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1. Introduction

In this talk I would like to describe some remarkable progress that has been made in the past
few years in understanding the structure of gauge boson scattering amplitudes in a particular gauge
theory,N = 4 super-Yang-Mills theory. While this theory differs in many details from the elec-
troweak and QCD theories whose radiative corrections were the subject of this symposium, there
are many common issues, particularly associated with infrared structure. Indeed, the understanding
of infrared divergences in QCD acquired over the last few decades has proved extremely useful in
unraveling some of the structure ofN = 4 super-Yang-Mills theory.N = 4 super-Yang-Mills theory is the most supersymmetric theory possible without gravity.
In the free theory, starting from the helicity+1 massless gauge boson (“gluon”) state, the four su-
percharges can be used to lower the helicity by 4× 1

2 = 2 units, until the helicity−1 gluon state is
reached. If one had more supercharges, one would need spin> 1 states, and it is not known how to
quantize such theories in a unitary way without including atleast spin 2 gravitons. Along the way
from the helicity+1 to the helicity−1 gluon state, one passes through the 4 massless (Majorana)
spin 1/2 gluinos, and 6 real (or 3 complex) massless spin 0 scalars. In this maximally supersym-
metric Yang-Mills theory (MSYM), all the massless states are in the adjoint representation of the
gauge group, which we will take to beSU(Nc). The interactions are all uniquely specified by the
choice of gauge group, and one dimensionless gauge couplingg. The theory is an exactly scale-
invariant, conformal field theory; that is, the beta function vanishes identically for all values of the
coupling [1].

Here we will consider the ’t Hooft limit of MSYM, in which the number of colorsNc → ∞,
with the ’t Hooft parameterλ ≡ g2Nc held fixed [2]. In this limit, only planar Feynman dia-
grams contribute. Also, the anti-de Sitter space / conformal field theory (AdS/CFT) duality [3]
suggests that forNc → ∞ the weak-coupling perturbation series inλ might have some very spe-
cial properties. The reason is that, according to AdS/CFT, the strongly-coupled (largeλ ) limit of
the four-dimensional conformal gauge theory has an equivalent description in terms of a weakly-
coupled string theory. The intuition is that the perturbative series should know about this simple
strong-coupling limit, and organize itself accordingly [4].

Figure 1 sketches how events such as gluon scattering look inthe AdS/CFT duality [3, 5]. Five-
dimensional anti-de Sitter space, AdS5, contains, besides the usual four-dimensional space-time
R1,3, an additional radial variabler, which corresponds to a resolution scale in the four-dimensional
theory. Large values ofr correspond to the ultraviolet (UV) region; small values to the infrared (IR).
The figure shows a “big” glueball state in the IR, and a “small”glueball state in the UV. The arrows
represent the motion of plane-wave single gluon states inR1,3 for gg → gg scattering at 90◦. We’ll
discuss the motion inr later. The radius of curvature of AdS5 is proportional toλ 1/4. Largeλ
means that the space-time is only weakly curved, which makesit much simpler to study the string
theory; higher excitations of the string can usually be neglected.

The AdS/CFT duality is a weak/strong duality. Quantities that can be computed at weak
coupling in one picture have a strong-coupling descriptionin the other picture. This property makes
AdS/CFT both powerful and difficult to check explicitly — although there is certainly convincing
evidence in its favor. There are a few quantities that are known (modulo a few assumptions) to
all orders inλ ; that is, for which one can interpolate all the way from weak to strong coupling.
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Figure 1: Cartoon of the AdS/CFT duality.

Notable among these is the cusp (or soft) anomalous dimension γK(λ ). The QCD version of this
quantity crops up a lot in soft-gluon resummation. Beisert,Eden and Staudacher [6] have given
an all-orders proposal forγK(λ ), based on integrability, plus a number of other properties.Their
proposal is consistent with the first four loops in the weak-coupling expansion [7, 8], and also
agrees [9, 10] with the first three terms in the strong-coupling expansion [11, 12, 13].

In this talk I would like to discuss the evidence for another proposal [14], namely that gluon-
gluon scatteringgg → gg in MSYM, for any scattering angleθ can be fully specified by just three
functions ofλ , independent ofθ . One of these three functions is already “known”, because itis
just γK(λ ). This proposal has received some confirmation at strong coupling, through the work of
Alday and Maldacena [5]. It was motivated by the structure ofIR divergences in gauge theory.

2. Infrared divergences

In a conformal field theory, scale invariance implies that the interactions never shut off, so that
a scattering process cannot really be defined. While strictly speaking this is true, we are able to
get around it in practice by regulating the theory in the IR. We’ll use dimensional regularization
with D = 4−2ε andε < 0 (actually a version of it that preserves all the supersymmetry [15]). The
regulator breaks the conformal invariance, but we can recover it by performing a Laurent expansion
aroundε = 0, up to and including theO(ε0) terms.

