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1. Introduction

High-order perturbative calculations of non-relativistic heavy quark-antiquark systems are re-
quired for precise quark mass determinations from QCD sum rules or the lowest upsilon states
(bottom quark mass) or the energy dependence of the threshold top-quark pair production cross
section ine+e− collisions (top quark mass). Concerning thett̄ quark cross section the status is
as follows: the NNLO calculations performed about ten yearsago revealed a large uncertainty, up
to ±25%, in the cross section in the resonance peak region [1, 2].Subsequent calculations that
include a summation of logarithms ofαs find a much reduced scale dependence around±(3−6)%
[3, 4]. The main effect comes from the logarithms at the thirdorder (NNNLO) rather than the
all-order series [5]. Since at NNNLO the ultrasoft scalemtα2

s ∼ 2GeV appears for the first time,
a complete calculation of the (non-logarithmic) NNNLO correction is needed. Similar conclusions
apply to bottomonium systems, with larger uncertainties.

Recently the NNNLO correction to theS-quarkonium wave-functions at the origin (corre-
sponding to the residues of the poles of the heavy quark current spectral functions) from potential
insertions and ultrasoft gluons have been completed [6, 7].The talk presented at this conference
summarized these results together with NNNLO results on thefull energy-dependent spectral func-
tion [8] relevant to thett̄ cross section. Since the combined result of [6, 7] has already been dis-
cussed in another proceedings article [9], we focus here on the full spectral function and the case
of the top quark. That is, we consider the two-point function

(

qµqν −gµνq2)Π(q2) = i
∫

ddxeiqx 〈Ω|T( jµ(x) jν(0))|Ω〉 (1.1)

of the electromagnetic top-quark currentjµ = t̄γµt, choosingqµ = (2mt + E,~0) with mt the pole
mass of the top quark andE of order of a few GeV. The width of the top quark is taken into
account by simply lettingE → E + iΓt become complex [10]. However, one should note that
a fully consistent treatment of the top-quark decay beyond the NLO approximation requires the
inclusion of many other electroweak effects that are not yetknown.

2. Remarks on the calculation

After integrating out the hard and soft momentum scales the problem is reduced to the calcu-
lation of a non-relativistic correlation functionG(E) to third order in non-relativistic perturbation
theory. The perturbations consist of potential insertions(instantaneous, spatially non-local oper-
ators) and ultrasoft gluon interactions with the top quarks. Since an infinite number of potential
(Coulomb) gluons can be exchanged between the heavy quarks without parametric suppression,
the free heavy quark-anti-quark propagators are promoted to the Green function of the Schrödinger
operatorH0 = −~∇2/mt − (αsCF)/r with the colour Coulomb potential (CF = 4/3). Computing
Feynman integrals with Coulomb Green functions while simultaneously regulating all divergences
dimensionally to be consistent with fixed-order matching calculations is the main challenge of the
NNNLO calculation. The third-order correction toG(E) is composed of

δ3G = −〈0|Ĝ0δV1Ĝ0δV1Ĝ0δV1Ĝ0|0〉+2〈0|Ĝ0δV1Ĝ0δV2Ĝ0|0〉−〈0|Ĝ0δV3Ĝ0|0〉+δGus, (2.1)
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whereĜ0 = (H0−E− iε)−1, |0〉 denotes a relative position eigenstate with eigenvaluer = 0, and
δVi theith order perturbation potentials (see [6]). The contributions toG(E) involving only higher-
order corrections to the Coulomb potential have already been computed in [11] and are included in
the following numerical result. The ultrasoft contribution is (D = d−1)

δGus = (−i)(igs)
2CF

∫

ddk
(2π)d

−i
k2

(

kik j

k2
0

−δ i j
)

∫ 6

∏
n=1

dD pn

(2π)D iG̃(1)(p1, p2;E)

× i

[

2pi
3

mt
(2π)Dδ (D)(p3− p2)+(igs)

2CA

2
2(p2− p3)

i

(p2− p3)4

]

iG̃(8)(p3, p4;E+k0)

× i

[

−
2p j

4

mt
(2π)Dδ (D)(p4− p5)+(igs)

2CA

2
2(p4− p5)

j

(p4− p5)4

]

iG̃(1)(p5, p6;E) (2.2)

with G̃(1,8)(p, p′;E) the colour-singlet/octet momentum-space Coulomb Green functions. In posi-
tion space this expression simplifies to three instead of seven loop integrations and similar simpli-
fications apply to the other terms in (2.1). However, the integrals are divergent and the 1/ε poles
must be extracted in momentum space. A further complicationis that the Coulomb Green functions
are not known inD dimensions. The strategy therefore consists of identifying all divergent sub-
graphs, and to calculate them ind-dimensional momentum space. Then combine the result with the
sub-divergence counterterms related to the renormalization of potentials and non-relativistic cur-
rents and perform the remaining integrations in three dimensions. Due to the incomplete treatment
of finite width effects an over-all divergenceα1,2

s /ε ×Γt remains in thett̄ cross section, which is
minimally subtracted in the result below.

