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Accurate predictions of QCD jet cross sections require the computation of radiative corrections

at least at next-to-leading order (NLO) accuracy, but in some cases also at higher order. The physi-

cal cases when computations at the next-to-next-to-leading order (NNLO) are important have been

discussed extensively in the literature [1]. There are also some less standard motivations. Although

several general methods exist for computations at NLO, these become very time-consuming with

increasing number of final-state partons. Many talks at this conference showed impressive progress

in computing one-loop corrections to amplitudes of multileg processes [2], therefore, we should

consider the question wether we can compute the real radiation corrections fast enough. Further-

more, the thorough understanding of computing NNLO corrections may help the combination of

parton showers and NLO calculations.

The perturbative expansion of any jet cross section can formally be written as σ = σLO+

σNLO+ σNNLO+ . . . . Let us consider e+e− → m jet production, when σLO is the integral of the

fully exclusive Born cross section over the available phase space defined by the jet function Jm,

σLO =
∫

m
dσBmJm ≡

∫

dφm|M
(0)
m |2Jm . (1)

There are two contributions to the NLO correction. We have to consider the fully exclusive cross

section dσR for producing m+ 1 partons and the one-loop correction dσV to the production of m

partons,

σNLO =
∫

m+1
dσRJm+1+

∫

m
dσVJm =

∫

dφm+1|M
(0)
m+1|

2Jm+1+
∫

dφm2Re〈M
(1)
m |M

(0)
m 〉Jm . (2)

These two contributions are separately divergent in d = 4 dimensions although their sum is finite

for infrared safe observables. We assume that ultraviolet renormalization has been carried out,

so the divergences are purely of infrared origin and are regularized by defining the integrals in

d = 4−2ε dimensions.

There are several general methods of computing the finite NLO correction. Most of these rely

on the same principles, namely one defines approximate cross section dσA which regularizes the

real correction in d dimensions in all its infrared singular limits that lead to poles in ε , so the cross

section

σNLOm+1 =
∫

m+1

[(

dσR
)

ε=0
Jm+1−

(

dσA
)

ε=0
Jm
]

(3)

is finite.1 The approximate cross section is constructed using the universal soft- and collinear

factorization properties of QCD matrix elements (we use the colour-state notation [3] and also

some notation introduced in Ref. [4]),2

Sr|M
(0)
m+1(pr, . . .)|

2 ∝ ∑
i,k
i6=k

sik

sirskr
〈M

(0)
m (. . .)|T i·T k|M

(0)
m (. . .)〉 , (4)

1The subtraction terms in these equations are symbolic in the sense that these are actually sums of different terms.

The jet function depends on different momenta in each of these terms, the exact set of momenta for each term can be

found in Ref. [18].
2We drop some numerical factors in order to keep the expressions as simple as possible, as only the structure of

these formulae is relevant for the discussion.
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Cir|M
(0)
m+1(pi, pr, . . .)|

2 ∝
1

sir
〈M

(0)
m (pir, . . .)|P̂

(0)
ir |M

(0)
m (pir, . . .)〉 . (5)

These factorization formulae allow for such a construction that the integration over the phase space

of the unresolved parton can be computed independently of the jet function, leading to

∫

1
dσA = dσBm ⊗ I(ε) , (6)

where I(ε) is an operator in the colour space with universal pole part,

I(ε) ∝
αs
2π ∑

i

[

1

ε
γi−

1

ε2 ∑
k 6=i

T i ·T k

(

4πµ2

sik

)ε
]

+O(ε0) . (7)

This pole part is equal, but opposite in sign to the pole part of the virtual correction, so that the

m-parton integral

σNLOm =
∫

m

[

dσV+
∫

1
dσA

]

ε=0

(8)

is finite. Therefore, the sum of the two finite contributions σNLOm and σNLOm+1 is equal to σNLO.

