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Far above threshold the production processe+e− → tt̄ can be analyzed using effective field theo-

ries. In this talk we consider the invariant mass distribution of top-jets and report about our com-

putation of the two-loop heavy quark jet-function. This is akey part of a next-to-next-to-leading

order analysis, and already allows for a resummation of all large logs which effect the shape of the

top-invariant mass distribution at next-to-next-to-leading log order. A top-mass scheme is defined

which is suitable for measurements involving jets, and whose anomalous dimension is determined

by the cusp-anomalous dimension to all orders in perturbation theory.
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Two-loop Jet-Function and Jet-Mass for Top Quarks Ignazio Scimemi

1. Introduction

The era of LHC is now starting and with it some new questions arise about the possibility
of measuring the fundamental parameters of the Standard Model (SM) with high precision. The
issue is particularly relevant for the top quark mass. The latest Tevatron analysis givemt = 170.9±
1.8 [3], a measurement at 1% level whose precision affects heavily the actual constraints on the
Higgs mass as well as many new physics scenarios.

The questions we want to address are the following: i) what observable is both sensitive to the
mass of the top quark and under good theoretical control? ii)What is the theoretical framework
where we can systematically describe this observable with high precision? iii) How precise is
our theoretical control over perturbative shifts to the peak of the invariant mass distribution? iv)
And finally, using the invariant mass for a top-mass measurement, what is the most appropriate
(stable) mass definition to use, and how well can one related this mass to other existing top-mass
definitions? The former 2 points were extensively discussedin the talk of A. Hoang [4] at this
meeting. The latter 2 are the focus of this proceedings, for which a complete discussion is given in
ref. [6].

We concentrate one+e− → tt̄ far from threshold, where the center-of-mass energyQ2 ≫ m2
t .

The theoretical framework is based on effective field theories like HQET and SCET [5], and has
been outlined in ref. [1, 2]. Here the top quark decay products form well separated collinear jets
together with soft-radiation among the jets. A thrust axis can be defined and this axis define a
plane which divides the space in two hemispheres (that we call “a” and “b” hemispheres). A suit-
able observable is the event-shape cross-sectiond2σ/dM2

t dM2
t̄ . HereM2

t = (∑i∈a pµ
i )2 andM2

t̄ =

(∑i∈b pµ
i )2 are hemisphere invariant masses. The different physics components ofd2σ/dM2

t dM2
t̄

can be separated by a factorization theorem derived in Ref. [1]

dσ
dM2

t dM2
t̄

= σ0HQ(Q,µm)Hm

(

m, Q
m,µm,µ

)

∫

dℓ+dℓ− B+

(

ŝt −
Qℓ+

m ,Γt ,µ
)

B−

(

ŝ̄t −
Qℓ−

m ,Γt ,µ
)

×S(ℓ+, ℓ−,µ)+O

(

mαs(m)
Q , m2

Q2 ,
Γt
m , st

m2 ,
s̄t
m2

)

. (1.1)

In Eq. (1.1)σ0 is the tree level Born cross section,HQ andHm are hard-functions which encode the
perturbative corrections at the scalesQ andm, where from now on we usem for the mass of the top

quark. The invariant mass variables ˆst andŝ̄t are defined as ˆst = st
m = M2

t −m2

m , ŝ̄t = s̄t
m =

M2
t̄ −m2

m , and
the most sensitive region for mass measurements is the peak region where ˆst,t̄ . Γt + QΛQCD/m.
Finally, B± in Eq. (1.1) are heavy-quark jet functions for the top quark/antiquark, andS is the soft
function describing soft radiation between the jets. Our main focus here will be on the functions
B±, which are defined in the heavy-quark limitmt ≫ Γt using HQET [7, 8]. The soft functionS
is universal to massless and massive jets and a suitable model can be found in Ref. [9], extending
earlier work in Ref. [10].

In this talk we take the first step toward next-to-next-to-leading order (NNLO) for the invariant
mass spectrum,d2σ/dM2

t dM2
t̄ , by computing the top quark jet function at two-loop order. We also

give results for the resummation of large logs for this jet function at next-to-next-to-leading log
order (NNLL). This translates into a resummation of all the large logs in the cross-section that can
modify the shape of the invariant mass distribution [1]. We introduce a definition of the top jet-
mass scheme that has a well defined mass anomalous dimension at any order in perturbation theory
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(unlike the definitions based on cutoff first moments or on peak locations). In this jet-mass scheme
the quark-mass anomalous dimension is completely determined by the cusp anomalous dimension
at any order in perturbation theory.