At one loop, there are two types of IR divergences:soft-gluon exchange, in which the virtual
gluon energyω → 0; andcollinear regions, in which the gluon’s transverse momentum (with
respect to a massless external line)kT → 0. The soft and collinear regions each produce a 1/ε pole,
resulting in a 1/ε2 leading behavior for on-shell amplitudes at one loop. AtL loops, the leading
behavior is 1/ε2L, coming from multiple soft-gluon exchange that is arrangedhierarchically, so
that the outermost gluons are softer and more collinear thanthe innermost ones.

In fact, all the pole terms forL-loop amplitudes are predictable in planar gauge theory, thanks
to decades of work on the soft/collinear factorization and exponentiation of amplitudes, and of
quark and gluon form factors, in QCD [16, 17, 18, 19, 20, 21]. For both QCD and MSYM, in the
planar limit the pole terms are given in terms of three quantities (in the notation of refs. [19, 21]):
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Figure 2: Factorization of soft and collinear singularities.

• the beta functionβ (λ ) (but of course this vanishes in MSYM),

• the cusp anomalous dimensionγK(λ ),

• a “collinear” anomalous dimensionG0(λ ).

The cusp anomalous dimension gets its name because it appears [22, 23, 24] in the renor-
malization group equation for the expectation value of a Wilson lineW (ρ ,g) for two semi-infinite
straight lines, joined at a kink or cusp:

(

ρ
∂

∂ρ
+ β (g)

∂
∂g

)

lnW (ρ ,g) = −2γK(λ ) lnρ2+O(ρ0), (2.1)

whereρ2 ≡ n1 · n2/(
√

n2
1n2

2) → ∞ as the two straight lines become light-like,n2
1,n

2
2 → 0. The

cusp anomalous dimension also controls [18] the universal (flavor independent) large-spin limit
of anomalous dimensionsγ j of leading-twist operators with spinj, such as the quark operators
O j ≡q(γ+D+) jq:

γ j =
1
2

γK(λ ) ln j +O( j0) , j → ∞. (2.2)

Finally, through a Mellin transform of eq. (2.2),γK(λ ) appears in the largex limit of the DGLAP
kernel for evolving the parton distributions,

Paa(x) =
1
2

γK(λ )

(1− x)+
+ · · · , x → 1. (2.3)

Thus, in the study of QCD at colliders it is an important quantity for resumming the effects of soft
gluon emission.

The general infrared structure of massless gauge amplitudes can be exposed [17, 20, 21] by
factoring off soft singularities, which arise from long-distance gluon exchange, and collinear sin-
gularities, which are also at long distances, but only out along the axis of a hard parton. This
space-time picture is shown in fig. 2. DefiningMn to be the full amplitudeAn divided by the tree
amplitudeA tree

n , the factorization formula reads,Mn = S({ki},µ ,ε)×
n

∏
i=1

Ji(ki,µ ,ε)×hn({ki},µ) , (2.4)
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Figure 3: Soft-collinear factorization in the planar limit.

whereµ is the factorization scale, andhn is the hard remainder function, and is finite asε → 0. The
soft functionS only sees the classical color charge of theith particle. In general it is a complicated
matrix acting on the possible color configurations forhn, because soft gluons can attach to any pair
of external partons. The jet functionJi is color-diagonal, but depends on theith spin. Terms that
are color-diagonal and spin-independent can be moved arbitrarily betweenS andJi.

In the large-Nc planar limit, the picture simplifies, to that shown in fig. 3. HereM represents
the coefficient of a particular color structure, tr[T a1T a2 · · ·T an ]. Now soft gluons can only connect
adjacent external partons; and indeed there is no mixing of different color structures at largeNc.
Because of the color-triviality of the planar limit, one canabsorb the entire soft functionS into jet
functions, or break up the right-hand side of fig. 3 inton wedges. Each wedge represents the square
root of the Sudakov form factor, the amplitudeM [1→gg] for a color-singlet state “1” to decay to a
pair of partons, say gluons. Hence the planar version of eq. (2.4) isMn =

n

∏
i=1

[M [1→gg]

(

si,i+1

µ2 ,αs,ε
)]1/2

×hn({ki},µ ,αs) . (2.5)

The only dependence of the singular terms on the kinematics is through the momentum scale,
si,i+1 = (ki + ki+1)

2, entering theith Sudakov form factor.
Factorization also implies that the Sudakov form factor obeys a differential equation in the

momentum scale [16, 24, 18, 19],

∂
lnQ2 lnM [1→gg](Q2/µ2,αs,ε) =

1
2

[

K(ε ,αs)+ G(Q2/µ2,αs,ε)
]

. (2.6)

HereK(ε ,αs) is a pure counterterm, or series of 1/ε poles. By analogy with theD-dimensional
β -function, β (ε ,αs), the single poles (related toγK) determineK completely. The functionG is
finite asε → 0, but contains all theQ2 dependence; it will generate a single pole in lnM [1→gg]

upon integrating eq. (2.6) with respect toQ2. The functionsK andG obey renormalization group
equations,

(

µ
∂

∂ µ
+ β

∂
∂g

)

K = −
(

µ
∂

∂ µ
+ β

∂
∂g

)

G = −γK(λ ). (2.7)

The collinear anomalous dimensionG0(λ ) arises as a constant of integration for the differential
equation forG.

