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1. Introduction

The cosmic microwave background (CMB) has been discovareidentally in 1965 by Pen-
zias and Wilson [1] who obtained the Nobel prize 1978 for tfiscovery. It was the decisive
evidence which convinced most physicists in favor of the Bigng model, initiated by Friedmann
and Lemaitre and worked out be Gamov, Dicke, Peebles andsptsecompared to a steady state
cosmology which had been advocated by Fred Hoyle and cofiédrs.

More or less immediately after the discovery of the CMB cokmists began to search for
its fluctuations which must be there if the observed cosmicgires, galaxies, clusters, voids etc.
have formed by gravitational instability from small initi@erturbations. For a long time they found
nothing apart from a dipole anisotropy on the level ¢f 2 103 which can be interpreted by the
Doppler shift due to the motion of the earth with respect ® tthst frame of the surface of last
scattering. Finally, in 1992 the fluctuations have been dowith the help of the COBE (Cosmic
Background Explorer) Satellite mission from NASA [2]. Dagi the last 15 years, the cosmic
microwave background (CMB) has become the most importas¢reational tool in cosmology.
This is probably partly why G. Smoot has been attributed tbbeéllprize of 2006 for this important
discovery.

In these lectures, you will learn why CMB anisotropies anthppation are so important for
cosmology and what we can learn from them. We shall assunigdbaare already familiar with
Friedmann-Lemaitre (FL) cosmology and have some knowlefg&flation, since this has been
treated in the course by Cliff Burgess. These lectures asecban my book [3] which contains of
course much more than what is presented here. Especiallghalenot talk about CMB lensing
and the CMB frequency spectrum. Furthermore, in this comesshall not derive the Boltzmann
equation in any detail and we will not enter in Markov chainCarlo methods.

However, We shall give a thorough overview of cosmologiaatyrbation theory, the calcu-
lation of CMB anisotropies in the instantaneous recomimnaapproximation and the CMB spec-
trum. We shall also discuss the Boltzmann equation whiclkéslad to investigate polarization and
Silk damping. Furthermore, we present the observatiorsllteand the principles of parameter
estimation and degeneracies.

Notation: We denote spacetime indices by Greek letters and pureliabpatices by Latin
letters. Spatial 3-vectors are written in bold. We chooseaiidickground metric

ds = a2(t)[—dt? + y;dXdx] = gy dxHdx’ (1.1)

wherey is the metric of a 3-space with constant curvatkireNote thatt is conformal time. We
denote cosmic time by, dT = adt. An over-dot denotes the derivative w.r.t conformal timkatin

3d indices are raised and lowered with the 3-matnichile Greek spacetime indices are raised and
lowered withg,,, respectivelyg".

2. Cosmological perturbation theory

Fluctuations in the CMB are small. Therefore they can, to@lgaccuracy, be treated within
first order perturbation theory. This leads to linear evolutequations for perturbation variables
which can be solved to high accuracy with moderate numeinigaktment. This is one of the main
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reasons why observations of CMB fluctuations are so valu&sdenparing them with calculations

we can accurately determine the values of the parameteteafrtderlying cosmological model

and the initial perturbations. Therefore, linear cosmiglalgperturbation theory is the basic tool
to investigate CMB anisotropies. This section is devoted tliscussion of the main elements of
cosmological perturbation theory.

2.1 Definition of cosmological perturbations, gauges

Denoting the cosmic scale factor bgt) and the metric of a 3 dimensional space of constant
curvature byy; the most general metric of a perturbed Friedmann universktige form

ds? = &@(t) [ (14 2W)dt? + 20idtdX + (1— 20) yjdX dxX + 2H;;dX dx! | = (g + hyy)dXdx! .
(2.1)
Hij is tracelessH! = Hijy/) = 0.
The split into a background,, and a perturbatio,, is not unique. The only measurable
geometry is the one described by the full metjg = guv + hyy. The same is also true for the
energy momentum tensor. The full physical fiefgls andT,, are related via Einstein’s equation,

We can define a background metric and background energy miomeansor by choosing a foli-
ation of spacetime and averaging the metric and the energgemtum tensor over spatial slices,
Ouv — Guv and T,y — Tuv. In general, however, due to the non-linearity of Einsteijuation,
the averaged metric and energy momentum tensor will natfgdtiem,

Guv(g_HV) 7£ 8nG-Fuv . (2.3)
Let us call an averaging procedure 'admissible’ if it obdyes following two conditions:

1. The averaged fieldg and T satisfy Einstein’s equation (which in this case reduce ® th
Friedmann equations).

2. The deviations of the averaged fields and the physicakfid small in the sens that

Ty = Tyl
maxX a1 {|Tapl}

‘guv_guv’