2. The heavy quark jet function

The jet-functionsB± for the top quark/top anti-quark are identical by charge conjugation, so
we will only refer to the computation ofB ≡ B+. B is given by the imaginary part of a forward
scattering matrix element,B(ŝ,δm,Γt ,µ) = Im

[

B(ŝ,δm,Γt ,µ)
]

, whereB are vacuum matrix
elements of a time-ordered product of fields and Wilson lines

B(2v+ · r,δm,Γt ,µ)=
−i

4πNcm

∫

d4xeir ·x〈

0
∣

∣T{h̄v+(0)Wn(0)W†
n (x)hv+(x)}

∣

∣0
〉

. (2.1)

Herevµ
+ is the velocity of the heavy top quark, and we introduce null-vectorsnµ and n̄µ so that

we can decompose momenta aspµ = nµ n̄·p/2+ n̄µn·p/2+ pµ
⊥. The vectors satisfyv2

+ = 1 and
n2 = n̄2 = 0, and the definition of the Wilson lines in Eq. (2.1) is

W†
n (x) = Pexp

(

ig
∫ ∞

0 dsn̄ ·An(n̄s+x)
)

, Wn(x) = Pexp
(

− ig
∫ ∞

0 dsn̄ ·An(n̄s+x)
)

. (2.2)

These Wilson lines makeB gauge-invariant and encode the residual interactions fromthe antitop
jet. The HQET fieldshv+ have the leading order Lagrangian

Lh = h̄v+

(

iv+ ·D−δm+ i
2Γt

)

hv+ . (2.3)

HereΓt is the top quark total width, obtained from matching the top-decay amplitudes in the stan-
dard model (or a new physics model) onto HQET at leading orderin the electroweak interactions,
and at any order inαs. The residual mass termδm in Eq. (2.3) fixes the definition of the top mass
m for the HQET computations [11], whereδm= mpole−m. From the definitions in Eq. (2.1) and
the Lagrangian in Eq. (2.3) one can deduce a series of properties of the jet function, which state
that it is easy to reconstructB(ŝ,δm,Γt ,µ) from B(ŝ,0,0,µ). In particular inB the ŝ, δm, andΓt

dependence formally occurs only in the combination(ŝ−2δm+ iΓt). For this reason it is useful to
have a notation for computations done with a zero residual mass term in the Lagrangian, and with
zero-width. Thus we define

B(ŝ,δm,µ) ≡ B(ŝ,δm,0,µ) , B(ŝ,δm,µ) ≡ B(ŝ,δm,0,µ) ,

B(ŝ,µ) ≡ B(ŝ,0,0,µ) , B(ŝ,µ) ≡ B(ŝ,0,0,µ) . (2.4)

3. Non-Abelian exponentiation and jet-mass

It is possible to rewrite Eq. (2.1) as a matrix element of pureWilson lines,

B(2v· r,µ) = i
2πNcm

∫

dx0 eiv·r x0 θ(x0)
〈

0
∣

∣tr T W†
v (0)Wn(0)W†

n (x)Wv(x)
∣

∣0
〉

, (3.1)
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where 2v· r = ŝ, we use the shorthandx0 = v·x, and the trace tr is over color indices. The definition
of Wv andW†

v is as in Eq. (2.2) withn→ v. Following the steps outlined in the original paper, [6],
also the Fourier transform of the jet function comes out as a product of Wilson lines,

B(ŝ,µ) =
1

2π

∫

dy eiŝ y B̃(y,µ) , B̃(y,µ) =
1

mNc

〈

0
∣

∣tr
[

T W†
n (2y)Wv(2y)

][

T W†
v (0)Wn(0)

]
∣

∣0
〉

.

(3.2)

wherey = y− i0 to ensure convergence as ˆs→ ∞. Due to the non-abelian exponentiation theo-
rem [12, 13],B̃(y,µ) exponentiates. Thus we can write the result of our two-loop computation
as [6]:

mB̃(y,µ) = exp

{

CF αs(µ)
π

(

L̃2+ L̃+ π2

24 +1

)

+ α2
s (µ)CFβ0

π2

[

1
6L̃3 + 2

3L̃2+ 47
36L̃− ζ (3)

48 + 5π2

576 + 281
216

]

+α2
s (µ)CFCA

π2

[

(

1
3 −

π2

12

)

L̃2 +

(

5
18−

π2

12 −
5ζ3
4

)

L̃− 5ζ3
8 − 17π4

2880+ 7π2

144−
11
54

]

}

, (3.3)

where L̃ ≡ ln
(

ieγE yµ
)

. The non-abelian exponentiation theorem guarantees that corrections to
this result areO(α3

s ) in the exponent, and that these corrections vanish if we takethe abelian limit
CA → 0 andnf → 0. Since the exponent of the abelian result is one-loop exact, we can use it to test
the perturbative behavior of different definitions of the top-mass at any desired order in pertubation
theory. Choosing an appropriate top-mass definition corresponds to choosing an appropriateδm.
In ref.[6] we explored several possibilities and came to thefollowing definition, which we refer to
as the jet-mass scheme

δmJ =
−i

2B̃(y,µ)

d
dy

B̃(y,µ)

∣

∣

∣

∣

y=−ie−γE /R
= eγE

R
2

d
d ln(iy)

ln B̃(y,µ)

∣

∣

∣

∣

iyeγE =1/R
.