Solving the differential equations forK, G and the Sudakov form factor is particularly easy in
a conformal theory because the four-dimensional coupling does not run. Doing this, and inserting

5
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the form-factor solution into eq. (2.5) for then-point amplitude, we obtain [14],Mn(ε) = 1+
∞

∑
L=1

aLM(L)
n (ε)

= exp

[

−1
8

∞

∑
l=1

al
( γ̂(l)

K

(l ε)2 +
2Ĝ(l)

0

l ε

) n

∑
i=1

(

µ2

−si,i+1

)l ε
]

×hn({ki}) , (2.8)

where

a ≡ Ncαs

2π
(4πe−γ )ε =

λ
8π2 (4πe−γ )ε (2.9)

is the loop expansion parameter in the ’t Hooft limit, andγ̂(l)
K

andĜ(l)
0

are thel-loop coefficients of
γK(a) andG0(a).

The argument of the exponential in eq. (2.8) looks very much like the one-loop amplitude, but
with ε replaced byl ε , denoted byM(1)

n (lε). Thus we are motivated to rewrite eq. (2.8) asMn(ε) = exp

[ ∞

∑
l=1

al
(

f (l)(ε)M(1)
n (lε)+ hn({ki})+O(ε)

)

]

, (2.10)

where f (l)(ε) ≡ f (l)
0

+ ε f (l)
1

+ ε2 f (l)
2

collects three series of constants. Two of these are identified
with the previous quantities as,

f (l)
0

=
1
4

γ̂(l)
K

, f (l)
1

=
l
2

Ĝ(l)
0

, (2.11)

while the third quantity,f (l)
2

, is related to the consistency of eq. (2.10) under collinearlimits [4].

3. A surprising relation

The surprise in planar MSYM is that in some cases the hard remainder functionhn({ki})
defined through eq. (2.10) is actually a constant, independent of the kinematics. This result, which
has been tested perturbatively forn = 4 through three loops [4, 14], and forn = 5 at two loops [25],
is a conjecture beyond that:Mn = exp

[ ∞

∑
l=1

al
(

f (l)(ε)M(1)
n (lε)+C(l) +O(ε)

)

]

. (3.1)

The dependence of the finite part of the logarithm of the amplitude is predicted to all orders by
eq. (3.1), in terms of the cusp anomalous dimension. The prediction for four-gluon scattering isM finite

4 = exp

[

1
8

γK(a) ln2
(

s
t

)

+const.

]

, (3.2)

wheres = s12, t = s23. As we shall discuss in section 9, this formula was confirmed at strong
coupling by Alday and Maldacena [5] using the AdS/CFT correspondence [3]. In contrast, even at
two loops there does not appear to be any comparably simple formula for the finite parts of four-
gluon scattering amplitudes in QCD, or for the subleading-in-Nc terms in MSYM [4]. Instead of a
constant, as in eq. (3.1), one finds thath(2)

n in eq. (2.10) is given by a complicated combination of
polylogarithms involving the dimensionless ratiot/s. On the other hand, eq. (3.1) is reminiscent
of the observation [26] that finite terms can also exponentiate in QCD, ine.g. the Drell-Yan cross
section near partonic threshold.

6
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Figure 4: Example of generalized unitarity at three loops.
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Figure 5: Integrals contributing to four-gluon scattering in planarMSYM, from one to four loops.

4. Evidence

The evidence in favor of eq. (3.1) was collected from explicit computations of the multi-
loop scattering amplitudes. The amplitudes were constructed by evaluating (generalized) unitarity
cuts [27, 28, 29, 30, 31, 32] and matching them to compact representations in terms of a relatively
small number of multi-loop integrals, which turn out to haverather interesting properties. Ordinary
unitarity relates discontinuities (cuts) in a given channel to products of lower-loop amplitudes,
summed over the possible intermediate states in that channel. Generalized unitarity allows the
lower-loop amplitudes to be further sliced, all the way downto tree amplitudes. Figure 4 shows
an ordinary three-particle cut for the four-gluon amplitude. The information in this cut can be
extracted more easily by further cutting the one-loop five-point amplitude on the right-hand side
of the cut, decomposing it into the product of a four-point tree and a five-point tree; as illustrated,
there are three inequivalent ways to do this. If one finds a representation of the amplitude that
reproduces all the generalized cuts (inD dimensions), then that representation is correct.

Figure 5 shows the integrals that enter the four-gluon scattering amplitude in planar MSYM,
from one to four loops [33, 7], along with their numerator factors. An overall factor ofst is omitted
from the rescaled amplitudeM4(s, t), and only one permutation of each integral is shown. At one

7
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Figure 6: The two-loop planar double box integral (in orange) and associated dual graph (in blue).

and two loops, only scalar integrals appear; that is, the numerator factors in the integrand depend
only on the external momentum invariants. At three loops, there are two integrals, the scalar triple
ladder integral and the “tennis-court” integral shown at the top right of fig. 5. The latter integral
marks the first appearance of a loop-momentum factor in the numerator, of the form(li + l j)

2, as
dictated by the “rung rule” [33]. The rung-rule correctly describes all integral topologies that can
be reduced to trees by a sequence of two-particle cuts. At four loops, the last two integrals in fig. 5
have no two-particle cuts, and are somewhat more work to determine. At five loops (not shown)
there are a total of 34 distinct integrals [34]. Still, it is remarkable that so few integrals are required
to describe the amplitude.