In constructing the approximate cross section special care is needed to avoid double subtrac-

tions in the regions where a soft parton becomes also collinear to another hard parton. At the NLO

accuracy, the overlap of the soft- and collinear limits can easily be identified to be the collinear

limit of the soft factorization formula [4]. However, disentangling the multiple unresolved limits

at higher orders, when multiple soft-, collinear- and soft-collinear limits overlap in a complicated

way, is far more cumbersome [4]. This calls for a simple and systematic procedure.

In a physical gauge the collinear singularities are due to the collinear splitting of an exter-

nal parton [5]. The overall colour structure of the event does not change, the splitting is entirely

described by the Altarelli–Parisi functions which are a product of colour factors and a kinemati-

cal function describing the collinear kinematics of the splitting. Thus, if we want to identify the

collinear contributions in the soft factorization formulae to any order in perturbation theory, we

can use the following simple procedure: (i) employ the soft insertion rules [6, 7] to obtain the usual

expression

Sr|M
(0)
m+1(pr, . . .)|

2 ∝
m

∑
i=1

m

∑
k=1

∑
hel.

εµ(pr)ε
∗
ν(pr)

2p
µ
i p

ν
k

sirskr
〈M

(0)
m (. . .)|T i·T k|M

(0)
m (. . .)〉 , (9)

with

sir = 2pi·pr and ∑
hel.

εµ(pr)ε
∗
ν(pr) = −gµν +

p
µ
r n

ν + pν
r n

µ

pr ·n
; (10)

(ii) choose Coulomb gauge (nµ = Qµ − p
µ
r Q
2/srQ, srQ = 2pr ·pQ) to identify the collinear contri-

bution in the colour diagonal terms

Sr|M
(0)
m+1(pr, . . .)|

2 ∝
m

∑
i=1

[

1

2

m

∑
k 6=i

(

sik

sirsrk
−
2siQ

srQsir
−
2skQ

srQskr

)

〈M
(0)
m (. . .)|T i·T k|M

(0)
m (. . .)〉

−T 2i
2

sir

siQ

srQ
|M

(0)
m (. . .)|2

]

; (11)

3



P
o
S
(
R
A
D
 
C
O
R
 
2
0
0
7
)
0
4
7

Perturbation theory of computing QCD jet cross sections beyond NLO accuracy Zoltán Trócsányi

(iii) define momentum fractions in the Sudakov parametrization of momenta p
µ
i and p

µ
r being

collinear as zi =
siQ

siQ+srQ
, so that the colour-diagonal terms become equal to the collinear limit of the

soft factorization formula. Then the pure soft contributions are given by

Spurer |M
(0)
m+1(pr, . . .)|

2 ∝
m

∑
i=1

[

1

2

m

∑
k 6=i

(

sik

sirsrk
−
2siQ

srQsir
−
2skQ

srQskr

)

〈M
(0)
m (. . .)|T i·T k|M

(0)
m (. . .)〉

]

.

(12)

We checked explicitly that this procedure leads to non-overlapping factorization formulae that de-

scribe the analytic behaviour of the squared matrix elements in any IR limit at the NNLO accuracy

[8]. Furthermore, the factorization formula in the purely soft limit is independent of the helicity of

the soft gluon. This allows for the definition of approximate cross sections for real radiation with

fixed helicities, and thus for Monte Carlo summation over the helicities in NLO computations. The

Monte Carlo summation over the helicities in computations at LO was found very useful for saving

CPU time [9].

The physical motivation for higher accuracy and the success of the subtraction schemes at

NLO lead one to consider the extension of the subtraction method to NNLO, when three terms

contribute: the double-real, the real-virtual and the double-virtual cross sections,

σNNLO = σRRm+2+ σRVm+1+ σVVm ≡

∫

m+2
dσRRm+2Jm+2+

∫

m+1
dσRVm+1Jm+1+

∫

m
dσVVm Jm . (13)

The necessary ingredients for constructing approximate cross sections, namely (i) the tree level

three-parton splitting functions [10] and double soft gg and qq̄ currents [7, 11] and (ii) the one-loop

two-parton splitting functions [12] and soft-gluon current [13] that is, the infrared (IR) structures

of the three contributions at NNLO have been known for some time. The difficulty of using the

multiple infrared factorization formulae for cunstructing the approximate cross sections is amply

demonstrated by the slow progress in setting up a subtraction scheme. Other approaches to com-

puting NNLO corrections have been more successful.