The scheme depends on a parameterR, and we must takeR∼ Γt in order to satisfy the power
counting criteria. Different choices forR specify different schemes, and are analogous to the dif-
ference between the MS andMS mass-schemes. The scheme in Eq. (3.4) is free from leading
renormalon ambiguities [14]. Let us now check that the mass so defined has good transitivity prop-
erties. Transitivity is a well-known feature of theMS mass, and implies that we will obtain the
same result if we evolve directly fromµ0 → µ2, or if we first evolve fromµ0 → µ1 and then from
µ1 → µ2. Transitivity is guaranteed by any mass-scheme with a consistent anomalous dimension
and renormalization group equation. Since in HQET the scaleindependentmpole= m(µ)+δm(µ),
the general form for the RGE equation for the mass is

µ
d

dµ
m(µ) = γm[R,m(µ),αs(µ)] , γm = −µ d

dµ δm(µ) , (3.4)

whereR is a mass dimension-1 scheme parameter. To all orders in perturbation theory, using
Eq. (3.4), the jet-mass anomalous dimension is [6]

γJ
m = −

dδm(µ)

d ln µ
= −eγE

R
2

d
d ln µ

d
d ln(iy)

ln B̃(y,µ)

∣

∣

∣

∣

iyeγE =1/R
= −eγE R Γc[αs(µ)] . (3.5)
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Figure 1: The jet function,mB(ŝ,δmJ,Γt ,µΛ,µΓ) versusMt , where ˆs= (M2
t −m2)/m andΓt = 1.43GeV,

andR= 0.8GeV. The black dotted curve is the tree-level Breit-Wigner, the green short-dashed curves are
LL results, blue long-dashed curves are NLL, and the solid red curves are at NNLL order. For each order we
show three curves withµΓ = 3.3,5.0,7.5GeV respectively. Other parameter choices are discussed in [6].

Thus, to all orders in perturbation theory the jet-mass scheme, has a consistent anomalous dimen-
sion as in Eq. (3.4), and yields a transitive running mass,mJ(µ). The final anomalous dimension
equation for the jet-mass is fully determined by the cusp-anomalous dimensionΓc, which is known
to three-loop order [15]. Note that the form of the anomalousdimension inµd/dµ [mJ(µ)/R] has
the same structure as that inµd/dµ [lnm(µ)], wherem(µ) is theMS mass.

4. Results for the NNLL Jet Function

In this section we discuss the final result for the heavy quarkjet function B(ŝ,δm,Γt ,µ),
with NNLO perturbative corrections and a NNLL resummation of large logs. We have studied
the numerical effect of these two-loop corrections as well as of the log-resummation, including the
perturbative convergence andµ-dependence ofBas a function of ˆs. At tree-levelB(ŝ,δm,µ) = δ (ŝ)
andB(ŝ,δm,Γt ,µ) is simply a Breit-Wigner centered at ˆs= 0 with a widthΓt . Beyond tree-level
the jet function becomes dependent onµ and on the choice of mass-scheme throughδm. For
the cross-sectiond2σ/dM2

t dM2
t̄ in Eq. (1.1) it has been proved that at any order in perturbation

theory, the only large logs that effect the shape of the invariant mass distribution are those due
to the resummation in the heavy-quark jet function [2]. Furthermore these large logs only exist
between scalesµΓ ∼ Γ ≡ Γt +QΛQCD/mandµΛ & ΛQCD+mΓt/Q. The remaining large logs only
modify the cross-section normalization. The expression which sums all logs between the scales
µQ ≃ Q≫ µm ≃ m≫ µΓ ≃ Γ ≫ µΛ & ΛQCD is

d2σ
dMtdMt̄

=4σ0MtMt̄ HQ(Q,µQ)UHQ(Q,µQ,µm)Hm(mJ,µm)UHm(Q/mJ,µm,µΛ) (4.1)

×

∫ +∞

−∞
dℓ+ dℓ−B+

(

ŝt −
Qℓ+

mJ
,δmJ,Γt ,µΛ,µΓ

)

B−

(

ŝ̄t −
Qℓ−

mJ
,δmJ,Γt ,µΛ,µΓ

)

S
(

ℓ+, ℓ−,µΛ,δ , ∆̄(µΛ)
)

,

where we have defined the resummed jet function as

B(ŝ,δmJ,Γt ,µΛ,µΓ) ≡
∫

dŝ′ UB(ŝ− ŝ′,µΛ,µΓ) B(ŝ′,δmJ,Γt ,µΓ) . (4.2)
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Since the scalesµΓ and µΛ differ by a factor ofQ/m≫ 1 it is necessary to sum the large logs
between these scales. In Eqs. (4.1,4.2) large logs are resummed by the evolution factorsUHQ, UHm,
andUB, and of these, the first two only affect the overall normalization. The numerical importance
of the resummation of all large logs was demonstrated at NLL order in Ref. [2].

In fig.1 we the plot LL, NLL, and NNLL results for the jet function. We observe that the
jet-mass scheme results exhibit good perturbative convergence with a stable peak location for the
jet-function. In the jet-mass scheme the scale dependence in the slope before the peak is∼ 6%
at NLL and∼ 2% at NNLL, while the maximum variation near the peak is 14% atNLL and 7%
at NNLL, and then in the tail above the peak it is∼ 12% at NLL and∼ 5% at NNLL. Thus, in
the jet-mass scheme theµΓ dependence is reduced by a factor of two or more. The same level of
improvement is also observed for different mass-scheme parametersR than the one shown.
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