——~ ek L
max{aﬁ}{gaﬁ}

~€ek1, and

There may be many different admissible averaging procedarg.,over different hyper—surfaces),
leading to slightly different Friedmann-Lemaitre (FL) kgoounds. But sincég — g]/a? is small,

of order g, the difference of the two FL backgrounds must also be sniakaer € and we can
interpret it as part of the perturbation. We consider now ediadmissible FL background), T)

as chosen. Since the theory is invariant under diffeomerpgi(coordinate transformations), the
perturbations are not unique. For an arbitrary diffeomimphy and its push forward,, the two
metricsg and ¢.(g) describe the same geometry. Since we have chosen the baclgmetricg,
we only allow diffeomorphisms which leagginvarianti.e., which deviate only in first order from
the identity. Such an ’'infinitesimal’ diffeomorphism cantepresented as the infinitesimal flow of
a vector fieldX, ¢ = ¢g¥. Remember the definition of the flow: For the integral cumgs), of X



The Cosmic Microwave Background Ruth Durrer

with starting pointp, i.e., y(s = 0) = p we have@ (p) = &(s). In terms of the vector fielX, to
first order ing, its push forward is then given by

@ =id+eLx+ O(g?),

wherelLx denotes the Lie derivative in directiof. The transformatiomy — @.(g) is equivalent
to g+ €a%h — g+ e(a®h+Lx@) + 0(2). Under an “infinitesimal coordinate transformation’ the
metric perturbatiorh therefore transforms as

h— h+a2Lxg. (2.4)

In the context of cosmological perturbation theory, inésitnal coordinate transformations are
called 'gauge transformations’. The perturbation of ariteaty tensor fieldS = S+ &SV obeys
the gauge transformation law

SV gV 414S. (2.5)

Since every vector fielX generates a gauge transformatipe= @, we conclude that only
perturbations of tensor fields wilhkS= 0 for all vector fieldsX, i.e.,, with vanishing (or con-
stant) 'background contribution’ are gauge invariant. sTtesult is called the 'Stewart-Walker
Lemma’ [4].

The gauge dependence of perturbations has caused mangveosies in the literature, since
it is often difficult to extract the physical meaning of gawgpendent perturbations, especially on
super—horizon scales. This problem is solved by gaugeiangperturbation theory which we are
going to use here. The advantage of the gauge-invarianadtam is that gauge-invariant variables
have simple geometric and physical meanings and are notigday gauge modes. Although
the derivation requires somewhat more work, the final sysieperturbation equations is usually
simple and well suited for numerical treatment. We shalb alse, that on sub-horizon scales, the
gauge-invariant matter perturbation variables approaehusual, gauge dependent ones. Since
one of the gauge-invariant geometrical perturbation temcorresponds to the Newtonian poten-
tial, the Newtonian limit can be performed easily. (In castrto synchronous gauge where the
Newtonian potential is gauged to zero.)

First we note that all relativistic equations are covariantl can therefore be written in the
form S= 0 for some tensor fiel& The corresponding background equatiosis 0, henceS
is gauge-invariant. It is thus always possible to expresspirturbation equations in terms of
gauge-invariant variables.

The principal sources of this section are the Refs. [3, 5, 8] @n gauge-invariant cosmolog-
ical perturbation theory.

2.2 Harmonic decomposition

Since the{t = const. } hypersurfaces are homogeneous and isotropic, it is rebota
perform a harmonic analysis for the perturbation variallefsned on them. This means that we
decompose a (spatial) tensor field on these hypersurfatesamponents which transform irre-
ducibly under translations and rotations. For functioesigor fields of rank zero), in the case of
vanishing spatial curvatur& = 0, this is simply the Fourier decomposition,

F(x,t) = ﬁ/d%f(k,t)e‘”‘x. 2.6)
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If K+ 0 itis the decomposition into eigenfunctions of the Lapaci
AQE = —12Q¥. 2.7)

ForK = 1 the value are the discrete eigenvalues of the Laplacian on the 3-sgtfer ((¢ +2)
and forK = —1, they are bounded from beloi? > 1.

In addition, a tensorial variable (at fixed positigncan be decomposed into irreducible com-
ponents under the rotation gro§a)3).

For a spatial vector field, this is its decomposition into adignt and a curl component,

Vi =i¢ +Bi, where B, =0. (2.8)

We useX; to denote the three—dimensional covariant derivative.dfiere¢ is the spin 0 and® is
the spin 1 component of the vector fiald
For a spatial symmetric tensor field we have

1 1/ v v T
where _ _
HY =™ —H(T — 0. (2.10)

' il
Here H_ andHt are spin 0 componentﬁi(v) is the spin 1 component artdi(jT) is the spin 2
component of the tensor fieH.