The antennae subtraction method [14] uses complete squared matrix elements instead of the

IR structure and the first complete computation of NNLO corrections to three-jet production in

electron-positron annihilation has been reported to this conference [15]. For processes involving

massive particles and/or simple kinematics, direct numerical evaluation of the coefficients in the

Laurent expansion of the three contributions (based on sector decomposition) lead to the complete

NNLO corrections of Higgs- [16] and vector-boson production in hadron collisions [17]

The reorganization of the NNLO contributions into three finite cross sections,

σNNLO = σNNLOm+2 + σNNLOm+1 + σNNLOm , (14)

is governed by the jet function as follows:

σNNLOm+2 =
∫

m+2

{

dσRRm+2Jm+2−dσ
RR,A2
m+2 Jm−

(

dσ
RR,A1
m+2 Jm+1−dσ

RR,A12
m+2 Jm

)}

, (15)

σNNLOm+1 =
∫

m+1

{(

dσRVm+1+
∫

1
dσ
RR,A1
m+2

)

Jm+1−
[

dσ
RV,A1
m+1 +

(

∫

1
dσ
RR,A1
m+2

)

A1
]

Jm

}

(16)

and

σNNLOm =

∫

m

{

dσVVm +

∫

2

(

dσ
RR,A2
m+2 −dσ

RR,A12
m+2

)

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ
RR,A1
m+2

)

A1
]}

Jm . (17)
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Let us concentrate on Eq. (16). The construction of dσRV,A1
m+1 that regularizes the kinemati-

cal singularities of dσRVm+1 in the singly-unresolved regions is straightforward, but the difference
[

dσRVm+1Jm+1−dσ
RV,A1
m+1 Jm

]

ε=0
is infinite. To make it finite, we have to subtract the universal pole

part, given by Eqs. (6)–(8), too. The latter however, does not obey universal collinear factorization.

Due to coherent soft-gluon emission from unresolved partons only the sum 〈M
(0)
m+1|(T j ·T k+T r ·

T k)|M
(0)
m+1〉 factorizes in the collinear limit (T jr = T j+T r),

C jr〈M
(0)
m+1|(T j ·T k+T r ·T k)|M

(0)
m+1〉 ∝

1

s jr
〈M

(0)
m |T jr ·T k P̂

(0)
jr |M

(0)
m 〉 . (18)

This factorization is violated by the factors s−ε
ik /ε2 at O(ε0), which was also noticed in Ref. [19],

where it was shown that the terms that violate factorization are known to give vanishing con-

tribution after integration. However, if one insists on defining fully local subtractions, which is

important for numerical stability and reducing CPU time, then the use of properly defined new ap-

proximate cross sections is necessary. The complete subtraction scheme at NNLO, based on these

new approximate cross sections is defined in Refs. [18, 20].We employed this subtraction scheme

for computing the finite cross sections σNNLOm+2 and σNNLOm+1 of the C-parameter and thrust distribu-

tions in electron-positron annihilation. In order to have the complete physical prediction we also

have to compute σNNLOm , which requires the integration of the subtraction terms over the singly-

and doubly-unresolved factorized phase spaces. We used standard techniques fractioning, sector

decomposition [21] and residuum subtraction to find the Laurent expansion of the one-particle

integrals in
∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ
RR,A1
m+2

)

A1
]

. (19)

We expect that the same techniques can also be employed for the computation of the coefficients

in the ε-expansion of the two-particle integral

∫

2

(

dσ
RR,A2
m+2 −dσ

RR,A12
m+2

)

. (20)

This work is in progress.
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