. Here, λ is an IR regulator mass—it is not a parameter in the Lagrangian so that it 
does not affect the gauge invariance of Einstein’s theory. One notes that Σ’s starts in O(κ2) so 
that it may me dropped in one-loop results. One notes further that in the deep UV one has   
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so that loop integrals are now all UV finite[9]. 

4.0    QED⊗QCD threshold corrections, shower/ME matching, and IRI—DGLAP-CS 

theory at LHC 

         We apply the master formula (2) to single Z production with leptonic decay to focus on 
the ISR alone. See also Refs.[10] for exact O() results and Refs.[11,12] for exact O(s,s

2) 
results. For the basic formula 

(6)                       )(ˆ)()()''( 21exp21
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ji

i σσ ∑∫=+→+→ ll  

we use the result in (2) with parton densities {Fi} from [13], where here we employ semi-

analytical methods at the - level. A MC realization will appear elsewhere[14]. We further 

note that we do not intend to replace Herwig/Pythia[15,16]. We intend to match the latter to our 
exact YFS-style calculus[1]: we can do this by the pT-matching prescription or the shower -

subtracted residuals, → , as they are defined in Ref.[1]—see also Ref.[17]. Each of 

these approaches can be systematically improved with exact results order by order in (, s) with 
exact phase space. Recent alternative parton evolution algorithms as given in Refs. [18] are 
readily accommodated in our approach. Proceeding now as indicated, we compute the ratio 
rexp=σexp/σBorn , with and without QED, to get the results ( we do not use the narrow resonance 
approximation) 
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which show that QED is at the 0.3% level at both LHC and FNAL. The results are stable against 
scale variations and agree with those in Refs.[10-12]. The results are similar in size to the 
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structure function results in Ref.[19] and DGLAP-CS synthesization has not compromised the 
normalization. 
         The results (7) then lead one to ISR exponentiation of the kernels in DGLAP-CS 
themselves in order to achieve reliable MC implementation of (2)[8].  One finds[8] that (1) 
applied to the parton branching processes allows improvement of the respective kernels to  
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where the IR exponents γj and normalizations fj, j=q, G, are given in Refs. [8]. FYFS is well-
known from Ref. [5] and CA are the respective color Casimir invariants. We find that, when 
incorporated into the standard DGLAP-CS evolution, these improved kernels lead to ~5% 
changes in the moments of the NS densities [8] so that these improvements are of both technical 
and phenomenological significance. One of us (BFLW) has also worked-out the effect of these 
improvements on the higher order exact results for the kernels in Refs. [20] –see Refs. [8] where 
we show that there is no contradiction between (9) and the latter exact results.  
         Finally, in preparation for cross checks on various exact results which we need for the 
residuals in (1) and (2), one of us (BFLW) applied (1) to the issue of Bloch-Nordsieck non-
cancellation in ISR in massive QCD at O(s

2) as discovered in Refs.[21,22]. As explained in 
[23], one finds that the real emission in the contribution Aq-o in the notation of Ref.[22] saturates 
the IR single pole whose partial cancellation by the respective virtual corrections leads to the 
failure of Bloch-Nordsieck cancellation. One then applies (1) to the uncancelled fraction, Fnbn, 
and finds that exponentiation removes this uncancelled part of the real emission, restoring the 
respective Bloch-Nordsieck cancellation—see Refs.[23] for the details. The practical effect is 
that one can use non-zero quark masses in ISR at O(s

n), n≥2, in calculating the residuals in (1) 
and (2) and thereby cross-check the considerable massless results related thereto in the 
literature. 

5.0   Final state of Hawking radiation 

         The many possible applications of the new approach to the UV divergence problem in 
quantum general relativity afforded by (3-5) are under study. Here let us record an important 
application by one us (BFLW) concerning the final state of the Hawking process[3] for an 
originally very massive black hole. Using the results (3-5), one computes the resummed 
graviton propagator and finds that Newton’s potential is corrected[9] to  

(10)                                                                                            )1()( arN
N e

r
MG

r −−−=Φ  
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where . This is consistent with the asymptotic safety results in Ref.[24] and 
implies that elementary particles of the Standard Model are not black holes. Moreover, when 
one joins (10) on to the result in Ref.[24] for evolution of an originally very massive black hole 
by the Hawking process, one finds, consistent with Ref. [25], that the Planck scale remnant 
found in Ref.[24] becomes, due to (10), accessible to our universe, so that it should decay into 
Planck scale cosmic rays at least in some cases. One of us (BFLW) has encouraged 
experimentalists to look for such phenomena. The detailed rate of such events is under study—it 
is not known at this time.  

PlM 210.0≅a
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