We shall not need higher tensors (or spinors). As a basiseftiov and tensor modes we use
the vector and tensor type eigenfunctions of the Laplacian,

AQEV)=—|<2Q§V> and AQEiT)=—k2Q§iT)v (2.11)

whereQEV) is a transverse vecto@gv)|j =0 anngiT) is a symmetric transverse traceless tensor,

QET)J' - QEiT)“ =0. Both,ng) and QEiT) have two degrees of freedom. In the case of vanishing
curvature we can use an orthonormal basts e in the plane normal t& and we can define

helicity basis vectors,

_ 1 il
ei—\/é<eli|e2>. (2.12)

In curved spaces the definition of the helicity basis is aj@als, but somewhat more involved.
Since we shall not need the explicite form of this basis, wal stot enter into this. Vector pertur-
bations can be expanded in terms of this basis, while tereunbations are expanded either in
terms of the standard tensor basis given by

1) (1 2) (2 11 2 2) (1
eﬂ _ {q( >e§ )_q( )eﬁ ) 7 & = > q( )eﬁ )+q( >e§ )] 7 (2.13)
or also in terms of a helicity basis defined by

2 . _ _ .
6P =gef el tief, &P =g =el-ie. (2.14)
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We can develop the vector and tensor basis functions as

1

ng) _ Q(l)eg )+Q(2)e§2) _ Q(+)e§+) +Q(‘)e§_> (2.15)
d

QEiT) _ Q(d)g(j ) _|_Q(><)q(j><) — Q(+2)Q(j+2) +Q(72)q(j72) ' (2.16)

The components in the ’helicity basig{*) and q(jﬂ) simply transform with a phase*'?, and
et29 respectively under rotations aroukdvith angle@. Hence vector perturbations are spin 1
fields while tensor perturbations are spin 2 fields. The fonstQ(*) and Q*2 have spin up,
m= +1 andm = +2 respectively, whil&Q(~) andQ(~2 have spin down. Scalar perturbations of
course have spin zero.

Asin Egs. (2.8) and (2.9), we can construct scalar-typeoveeind traceless symmetric tensors
and vector-type traceless symmetric tensors. To this gealefine

B _ 1
QES) K 1Q‘(JS) : QI(JS) =k ZQ\(? + SV Q(S) and (2.17)
V) 1 v V) 8

In the following we shall extensively use this decompositimd write down the perturbation equa-
tions for a given modé&.
The decomposition of thike-mode of a vector field is then of the form

Vi =vQ® vl (2.19)
The decomposition of a tensor field is given by (compare E§))2
Hij = HLQ(S)VU + HTQi(jS) +H (V)Qi(jV) +H (T)Qi(jT)' (2'20)

HereB, BV), H, Hr, HY) andH (™ are functions of andk.
This decomposition is very useful, since scalar, vectortandor amplitudes of each mole
evolve independently, obeying ordinary differential eitpuas in time.

2.3 Metric perturbations

Perturbations of the metric are of the form
Quv = Guv +a°hyy. (2.21)
We parameterize them as
hyydxdx’ = —2AdE — 2B;dtdX + 2H;;dX dx, (2.22)

and we decompose the perturbation variaBieandH;; according to (2.19) and (2.20).
Let us now investigate the behavior laf, under gauge transformations. We set the vector
field defining the gauge transformation to

X=Ta+La. (2.23)
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Using the definition of the Lie derivative, we obtain
Lxg = & [-2 (T +T)dt? +2(L; — T;) dtdxX
+ (2T +Lijj + L) dXdx ] . (2.24)
Comparing this with (2.22) and using (2.5), we obtain

A— A+AT+T,
B — Bi—L+T,,
1
Hij — Hij +§(|—i|j+Lj|i)+%ﬂTy.j .
Using the decompositions (2.19) and (2.20) Byrand H;j, this implies the following behavior

of the perturbation variables under gauge transformat{ares also decompose the vector=
LQ® +LvIQY)):

A= A+THT, (2.25)
B B-L_KT, BY) - BV) — V) (2.26)
Ho — HL+%T+,§L, Ht — Hr — kL, (2.27)
HV) & HM kL™ H™ L HM™ (2.28)

Two scalar and one vector variable can be set to zero by gaamggfdrmations.

To fix the scalar perturbations of the metric, one often chedbe gauge transformatiéh =
Ht andkT = B— L, so that the transformed variablels andB vanish. In this gauge (longitudinal
gauge), scalar perturbations of the metric are of the ftijigng = Bliong = 0):

hiS) = —2Wdt? — 2y dxdx. (2.29)

Y and® are the so-calle@ardeenpotentials. In a generic gauge the Bardeen potentials are
given by

W=A-—xklo-klg, (2.30)
1
O = —HL—éHT+%ﬂk—1a: %+ K o, (2.31)
whereo = k™ Ht — B, is the scalar potential for the shear of the hypersurfac®o$tant time. A
short calculation shows th&t and® are indeed invariant under gauge transformations (for more
details see [3]).