5. Pseudo-conformal integrals

In fact, the integrals that appear in the four-point amplitude through five loops are allpseudo-
conformal. To describe what this means [35], first consider taking all the external legs off shell,
k2

i 6= 0, in order to be able to perform the integral without dimensional regularization, inD = 4.
Next define dual momentum or sector variablesxi, such that the original momentum variableski

are differences of thexi, with kµ
i

= xµ
i+1

−xµ
i
. Similarly define anxi associated with each loop, such

that xi j ≡ xi − x j is equal to the momentum flowing through the propagator that separatesxi from
x j. Figure 6 illustrates the dual diagram (in blue) associatedwith the planar double box integral
(in orange) which appears in the two-loop MSYM amplitude. The dual propagators (denominator
factors) are shown as solid blue lines, while dashed blue lines correspond to numerator factors in
the integrand. The integral is given by

I(2)({ki}) = s2t
∫

d4p d4q
p2(p− k1)

2(p− k1− k2)
2q2(q− k4)

2(q− k3− k4)
2(p+ q)2 (5.1)

= (x2
13)

2x2
24

∫ d4x5 d4x6

x2
15x2

25x2
35x2

36x2
46x2

16x2
56

, (5.2)

usings = (k1 + k2)
2 = x2

13, p2 = x2
15, and so forth.

Under an inversion,xµ
i
→ xµ

i
/x2

i , we have

x2
i j →

x2
i j

x2
i x2

j

, d4x5 →
d4x5

(x2
5)

4 , d4x6 →
d4x6

(x2
6)

4 , (5.3)

and it is easy to see that eq. (5.2) is left invariant. In general, an integral is invariant under inversion
if there is a net of zero (four) lines emerging from each external (internal)xi vertex, where “net”

8
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means solid lines minus dashed lines. Every integral is automatically invariant under translations
of the dual variables,xi → xi + c, and under Lorentz transformations. Because these transforma-
tions, together with inversions, generate the conformal group, invariance under inversion suffices
to guarantee dual conformal invariance for the integral. Now we can define a pseudo-conformal
integral to be one which is finite inD = 4, after all thek2

i are taken off-shell, is dual conformal
invariant, and possesses a smoothk2

i → 0 limit. The last condition ensures that the integral does
not become infinite or vanish as we return to the on-shell limit.

Dual conformal symmetry arose in the context of multi-loop ladder integrals [36], and in two
dimensions in the theory of (planar) Reggeon interactions [37]. Its relevance for the structure
of MSYM amplitudes was first pointed out by Drummond, Henn, Smirnov and Sokatchev [35],
based on the structure of the amplitudes through three loops, and the rung-rule contributions at
four loops. The four- and five-loop four-gluon amplitudes can be organized as well, according to
the two principles:

• Only pseudo-conformal integrals appear.

• The pseudo-conformal integrals appear only with weight±1.

Originally it appeared that two integrals at four loops [7] and 25 integrals at five loops [34] were
pseudo-conformal but didnot appear in the amplitude. However, it was later pointed out that those
integrals were not actually finite inD = 4 [38]. Recently, some intuition into the signs±1 has been
given by considering the singularity structure of the various integrals more carefully [39].

6. Evaluating integrals

Once the structure of the amplitude is known in terms of basicintegrals, the next task is
to evaluate those integrals, analytically if possible, otherwise numerically. For example, to test
eq. (3.1) at three loops, we first expand it out to third order,obtaining the iterative relation,

M(3)
n (ε) = −1

3

[

M(1)
n (ε)

]3
+ M(1)

n (ε)M(2)
n (ε)+ f (3)(ε)M(1)

n (3ε)+C(3) +O(ε). (6.1)

To test this relation at orderε0 for n = 4 [14], we need the following integrals:

• The one-loop box integral throughε4 — because it has 1/ε2 poles, and appears cubed in
eq. (6.1).

• The planar double box integral [40] in fig. 6 throughε2 — becauseM(2)
4

(ε) appears in

eq. (6.1) multiplied byM(1)
4

(ε).

• The triple ladder [41] and tennis-court [14] integrals throughε0.

Mellin-Barnes techniques (seee.g. ref. [42]) are very useful in this regard. Inserting the results into
eq. (6.1), and using identities among weight 6 harmonic polylogarithms [43], the relation (6.1) was
verified, and three of the four constants at three loops couldbe extracted:

f (3)
0

=
11
5

(ζ2)
2, f (3)

1
= 6ζ5 +5ζ2ζ3, f (3)

2
= c1 ζ6 + c2(ζ3)

2, (6.2)

C(3) =

(

341
216

+
2
9

c1

)

ζ6 +

(

−17
9

+
2
9

c2

)

(ζ3)
2 . (6.3)

9
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X1 X1
X1

X2
X2

Tr[
] g2

(a) (b)

Figure 7: (a) Mapping a single-trace operator to a spin chain. (b) One-loop contribution to the anomalous
dimension matrix at largeNc.

