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1. Introduction

For more than a decade experiments at LEP (CERN) and SLC (SLAC) gathered a wealth of
high precision high energy hadronic data from electron-positron annihilation at a range of centre-
of-mass energies [1, 2, 3]. This data provides one of the cleanest ways of probing our quantitative
understanding of QCD. This is particularly so because the strong interactions occur only in the fi-
nal state and are not entangled with the parton density functions associated with beams of hadrons.
As the understanding of the strong interaction, and the capability of making more precise theo-
retical predictions, develops, more and more stringent comparisons of theory and experiment are
possible, leading to improved measurements of fundamentalquantities such as the strong coupling
constant [4].

In addition to measuring multi-jet production rates, more specific information about the topol-
ogy of the events can be extracted. To this end, many variables have been introduced which charac-
terise the hadronic structure of an event. With the precision data from LEP and SLC, experimental
distributions for such event shape variables have been extensively studied and have been compared
with theoretical calculations based on next-to-leading order (NLO) parton-level event generator
programs [5, 6, 7], improved by resumming kinematically-dominant leading and next-to-leading
logarithms (NLO+NLL) [8] and by the inclusion of non-perturbative models of power-suppressed
hadronisation effects [9].

The precision of the strong coupling constant determined from event shape data has been lim-
ited up to now largely by the scale uncertainty of the perturbative NLO calculation. We report
here on the first calculation of NNLO corrections to event shape variables, and discuss their phe-
nomenological impact.

2. Event shape variables

In order to characterise hadronic final states in electron-positron annihilation, a variety of event
shape variables have been proposed in the literature, for a review see e.g. [10]. These variables
can be categorised into different classes, according to theminimal number of final-state particles
required for them to be non-vanishing: In the following we shall only consider three particle final
states which are thus closely related to three-jet final states.

Among those shape variables, six variables [11] were studied in great detail: the thrustT, the
normalised heavy jet massρ , the wide and total jet broadeningsBW andBT , theC-parameter and
the transition from three-jet to two-jet final states in the Durham jet algorithmY3.

The perturbative expansion for the distribution of a generic observabley up to NNLO ate+e−

centre-of-mass energy
√

s, for a renormalisation scaleµ2 is given by
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dĀ
dy

β0 log
µ2

s

)

+

(

αs(µ2)

2π

)3(

dC̄
dy

+2
dB̄
dy

β0 log
µ2

s

+
dĀ
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The dimensionless perturbative coefficientsĀ, B̄ andC̄ depend only on the event shape variabley.
They are computed by a fixed-order parton-level calculation, which includes final states with three
partons at LO, up to four partons at NLO and up to five partons atNNLO. LO and NLO corrections
to event shapes have been available already for a long time [5, 6, 7].

The calculation of the NNLO corrections is carried out usinga newly developed parton-level
event generator programmeEERAD3 which contains the relevant matrix elements with up to five
external partons [12, 13, 14, 15]. Besides explicit infrared divergences from the loop integrals,
the four-parton and five-parton contributions yield infrared divergent contributions if one or two of
the final state partons become collinear or soft. In order to extract these infrared divergences and
combine them with the virtual corrections, the antenna subtraction method [16] was extended to
NNLO level [17] and implemented fore+e− → 3jets and related event-shape variables [18]. The
analytical cancellation of all infrared divergences serves as a very strong check on the implemen-
tation. EERAD3 yields the perturbativeA, B andC coefficients as histograms for all infrared-safe
event-shape variables related to three-particle final states at leading order. From these,Ā, B̄ and
C̄ are computed by normalising to the total hadronic cross section. As a cross check, theA and
B coefficients have also been obtained from an independent integration [7] of the NLO matrix
elements [5], showing excellent agreement.

For small values of the event shape variabley, the fixed-order expansion, eq. (2.1), fails to
converge, because the fixed-order coefficients are enhancedby powers of ln(1/y). In order to
obtain reliable predictions in the region ofy≪ 1 it is necessary to resum entire sets of logarithmic
terms at all orders inαs. A detailed description of the predictions at next-to-leading-logarithmic
approximation (NLLA) can be found in Ref. [19].