In a FL universe the Weyl tensor (seeg.,[9]) vanishes. It therefore is a gauge-invariant
perturbation. For scalar perturbations one finds

-1 1
Ej= C‘i‘vjuuu" = —C?Oj =5 (W+®)j — §A(W+¢)y.,- ) (2.32)

All other components vanish.
For vector perturbations it is convenient to ket”) = H(") so thatH ) vanishes and we have

hiydxtdx’ = 2220V QM dtdx. (2.33)
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We shall call this gauge the “vector gauge”.
The Weyl tensor from vector perturbation is given by

—k.. Vv
Eij = —C(?Oj = 7G(V)Qi(j ) : (2.34)
_1 po jo 0
Bij = Egiv Cool%UyUg = Eilmcjlm
—K_wv) RPN N TP P SN
= 70’ Eilm Qj||m_ Qjm|l - éyjl Qm|k + :—%ijQ”k . (235)

Note that from their definitior;; andB;; are symmetric and sinae= (u°,0) to lowest order, only

C%j andC?  respectively contribute. The tensdks andBjj, determine the Weyl tensor fully.
(T

Clearly there are no tensorial (spin 2) gauge transformatzmd henckl;; Jis gauge-invariant.

The expression for the Weyl tensor from tensor perturbagon

1
Ej = 50 —K)HTQ, (2.36)

Bij = —HDgym [Q(T) Q(T) } . (2.37)

jllm— <jmll
2.4 Perturbations of the energy momentum tensor

Let T/ = Tff + 6! be the full energy momentum tensor. We define its energy tepsand
its energy flux 4-vectou as the time-like eigenvalue and eigenvector St

THW = —puH, W¥=-1 (2.38)
We then parameterize their perturbations by
p=p(14+93), u=u’d+ua. (2.39)

To first order, the componen® is fixed by the normalization condition,

1

0 __
="(1-A). (2.40)

The spatial components provide new perturbations. We set

1.1 ) .
ity T (9i | M)AV
u av' a (VQ +vWQ ) ) (2.41)
P = utu, + S} is the projection tensor onto the subspace of tangent spaogahtou. We define
the stress tensor

T = PEPY TP, (2.42)

With this we can write
T =putu, + 1. (2.43)

In the unperturbed case we hax{}e: T(‘)‘ =0 andr} = 56}. Including first order perturbations, the
componentsig, are determined by the perturbation variables which we hiready introduced.
We obtain

1§=0, and t=-Pv, 10=P(vj-B). (2.44)
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But r} contains in general new perturbations. We define
T =P[(1+7m)5+M}], with Mi=0. (2.45)

From our definitions we can determine the perturbations @ktiergy momentum tensor. A short
calculation gives

T =-p(1+d), T°%=p+P)(vj-Bj), Tlo=—(p+P)V and  (2.46)
T = P[(A+m)8 + '] . (2.47)

The traceless part of the stress tenﬁq'r,, is called the anisotropic stress tensor. We decompose it
Nt =nQ® +nVQM' + nMQM'. (2.48)

We now study the gauge transformation properties of thegerpation variables. First we
note thatp is a scalar, hencexp = pT = —3(1+w).#pT. Here we made use of the background
energy conservation equatiop,= —3(p + P).# = —3p(14w).2, with w = P/p. The same
is true forP(1+ 1) which is 1/3 of the trace ofr*,. With 2 = P/p, we obtainLyP = PT =
—3%(1+W)%”I5T. The background contribution to the anisotropic stressderl} = 1} —
1184}, vanishes, hence the Stewart-Walker lemma impliesMats gauge-invariant. lemma.
For perfect fluidg1! = 0. For the velocity we usexu= [X,0] = (—~Taa 2—a T)d —a 'L'a.
Inserting our decomposition into scalar, vector and tepsoturbation variables for a fixed mode
k, we obtain finally the following transformation behavior

0 —0-3(1+wW) AT, m—TL —3%(1+W)%T , (2.49)
vov—L, N—=n (2.50)
V) V) V) ) ) (2.51)
nM™ — . (2.52)

Apart from the anisotropic stress perturbations, therenly one gauge-invariant variable
which can be obtained from the energy momentum tensor af@maely

r:m—%a. (2.53)

One can show (see [3]) thhtis proportional to the divergence of the entropy flux of thetymba-
tions. Adiabatic perturbations are characterized by 0.