The first two of these constants control infrared divergences. The value off (3)
0

= γ̂(3)
K

/4 confirms a
result for the three-loop cusp anomalous dimension in planar MSYM, which was first obtained [44]
by applying the principle of “maximal transcendentality” to the corresponding result in QCD [45].
The value of f (3)

1
= (3/2)Ĝ(3)

0
gives the three-loop collinear anomalous dimension, whichwas

found to agree (applying the same principle) with the QCD result [46]. The constantsf (3)
2

andC(3)

are inseparable using only the four-gluon amplitude; either the five-gluon amplitude or a collinear
analysis would be required to separate them. The numbersc1 andc2 are expected to be rational.

A similar analysis can be performed at four loops [7, 8, 47], except that the integrals become
less tractable analytically. Fortunately, there are methods available for automating the construction
of Mellin-Barnes representations [48], the extraction of 1/ε poles, and the setting up of numerical
integration over multiple contours for the Mellin inversion [49, 50]. Before describing the four-
loop results, let us turn to some very interesting developments that have taken place, based on
integrability.

7. Integrability and anomalous dimensions

In large-Nc gauge theory, a preferred role is played by local “single-trace operators”. In the
case of MSYM, one subsector of such operators is provided by products of the 3 complex scalar
fields, Xi, i = 1,2,3. The operator Tr[Xn

1 ] is a so-called BPS operator, and is unrenormalized to
all orders inλ . A set of operators with more interesting renormalization properties are close to
BPS [51], and containX2 fields as well asX1, for example,

Tr[. . .X2X2X1X1X1 . . .] . (7.1)

As shown in fig. 7(a), this set of operators can be mapped to a one-dimensional, periodic spin chain,
in whichX1 (X2) is mapped to spin up (spin down), corresponding to a finite-dimensional (spin 1/2)
representation ofSU(2) spin symmetry.

The anomalous dimensions of the set of operators (7.1) are found by diagonalizing the dilata-
tion operator, which can be mapped to a Hamiltonian for the spin chain. In the large-Nc limit, this
Hamiltonian is local, because non-local interactions correspond to non-planar diagrams. For ex-
ample, as shown in fig. 7(b), a one-loop contribution from a four-scalar interaction can only affect
color-adjacentXi fields (spins). (The range of the interactions does increasewith the number of

10
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loops.) Minahan and Zarembo [52] showed that the one-loop Hamiltonian wasintegrable; that is,
the system possesses

• infinitely many conserved charges,

• a spectrum of quasi-particles (spin waves, or magnons),

• magnon scattering via a 2→ 2 S matrix obeying the Yang-Baxter equation,

• solutions for the anomalous dimensions (energies) via a Bethe ansatz.

Integrable structures in QCD had been identified previously[53, 54, 55]. In planar MSYM, how-
ever, the integrability appears to persist to all orders inλ ; indeed, it is known to be present at strong
coupling, from the form of the classical sigma model on target space AdS5×S5 [56].

There is a rich literature of extensions of the one-loop results of ref. [52] to higher loops,
even all loop orders, and to more general sectors of planar MSYM, which I can only touch on
here [6, 57, 58, 59, 60]. The sector most relevant to gluon scattering amplitudes is not the spin 1/2
SU(2) sector (7.1), but that in which theX2 fields are replaced by covariant derivativesD+ acting
in the+ (light-cone) direction,

Tr[. . .D+D+X1X1X1 . . .] . (7.2)

These derivatives act as an infinite-dimensional representation of the noncompact version ofSU(2),
namelySL(2). Within this sector, the cusp anomalous dimension can be found by taking the limit
of a small number of fields (spin chain length)L, and a large number of derivativesj, to get the
operator

O j = Tr
[

X1(D+) jX1

]

, j → ∞. (7.3)

By the universality of the cusp anomalous dimension, it doesnot matter which leading-twist large
j operator is used; they all have the behavior (2.2) at largej.

8. An all-orders proposal

In brief, and omitting many subtleties, the Bethe-ansatz solution consists of taking the eigen-
states of the Hamiltonian to be multi-magnon states, with phase-shifts induced by repeated 2→ 2
scatterings. The periodicity of the wave function on the closed chain leads to the Bethe condition,
which depends on the chain lengthL. In the limit L → ∞, the Bethe condition becomes an integral
equation, which depends on the form of the 2→ 2 magnonS matrix [60]. ThisS matrix isalmost
fixed by the symmetries, but an overall phase, thedressing factor, is not so easily deduced. Finally,
there is a potentialwrapping problem in extrapolating to the cusp anomalous dimension: The Bethe
ansatz is only rigorously valid when the interaction range (the number of loops) is smaller than the
chain periodicityL. However, even though the cusp anomalous dimension hasL = 2, it has been
argued that its universality leads it to appear within large-L sectors, and renders it immune to the
wrapping problem [55, 60, 61].