3. Size of logarithmic and non-logarithmic terms

We consider the residue of the correlation function at the lowest-energy bound-state pole at
E1 = −mt(αsCF)2/4+ . . . to compare the new NNNLO non-logarithmic terms [6, 7] to the previ-
ously known logarithms [12, 13, 14, 15], since in this case a simple numerical result can be given.
Z1, defined by

Π(q2)
E→E1=

3

2m2
t

Z1

E1−E− iε
, (3.1)

is related to the height of the cross section peak byRpeak≈ 18πe2
t Z1/(m2

t Γt), so we expect similar
conclusions to hold for the entirett̄ cross section. The NNNLO expression forZ1 reads

Z1 =
(mtαsCF)3

8π
×

(

1+αs

[

−2.13+3.66L
]

+α2
s

[

8.38−7.26 lnαs−13.40L+8.93L2
]

+α3
s

[

11.01+[37.58]c3,nf −9.79 lnαs−16.35 ln2 αs

+(53.17−44.27 lnαs)L−48.18L2 +18.17L3
]

)

=
(mtαsCF)3

8π
×

(

1−2.13αs+22.64α2
s +[−32.96+[37.58]c3,nf ]α

3
s

)

. (3.2)
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Since the scalesmt , mtαs andmtα2
s are all relevant here, there is an ambiguity in the representation

of the logarithms. The above result usesαs ≡ αs(µ) and puts the explicitµ-dependence intoL ≡

ln µ/(mtCFαs). The NNNLO result is not yet complete: the constant 11.01 includes an estimate of
the NNNLO correction to the Coulomb potential,a3 = 3840 [16], and sets certain unknownO(ε)

potential terms to zero. This is expected to have a minor effect [6]. More important is that only the
nf -parts of the third-order matching coefficientc3 of the non-relativistic currentψ†σ iχ are known
[17], which turn out to be very large ([37.58]c3,nf ). In the following numerical results for thett̄ cross
section we therefore consider two options, one where the constant part ofc3 is set to the knownnf

terms, the other where it is set to zero. (The logarithms are all known and always included.)
We observe (third and fourth line of (3.2)) that the typical size of non-logarithmic terms of

individual third-order corrections (ultrasoft, non-Coulomb potentials, Wilson coefficient) is about
40α3

s ≈ 10%(> 100%) for toponium (bottomonium). However, large cancellationsbetween indi-
vidual terms and between logarithmic and non-logarithmic terms occur. Thus, to obtain a reliable
third-order result the non-logarithmic terms are crucial and a final assessment needs the missing
nf -independent term inc3. This is seen in the last line of (3.2), which shows the seriesfor αs = 0.14
whereL = 0. The large NNLO correction is evident. On the other hand, the third-order correc-
tion is not anomalously large, although the final coefficientwill only be known when the term
[37.58]c3,nf is replaced by the full result forc3. The NNNLO result shows a strong reduction of the
scale dependence compared to NNLO as discussed in [9], but the perturbative prediction becomes
unstable forµ < 20GeV. A study of this problem for the Coulomb corrections, where a resum-
mation of the perturbative series can be done by means of a numerical solution, has shown [11]
that the perturbative prediction forµ > 25GeV is close to the true result, hence we do not consider
scalesµ < 25GeV.

4. Top-quark cross section

We next discuss thett̄ production cross section ine+e− annihilation near threshold. More
precisely, we consider theR-ratio

R= σtt̄X/σ0 = 12πe2
t Im Π(q2)

(

σ0 = 4πα2
em/(3s)

)

, (4.1)

neglecting the axial-vector contribution fromZ-exchange for the purpose of discussing the impact
of the QCD NNNLO correction. The top quark pole mass should beavoided as an input parameter.
Here we use the potential-subtracted mass [18] implementedas explained in [11]. The parameters
for the cross section calculation are:mt,PS(20GeV) = 175GeV,Γt = 1.4GeV,αs(MZ) = 0.1189.

The successive LO ... NNNLO approximations toR are shown in Figure 1 (top panel). At
µ = 30GeV the size of the third-order correction is up to 10% depending on the assumption for
c3. When all known terms inc3 are included the peak cross section is about 10% larger than in
the renormalization-group improved NNLO calculations [3,4, 5] due to the sizeable constant term
related to 11.01+[37.58]c3,nf in (3.2). Contrary to the NNLO approximation the third-order result
shows good convergence of the perturbative expansion. The bottom panel of Figure 1 consequently
displays a strong reduction of the scale dependence from NNLO to NNNLO. The residual scale
dependence is similar at NNNLO and in the renormalization-group improved calculations, which
already captures correctly the logarithms ofµ . It therefore appears that with a complete NNNLO
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Figure 1: (top) Successive approximations to theR-ratio at fixedµ = 30GeV. At NNNLO two implemen-
tations ofc3 are shown as discussed in the text. (bottom) Renormalization scale dependence at NNLO and
NNNLO. Here all known terms inc3 are included.

result and a summation of higher-order logarithms at hand, the demands on an accurate theoretical
prediction of the cross section near threshold can be metas far as QCD corrections are concerned.
In particular, the scale dependence of the peak position which is indicative of the accuracy of the
top mass measurement is now well below 100 MeV.

5. Summary

The NNNLO QCD correction to thett̄ cross section near threshold is now nearly complete.
We presented for the first time the result of the third-order potential and ultrasoft correction to the
non-relativistic heavy-quark correlation function. We find that the third-order correction behaves
well (contrary to the anomalously large effect at NNLO) and removes a large part of the theoretical
uncertainty. The new non-logarithmic terms are numerically important and increase the cross sec-
tion relative to the renormalization-group improved NNLO result by about 10%, when all presently
known terms of the three-loop matching coefficientc3 are included. Further work is necessary on
a consistent treatment of electroweak and finite-width effects (see [19, 20, 21]).
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