Gauge-invariant density and velocity perturbations cafobed by combiningd, v andvi(V>
with metric perturbations. We shall use

1.
V =v-iHr= viong | (2.54)

Ds = 6+ 3(1+w). 2 (k 2Hy —k1B) = 5'°"9 (2.55)

D= 5'0”9+3(1+w)%v = 5+3(1+w)%

” T(V—B)
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= Ds+3(l+w)%v , (2.56)

Dg = 0+3(1+w) (HL+%HT> = 59 _ 3(14+w)d

— Ds—3(1+W)®, (2.57)
vV = W) %H(V) — Vv (2.58)

Q = vV) _BV) — \ived _ (V) (2.59)
Q-vV¥) = gV, (2.60)

Herevond, 5'°ng andv(ve9 are the velocity (and density) perturbations in longitadliand vector
gauge respectively, anaV) is the metric perturbation in vector gauge and the vectos tantri-
bution to the shear of the=constant hyper—surfaces.

These variables can be interpreted nicely in terms of gnéglief the energy density and the
shear and vorticity of the velocity field [10].

We now want to show that on scales much smaller than the Hsbhle k > 7 ~t~1, metric
perturbations are much smaller thamndv and we can thus neglect the difference between differ-
ent gauges and/or gauge-invariant variables. This is &dlyeicnportant when comparing experi-
mental results with gauge-invariant calculations. Let eglect spatial curvature in the following
order of magnitude argument. Then, the perturbations oEihstein tensor are a combination
of second derivatives of the metric perturbatiogg, times first derivatives and#? or / times
metric perturbations. The first order perturbation of Eivss equations therefore generically yield
the following order of magnitude estimat&@@dT,, = 0G,y:

% (5—‘)) 0 (8nGp) = O (%athr lfaZth k2a2h> (2.61)
P ) —— t t
0(@2)12)
op 2
o 5 )= 0 (h+kth+ (kt)h). (2.62)
Forkt > 1 this giveso'(6,v) = 0 (%) = 0 ((kt)?h) > &' (h). Therefore, on sub-horizon scales

the differences betwee¥ 5'°"9, Dgy andD are negligible as well as the differences betweandV
orvi¥),vV) andQ"). Since measurements of density and velocity perturbatiansnly be made
on sub—horizon scales, we may therefore use any of the gaugéant perturbation variables to
compare with measurements.

2.5 The perturbation equations

We do not derive the first order perturbations of Einsteigsations. By elementary algebraic
methods, this is quite lengthy and cumbersome. However.eaemmend the student to simply
determinedG,, in longitudinal (vector) gauge using some algebraic paekikg Maple or Mathe-
matica and then write down the resulting Einstein equati@isg gauge-invariant variables. Since
we know that these variables do not depend on the coordichtesen, the equations obtained in
this way are valid in any gauge. Here, we just present thdtieglwequations in gauge-invariant
form. A rapid derivation by hand is possible using the 3+Infalism of general relativity and

10



The Cosmic Microwave Background Ruth Durrer

working with Cartan’s formalism for the Riemann curvatweg [11]. In order to simplify the no-
tation, we suppress the over-bar on background quantitiem@ver this does not lead to confusion.
2.5.1 Einstein’s equations

The constraints: The Einstein equationSg, = 8nGTy, lead to two scalar and one vector con-
straint equations,

4nGa?pD = —(k2—3K)® (00)
4nG&(p+P)V = k(AW+ D) (0) } (scalay, (2.63)
8nGa’(p+P)Q = % (2K k) o™ (0i)  (vectop. (2.64)

The dynamical equations: The Einstein equationS;; = 8nGT;; provide two scalar, one vector
and one tensor perturbation equation,

scalar:
k?(®—W) = 8nGa?PMnS | (i#]) (2.65)
. . . . k2
O+ 24D+ HW+ {z;ﬂr%?— 5] W =
AnGelp ED—FC?DS—%WF} , (ii) (2.66)
vector:
k(a<V>+2,;fa<V>) — gnca2PnV) | (2.67)
tensor:
HT 42700 4 (2K +KB)HT = 8nGaePn( (2.68)

The second dynamical scalar equation is somewhat cumberanchnot often used, since we may
use one of the conservation equations given below instead.thé derivation of the perturbed

Einstein equation the following relations are useful. Tloay be derived from the Friedmann
equations.

AnGap(1+w) = % — # +K (2.69)
. 1+3w
= — +2 (#2+K) | (2.70)
, A 2
AnGalp(1+w)3c = 7~ ==K, (2.71)
, LA -A?-K
3= : . (2.72)
3[A#%2— A +K]

For the calculations below we shall also make use of

W= 3(W—c2)(1+w).7 . (2.73)

11
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Note that for perfect fluids, whellé‘j =0, we haved = W. As we shall see below, for perfect
fluids withI" = I = 0, the behavior of scalar perturbations is giverdbwhich describes a damped
wave propagating with speeg.