Eden and Staudacher [60] derived an integral equation for the all-orders behavior of the cusp
anomalous dimension from an all-loop Bethe ansatz [58], by assuming that the dressing factor did
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not play a role perturbatively. This equation agreed with the known one-, two-, and three-loop
coefficients ofγK(λ ), and made the four-loop prediction,

f (4)
0

∣

∣

∣

ES
=

1
4

γ̂(4)
K

∣

∣

∣

ES
= − 73

2520
π6 +(ζ3)

2 = −26.4048255. . . , (8.1)

motivating the computation of the four-loop four-gluon scattering amplitude, and the numerical
extraction off (4)

0
from it. The result found [7],

f (4)
0

= −29.335±0.052, (8.2)

and later with much improved precision [8],

f (4)
0

= −29.29473±0.00005, (8.3)

was consistent, not with eq. (8.1), but with a version in which the sign of the(ζ3)
2 term was flipped,

f (4)
0

∣

∣

∣

BES
=

1
4

γ̂(4)
K

∣

∣

∣

BES
= − 73

2520
π6− (ζ3)

2 = −29.2947071202. . . . (8.4)

Remarkably, the latter value was predicted, simultaneously with ref. [7], by Beisert, Eden and
Staudacher (BES) [6], based on a modified integral equation taking into account a new proposal
for the dressing factor, with nontrivial effects beginningat four loops. The proposed dressing
factor was deduced by using its properties at strong-coupling, where it had been known to be
nontrivial [62]. Perhaps even more remarkably, the only effect of including the dressing-factor
term on the weak-coupling expansion of the integral equation, is to make the substitutionζ2k+1 →
iζ2k+1, which affects only the signs of the odd-zeta terms in the perturbative expansion. At five
loops, this sign-flip is

f (5)
0

∣

∣

∣

ES
= (887/56700)π8 −2ζ2(ζ3)

2−10ζ3 ζ5 = 131.21. . . (8.5)

→ f (5)
0

∣

∣

∣

BES
= (887/56700)π8 +2ζ2(ζ3)

2 +10ζ3 ζ5 = 165.65. . . , (8.6)

which also agrees with interpolation-based estimates [7].
The BES integral equation was solved numerically [9], and later expanded analytically to all

orders in the strong-coupling (1/
√

λ ) expansion [10]. Its strong-coupling behavior is consistent
with the known first three terms in this expansion [11, 12, 13]. This concordance, plus the agree-
ment with the first four loops at weak coupling, strongly suggests that the BES equation is an exact
solution for the cusp anomalous dimension, valid for arbitrary λ .

The next quantity appearing in the planar MSYM gluon scattering amplitudes,G0(λ ), which
controls single poles in the argument of the exponential in eq. (2.10), is not quite as well known.
The first four loop coefficients are known, the fourth numerically [47],

G0(λ ) = −ζ3

(

λ
8π2

)2

+
2
3

(

6ζ5 +5ζ2ζ3

)

(

λ
8π2

)3

− (77.56±0.02)

(

λ
8π2

)4

+ · · · , (8.7)

and one coefficient is now known in the strong-coupling expansion [5]. A Padé approximant in-
corporating this data has been constructed [47]. Clearly, it would be of great interest if an integral
equation could be found governingG0(λ ) for all values of the coupling. Finding a cleaner operator
interpretation for this quantity may be quite useful in thisrespect.

12
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r

r

IR

r  ~  s    ,  t1/2

x

1/2

braneD

Figure 8: Gluon scattering in anti-de Sitter space. Four-dimensional space-time has coordinatesx. Hard-
scattering kinematics force the strings to stretch a long distance in the radial directionr, from their infrared
“anchor”, aD brane located atrIR.

9. Gluon scattering at strong coupling

Now let us return to the picture of gluon scattering at strongcoupling developed by Alday
and Maldacena [5]. Figure 8 is another view of the AdS space sketched in fig. 1, showing also
a pair of incoming open string states prior to a hard scattering. The ends of the open strings are
anchored on aD brane, which serves as an infrared regulator and is located at a small value of
the AdS radial variable,rIR. The short-distance (UV) nature of the hard scattering forces part of
the string to penetrate to large values ofr ∼ √

s,
√

t. Gluons correspond to this part of the string,
and the rest of the string can be thought of as the color stringa gluon has to drag along with it,
which is particularly important at strong coupling. Because the string has to stretch a long way, the
scattering is semi-classical [5].

This regime is similar to very high-energy, fixed-angle scattering in string theory in flat space-
time, which was studied long ago [63]. Evaluated on the classical solution, for the case of color-
ordered scattering with gluons 1 and 3 incoming, 2 and 4 outgoing, the string world-sheet action
is imaginary. The Euclidean action, or area, is real, and is logarithmically divergent, leading to a
large exponential suppression [5],M4 ∼ exp[iScl] ∼ exp[−SE

cl] ∼ exp[−
√

λ ln2(r/rIR)] , (9.1)

wherer ∼√
s,
√

t. The coupling-constant dependence in eq. (9.1) originatesfrom the formula for
the radius of curvature of AdS,R2

AdS =
√

λ , which enters the world-sheet action. From the string
point of view, the suppression can be attributed to a tunnelling suppression factor. From the point of
view of a four-dimensional collider physicist, it is a typical Sudakov suppression factor [16]: The
probability for a pair of gluons to make it all the way into andback out of the scattering without
radiating at all is exponentially small — especially at strong coupling,λ → ∞ — with a double log
in the exponential.