3. NNLO results

The precise size and shape of the NNLO corrections depend on the observable in question.
Common to all observables is the divergent behaviour of the fixed-order prediction in the two-jet
limit, where soft-gluon effects at all orders become important, and where resummation is needed.
For several event shape variables (especiallyT andC) the full kinematical range is not yet realised
for three partons, but attained only in the multi-jet limit.In this case, the fixed-order description
is also insufficient since it is limited to a fixed multiplicity (five partons at NNLO). Consequently,
the fixed-order description is expected to be reliable in a restricted interval bounded by the two-jet
limit on one side and the multi-jet limit on the other side.

In this intermediate region, we observe that inclusion of NNLO corrections (evaluated at theZ-
boson mass, and for fixed value of the strong coupling constant) typically increases the previously
available NLO prediction. The magnitude of this increase differs considerably between different
observables[20], it is substantial forT (18%), BT (17%) andC (15%), moderate forρ and BW

(both 10%) and small forY3 (6%). For all shape variables, we observe that the renormalisation
scale uncertainty of the NNLO prediction is reduced by a factor 2 or more compared to the NLO
prediction. Inclusion of the NNLO corrections modifies the shape of the event shape distributions.
We observe that the NNLO prediction describes the shape of the measured event shape distributions
over a wider kinematical range than the NLO prediction, bothtowards the two-jet and the multi-jet
limit. To illustrate the impact of the NNLO corrections, we compare the fixed-order predictions for
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Figure 1: Perturbative fixed-order predictions for theY3-distribution, compared to LEP2 data from ALEPH.

Y3 to LEP2-data obtained by the ALPEH experiment in Figure 1, which illustrates especially the
improvement in the approach to the two-jet region (large−ln(Y3)).

The information contained in the event shape distributionscan be restructured by comput-
ing individual moments. Moments of event shape distributions have been studied theoretically
and experimentally in particular in view of understanding non-perturbative power corrections [9].
Consequently, perturbative NNLO corrections will improvethe discrimination between higher per-
turbative orders and genuine non-perturbative effects. For the first moment〈1−T〉 of the thrust
distribution, we find the integrated coefficients

A = 2.101 B = 44.98 C = 1095±130,

which yields for
√

s= µ = MZ:

〈1−T〉(αs(MZ) = 0.1189) = 0.0398(LO) + 0.0146(NLO) + 0.0068(NNLO) .

Work on moments of the event shapes is ongoing.

4



P
o
S
(
R
A
D
 
C
O
R
 
2
0
0
7
)
0
4
8

e+e− event shapes at NNLO T. Gehrmann

4. Determination of the strong coupling constant

Using the newly computed NNLO corrections to event shape variables, we performed[21] a
new extraction ofαs from data on the standard set of six event shape variables, measured by the
ALEPH collaboration [1] at centre-of-mass energies of 91.2, 133, 161, 172, 183, 189, 200 and 206
GeV. The combination of all NNLO determinations from all shape variables yields

αs(MZ) = 0.1240± 0.0008(stat) ± 0.0010(exp) ± 0.0011(had) ± 0.0029(theo).

We observe a clear improvement in the fit quality when going toNNLO accuracy. Compared to
NLO the value ofαs is lowered by about 10%, but still higher than for NLO+NLLA [1], which
shows the obvious need for a matching of NNLO+NLLA for a fullyreliable result. The scatter
among theαs-values extracted from different shape variables is lowered considerably, and the
theoretical uncertainty is decreased by a factor 2 (1.3) compared to NLO (NLO+NNLA).

These observations visibly illustrate the improvements gained from the inclusion of the NNLO
corrections, and highlight the need for further studies on the matching of NNLO+NLLA, and on
the derivation of NNLLA resummation terms.

5. Outlook

Our results for the NNLO corrections open up a whole new rangeof possible comparisons
with the LEP data. The potential of these studies is illustrated by the new determination ofαs re-
ported here, which can be further improved by the matching NLLA+NNLO, currently in progress.
Similarly, our results will also allow a renewed study of power corrections, now matched to NNLO.
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