Tensor perturbations are given BT which for perfect fluids also obeys a damped wave
equation propagating with the speed of light. On small scédwer short time periods) when
t~2<2K + k2, the damping term can be neglected atgl represents propagating gravitational
waves. For vanishing curvature ki > K, small scales are just the sub-Hubble scates]l. For
K < 0, waves oscillate with a somewhat smaller frequeney: v/2K + k2 < k, while forK > 0
the frequency is somewhat higher tHan

Vector perturbations of a perfect fluid are determined byatffé—equation, Eg. (2.67), which
implies V) 0 1/a2. Hence vector perturbations do not oscillate, they simplyadg.

2.5.2 Energy momentum conservation

The conservation equationEf,“’ = 0 (here y denotes the four-dimensional covariant deriva-
tive) lead to the following perturbation equations:

Dg+3(c2 —w) #Dg+ (1+W)KV +3w.#T =0
V+ .2 (1-3c2)V =k(¥+3c20) + %Dg (scalay, (2.74)
e r-3a-3n),

. 2K
Q+(1-3¢) Q= —ﬁ (k— T) nv. (vecton). (2.75)

It is sometimes also useful to express the scalar consenvatiuations in terms of the variable
pair (D,V). UsingD = Dg+ 3(1+w) [k~ 2V + ®] in (2.74) one obtains after some algebra and
making use of th¢0i) constraint equation (2.63)

D—-3w#D = — (1— i—f) [(L+wW)kV + 222w] | (2.76)
: c2 w 2 3K\ w
v+¢%ﬂv_k{w+1+wo+mr—§<l—v> mn} (2.77)

The conservation equations can of course also be obtainedtfre Einstein equations since they
are equivalent to the contracted Bianchi identitids.and N have to be determined via matter
equations. For example, for adiabatic perturbations ofiaalifluid one has =1 = 0.

One can now use th@0) and (Oi) Einstein equations, (2.63) to derive a second order equa-
tion for ® andW¥ from the conservation equations. Eliminating finatlywith thei # j Einstein
equation,(2.65) yields the Bardeen equation,

W4 3(1+2) W+ [3(c2 —w) 22 — (2+ 3w+ 3K + 2k W = 7(N,T) . (2.78)

The right hand side is a 'source term’ linearlinand M. It is very complicated and not very
illuminating, therefore we do not write it down here.

For scalar perturbations we have in principle 4 indepenéguiations and 6 variables. For
vector perturbations we have 2 equations and 3 variablette ¥an tensor perturbations we have

12
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1 equation and 2 variables. To close the system we must adgmegfuations. The simplest
prescription is to sefl = IMj; = 0. This matter equation, which describes adiabatic peatiobs
of a perfect fluid gives us exactly two additional equatiomsdcalar perturbations and one each
for vector and tensor perturbations. df # 0 the scalar equation (2.78) is a wave equation like
the tensor equation discussed above. The first order teiin; &).5# describes damping due to
expansion, and the term in square brackets is of the fofih) 4- c2k?, where the contributions
proportional toK and.#? are interpreted as a time dependent 'mass ternK # 0 andc2 = w
the mass term vanishes and the Bardeen potential simplgrpesfdamped acoustic oscillations.
This scalar wave equation describes the 'acoustic osoitisitof the fluid where the fluid pressure
counter acts gravitational collapse. The vector pertishatquation, however, is of first order.
NVv) =0 impliesc) 0 1/a% andQ O a-1+3%. Hence vector perturbations simply decay if there
are no anisotropic stresses to source them.

Another simple example is a universe with matter contenergily a scalar field which is
relevant for inflation [3]. More complicated are severakiaicting particle species of which some
have to be described by a Boltzmann equation. This is thekghiverse at late timeg<S 107,

2.6 Simple but important examples
2.6.1 Free gravity waves

If there are no anisotropic stresses, like for example foerdept fluid or a scalar field, and
if curvature can be neglectel, = 0 and expansion can be approximated by a simple power law,
a(t) OtY, the tensor perturbation equation reduces to

H<T>+?H<T>+k2H<T> —0. (2.79)

The general solution of this equation can be given in ternspbérical Bessel functions,
HY = = [Adg-1(kt) +Bjq(kt)] . (2.80)

Here j, denotes the spherical Bessel function of indeseee.g.,[12]. The second term diverges
if g > 1/, for example in a radiation dominated universe whegre 1, or in a matter dominated
universe wherg = 2. (Not, however, in an inflating universe wheye 0.) Therefore, in a radiation
(or matter) dominated universe we have toBet 0, so thatH(T)(t) — const. fort — 0. At late
time we then find

q-1

HT ~ gsin(kt— o, ks, (2.81)

The energy density in gravitational waves per logarithmégfiency interval is then given by

doy 47 AHM PR3 ~ A2(KK®
dlogk 161G - 4GA

(2.82)

Here% = a‘1% is the derivative with respect to cosmic time and the factie4s the phase space
volume per logarithmic frequency interval. The factor 2 esnfrom the two helicity modes. The
brackets,- - -) indicate an average over several periods of the wave as svali ansemble average
(see Section 3.2).