To make contact with the perturbative results, Alday and Maldacena constructed a dimension-
ally-regularized version of AdS5 × S5, instead of using theD brane locationrIR as a regulator.
They also introducedT -dual variablesyµ in place of the usual four-dimensional coordinates.
The T -duality transformation is a kind of Fourier transform, so the yµ are like momentum vari-
ables. Indeed, the asymptotic boundary value for the world-sheet, which resides atr = 0 in the
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y2
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x

x

3

4

x2

(a) (b)

1y

0y 0y
1y

r

Figure 9: (a) Boundary condition atr = 0 for gg → gg scattering at 90◦ in the u-channel. (b) The cusp
solution, showingr as a function ofy0 andy1′.

+1ikik

xi +1

i ixx
+2

Figure 10: Planar Feynman diagrams, ringed by the strong-coupling boundary condition in dual momentum
variables. Each Sudakov wedge has a single cusp associated to it.

dimensionally-regularized setup, is a polygon constructed from light-like segments inyµ , with the
cornersyµ

i
satisfying

yµ
i+1− yµ

i = kµ
i , (9.2)

wherekµ
i

is the momentum of theith gluon. From eq. (9.2), we see that theyi coincide precisely with
the dual variablesxi introduced in section 5 to discuss dual conformal invariance! Figure 9(a) shows
the light-like quadrilateral boundary satisfying eq. (9.2) for the case of 2→ 2 gluon scattering at
90◦ in the 1-2 plane, withk1 andk3 incoming. The vertical direction is the (dualized) time direction.

Near each corner of the polygonal boundary, the solution must look like a cusp solution, pre-
viously constructed by Kruczenski [64], in whichr behaves liker =

√

(2+ ε)[(y0)2− (y1′)2] =
√

(2+ ε)y+y− for some spatial coordinatey1′ , and light-cone coordinatesy±. This hyperboloid is
shown in fig. 9(b). The classical action (area) for this solution has a divergence regulated byε ,

iScl = −SE
cl → −R2

AdS

∫

0

dy+dy−

(y+y−)1+ε/2
∼ − 1

ε2

√
λ

2π
∼ − 1

ε2

γK(λ )

2
. (9.3)

The coefficient of the leading divergence is just the strong-coupling limit of the cusp anomalous
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dimension [11],

γK(λ ) ∼
√

λ
π

, asλ → ∞ . (9.4)

Figure 10 illustrates the situation heuristically. The singular part of the planar amplitude can be
broken up into Sudakov wedges, as in fig. 3 and eq. (2.5). The overlap of soft and collinear di-
vergences corresponds to regions between two hard lines,e.g. ki andki+1. Thus each wedge is
associated with a single divergent cusp [65], of the form shown in fig. 9(b).

The full classical solution, for arbitrary scattering angle, was found by Alday and Malda-
cena [5]. Its action gives a strong-coupling amplitude of the form,M4 = exp[−SE

cl] ,

−SE
cl = − 1

ε2

√
λ

π

[(

µ2
IR

−s

)ε/2

+

(

µ2
IR

−t

)ε/2]

− 1
ε

√
λ

2π
(1− ln2)

[(

µ2
IR

−s

)ε/2

+

(

µ2
IR

−t

)ε/2]

+
λ
8π

[

ln2
(

s
t

)

+C̃

]

+O(ε) , (9.5)

whereµ2
IR = 4πe−γ µ2. This expression can be compared with the strong-coupling extrapolation of

the ansatz (3.1) [5]. The 1/ε2 poles agree, using the strong-coupling value forγK(λ ) from eq. (9.4).
The 1/ε poles give the strong-coupling limit of the collinear anomalous dimensionG0(λ ),

G0(λ ) ∼
√

λ
(1− ln2)

2π
, asλ → ∞ . (9.6)

The finite part ofM4 has a dependence ons andt which is precisely as predicted by eq. (3.2).

10. Dual variables and Wilson loops at weak coupling

The dual momentum variablesxµ
i

play a prominent role in the strong-coupling computation of
Alday and Maldacena, which is essentially the same as computing a Wilson loop vacuum expec-
tation value at strong coupling. Inspired by this connection, there has been a sequence of recent
Wilson-loop computations for loops corresponding to the dual-momentum boundary conditions
for ann-point amplitude, namely polygons composed ofn-light-like segments, with corners obey-
ing eq. (9.2).

The first of these computations was by Drummond, Korchemsky and Sokatchev [38], for the
one-loop expectation value of a quadrilateral (n = 4) Wilson loop. Up to constants of the kinemat-
ics, attributable to a different regulator (in the UV) than the one used for the amplitudes (in the IR),
the expectation value agreed, surprisingly, with the one-loop four-gluon amplitude, normalized by
the tree amplitude,i.e. eq. (3.2). Next, Brandhuber, Heslop and Travaglini [66] showed that the
same statement is actually true for then-gon Wilson loop for anyn, compared with the normalized
one-loop amplitude [28] for the so-called maximally-helicity-violating (MHV) configuration of
gluon helicities (two negative and(n−2) positive). The Wilson-loop computation knows nothing
about the polarizations of the external gluons. It is manifestly symmetric under cyclic permutations
and reflections of the polygon. Forn = 4 and 5, a Ward identity forN = 4 supersymmetry shows
that all helicity configurations in MSYM are equivalent, andthat the normalized amplitudes have
the same manifest symmetries as the polygonal Wilson loop [67]. However, beyondn = 5 there are
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non-MHV configurations which do not have these symmetries. How does the Wilson loop know it
is “supposed to” match the MHV amplitude alone?

Drummond, Henn, Korchemsky and Sokatchev (DHKS) then repeated the Wilson-loop com-
putation in MSYM at two loops, first for then = 4 case [68] and then1 for the n = 5 case [69].
Again the results matched the full two-loop MSYM scatteringamplitudes [4, 25], up to constants
of the kinematics. Furthermore, DHKS first proposed [68] andthen proved [69] an anomalous
dual conformal Ward identity for Wilson loops, in which the anomaly arises from UV divergences
proportional toγK(λ ). The solution to the Ward identity is unique forn = 4 and 5. Beyondn = 5,
there are multiple solutions, due to the existence of nontrivial conformally-invariant cross ratios.
For example, forn = 6 the quantityu1 ≡ x2

13x2
46/(x

2
14x2

36) = s12s45/(s123s345) is invariant under the
inversion (5.3), and there are two other such cross ratios. (The appearance ofx2

i,i+1 = k2
i in a cross

ratio is forbidden by the on-shell constraintk2
i = 0.)

DHKS also showed that the amplitude ansatz (3.1) obeys the anomalous dual conformal Ward
identity. Given that the ansatz was known to be correct forn = 4 and 5 [4, 25], and the uniqueness of
the Ward identity solution for these cases, this result could explain why the amplitude should match
the Wilson loop in these cases. However, it was not clear whatshould happen for largern. Indeed,
Alday and Maldacena [70] gave an argument, based on approximating a Euclidean rectangular
loop by a zig-zag configuration composed of many light-like segments, that the ansatz (3.1) should
fail at strong coupling for sufficiently largen. DHKS [71] found that the hexagonal Wilson loop
couldnot be described at two loops by the ansatz (3.1). This result left open the question, however,
of whether the ansatz failed to describe MHV amplitudes beyond n = 5, or whether the relation
between amplitudes and Wilson loops failed beyond two loops(or both).

The high-energy limits of the ansatz (3.1) have been examined for consistency with expected
Regge behavior. Forn = 4 and 5, the ansatz appears to have consistent behavior in allsuch lim-
its [38, 72, 73, 74] However, there appears to be a difficulty with the ansatz for the six-gluon
amplitude starting at two loops [74]. Very recently, a computation of the “parity even” part of the
six-gluon MHV amplitude [75] has revealed directly that theansatz (3.1) does fail forn = 6. How-
ever, a numerical comparison [75, 76] with the corresponding hexagonal Wilson loop [71] shows
that the MHV-amplitude-Wilson-loop equivalence is still intact at two loops andn = 6. This result
means that the scattering amplitude also obeys the dual conformal Ward identity. On the other
hand, the solution to the Ward identity is not unique forn = 6. Hence some other principle, as yet
unidentified, is needed to explain why MHV amplitudes are equivalent to Wilson loops in MSYM.

11. Conclusions

We have seen that gluon scattering amplitudes in planarN = 4 super-Yang-Mills theory have
some remarkable properties. It appears that the exact formsof the four-gluon and five-gluon ampli-
tudes are given by the ansatz (3.1), which depends only on four different functions of the large-Nc

coupling parameterλ : f0, f1, f2 andC. Because an exact solution for one of the four functions —
f0, the cusp anomalous dimension — seems to be in hand [6], perhaps one can say that these cases
are “1/4 solved”. The fixed dependence of the ansatz (3.1) on the scattering angle(s) is apparently

1Most of the results reported from this point on appeared after this talk was presented, but before the write-up was
completed. I include them here because of their close connection with the contents of the talk.
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related to the uniqueness of solutions to a dual conformal Ward identity forn = 4 and 5 [68, 69],
and an equivalence between (MHV) amplitudes and Wilson lines [5, 38, 66, 68, 69]. Although
the ansatz (3.1) fails for the MHV six-gluon amplitude [75] at two loops, the equivalence remains
valid [75, 76].

There are still many open questions. Are there simple(r) AdS/operator interpretations of the
other three functions? Can one find integral equations for them, based on integrability? What is the
precise relation between integrability and dual conformalinvariance? Do non-MHV amplitudes
obey any simple patterns, or bear any relation to Wilson loopexpectation values? From the struc-
ture of the one-loop amplitudes,e.g. for six gluons [29], any such relations must be considerably
more intricate. What happens in other conformal theories? Finally, we can hope that some of these
advances may eventually help to shed light on scattering amplitudes in other gauge theories, par-
ticularly QCD, whose understanding — as exemplified by the other talks at this symposium — is
vital to the search for new physics at the Large Hadron Collider.
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