13
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Note thatpy 0 a~* as we expect it for a component of massless particles. Funtire, if the
gravity wave power spectrum is scale invariant on largeescgH (7 |2)k® O 2A%(k)k®24(t9/a)?=const.
for kt < 1 andny = 0 (see Section 3.2). This implies tha(k) 0 k—3-29. Hence on scales which
enter the horizon in the matter dominated era; 2, the energy density decays with the wavenum-
ber like k-2 while it is independent of scale for wave numbers which ettierhorizon in the
radiation dominated era,= 1. A rough estimate neglecting the matter/radiation ttamsigives
for scales which enter the horizon in the radiation domuhaie k > #eq~ 1/teq

dQy(k) — dpw
dlogk  dlog

kpr;éQrad ~ 1 x 10 %pq, k> Heq: (2.83)
The ratior denotes the tensor to scalar ratio of the CMB anisotropytajrac see Section 3.2.

2.6.2 Nonrelativistic matter, dust

We now consider the case of nonrelativistic particles, ,dusere we may neglect pressure,
w = c2 = 0. To simplify the equations we also neglect curvatu¢es= 0. Thena [ t? and the
Bardeen equation then reduces to

cp+$cp:0 (2.84)

with solution B
WA+ s (2.85)

The second term is decaying and can therefore soon be refjsethattl = A= Wy is constant.
The momentum conservation equation now yields

V+ %v =kA (2.86)
which is solved by
V(t) = %kH—C(kt)’z . (2.87)
Again, the second term describes a decaying solution whecheglect. From
Dg+kV =0 (2.89)
we find
A 2 l
Dy = —E(kt) +A . (2.89)

Here we cannot neglect the constant médesince it dominates on very large scalés,< 1.
Inserting the solution in théd0) Einstein equation,

D =Dg+3k 1V +3¥ = —%w = —é(kt)zw , (2.90)
one findsA’ = —5A. We therefore end up with
W = A=Yy = const, (2.91)
Vv = %Wokt, (2.92)
Dg = —5W — :—éwo(kt)z , D= —éwo(kt)Z . (2.93)

14



The Cosmic Microwave Background Ruth Durrer

The metric perturbatiofV stays constant, it does not grow. This led Lifshitz, who wass first

to investigate relativistic cosmological perturbatioedhy, to the conclusion that galaxies cannot
have grown out of small initial fluctuations by gravitatibmastability [13]. However, as we see
from Eq. (2.93), density perturbations do grow and theeefon sufficiently small scalek,> 7,
gravitational collapse is possible. Nevertheless, theaudhtons in the CMB which, as we shall
see, reflect the amplitude of the gravitational potentaare of the order of the initial fluctuations
generated during inflation.

2.6.3 Radiation

We now consider a spatially flat, radiation dominated ursger = ¢ = 13 andK = 0 so that
aOtandsZ = 1/t. The Bardeen equation reduces to

' - 2
w+?w+k§w:0, (2.94)
with solution /3
3 kt kt
Y= A B — . 2.95
2 (s) ren (73] 299

Here j1 andy; are spherical Bessel functions, seg.[12]. Since they;-mode is singular for
t — 0, we have to seéB = 0. To determine the density and velocity perturbations, s&energy
conservation and the Poisson equation (00 Einstein eq.yaftiation. Definingx = kt/+/3 and

’= 4 these become

4
D/ = —V, 2.96
g 73 (2.96)
—2CY = Dy +4W+ — 2.97
[¢] \/—X ( )

Inserting the solution (2.95) witB = 0 for ¥, we obtain

2 .
Dg = 2A {cos(x) — ;sm(x)} , (2.98)
V= —?D/ (2.99)

_ \/é
W= v (2.100)
For Eq. (2.98) we have used the explicite form of the spheBeasel functionj; (x) = x 2sin(x) —
x~1cogx).
In the super-horizon regime x « 1, this yields
A 1 A

W==, Dyg=-2A14+=x%), V=—=x. 2.101

On sub-horizon scales x > 1, we find oscillating solutions with constant amplitude amith
frequencyk/+/3 for the density and velocity perturbations and an ostiligand decaying gravita-
tional potential,

V = Qsm( X) , (2.102)
Dg = 2Acogx), W= —AcogXx)/x*. (2.103)
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The radiation fluid cannot simply 'collapse’ under gravityke for acoustic waves, the restoring
force provided by the pressure leads to oscillations wittstant amplitude. These are called the
'acoustic oscillations’ of the radiation fluid. As we shadksin the next section, they are responsible
for the acoustic peaks in the CMB fluctuation spectrum.

Also for radiation perturbations

A
D=——xX<W¥

3V3
is small on super horizon scalesk 1.

The perturbation amplitude is given by the largest gaugariant perturbation variable. We
conclude therefore that perturbations outside the Huldnliedn are frozen to first order. Once they
enter the horizon they start to collapse, but pressuretsehis gravitational force and the radiation
fluid fluctuations oscillate at constant amplitude. The yrbdtions of the gravitational potential
oscillate and decay like/B? inside the horizon.

3. CMB anisotropies and polarization

3.1 Lightlike geodesics and CMB anisotropies

After decouplingt > tgec, photons follow to a good approximation light-like geodssiThe
temperature shift of a Planck distribution of photons isa¢uithe energy shift of any given photon.
The relative energy shiff\w/w, (red- or blueshift) is independent of the photon energg\iy is
'achromatic’).

The unperturbed photon trajectory is given by

(xH(t) = <t,—/t.t0n(t/)dt’+xo> ,

wherexg is the photon position at timtg andn is the (parallel transported) photon direction, pro-
portional to the momentum of the photon. We determine thepmomants of the photon momentum

with respect to a geodesic ba(;@)le on the constant time hypersurfaces. We choose

9 ifK=0
=q 2 ’ 3.1
@ {SM with y(&,€;) = §; if K#O. (3.1)

In other words, the vector fields form an orthonormal basis for the spatial metic
Our perturbed metric is of the form

d€ = a’d$, with (3.2)
dSZ = (VIJV +huv) dX”dXV> Yoo = _17 Yio = 07 ylj = Vji . (33)

We make use of the fact that light-like geodesics are corddiynmvariant. More preciselyls’
andd# have the same light-like geodesics, only the corresponalifige parameters are different.
Let us denote the two affine parameters)bymdf\ respectively, and the tangent vectors to the
unperturbed geodesic by

n_d)\, n_d5\ , =/=0,n"=1, n°=1 (3.4)
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The photon 4-momenturp” is then given byp* = wn™u, wherew is the constant energy of the
photon moving in the metrids’. We have seen that in expanding space the photon momentum is
redshifted. Actually, the components behave likél"1/a? so thati? = a5, (ii )2 0 1/a2, hence
we have to choosg = a2A. As always for lightlike geodesicé, andA are only determined up to
a multiplicative constant which we have fixed by the conditin® = 1 andA = a2A.

Let us now introduce perturbatior. For example, we set® = 1+ &n°. The geodesic
equation for the perturbed metric

ds = (Vv + hyy)dxdx’ (3.5)
yields, to first order,
%5#‘ — _5rgﬁnanﬁ. (3.6)

For the energy shift, we have to determi®. Sinceg?* = — &y, +first order, we obtain‘SFgB =
—%(haom + hBO|Or - haB), so that

d 1.
aéno = hgognPn® — Ehaﬁnanﬁ. (3.7)
Integrating this equation we ushg,omnﬁn“ = %(haon"), so that the change of between some

initial time t; and some final timé& is given by
0f j f 1 f. v
5P| = [hoo+ hojni], _E/i hynin’dA . (3.8)

The energy of a photon with 4-momentysH &s seen by an observer moving with 4-veloeitis ~
given byE = — (0~ ), where-"denotes the scalar product in an expanding universe, camgahe
factora®. Hence, the ratio of the energy of a photon measured by sose\@ at; to the energy
emitted at; is

E A~ 0 i (n-u

—f:(~~~)f :i( ) . (3.9)

E  (A70);  ar (n-u)
Hereu'is the emitter and receiver four-velocity in an expandinyerse,u'= a—‘u while us andy;
are the four-velocities of the observer and emitter reggadgtin the non-expanding conformally

related geometry given by

u=(1-A)g +Vve =ai. (3.10)

Together withn™= a—2n this implies the result (3.9). The rata@/as = T; /T is the usual (unper-
turbed) redshift which relatesandri. An observer measuring a temperatiisaeceives photons
that were emitted at the timge. of decoupling of matter and radiation, at the fixed tempeeatu
Tgee In first-order perturbation theory, we find the followindaton between the unperturbed
temperatured;, Tj, the true temperaturél = T¢ + 0T¢, Tqgec = Ti + OT;, and the photon density

perturbation:

P T T 5T  OT; T 1

i:_f:_0<1__f+_'>:_0<1__5r|if>, (3.12)
as T Tdec Ts T Tdec 4

whered; is the intrinsic density perturbation in the radiation anellvave useg, 0 T# in the last
equality. Inserting the above equation and Eg. (3.8) into(B®), and using Eq. (2.22) for the

17



The Cosmic Microwave Background Ruth Durrer

definition ofhy,,, as well as Egs. (2.30, 2.31, 2.57) and (2.54) one finds, iat@gration by parts,
the following result for scalar perturbations [14]:

E Te 1 . f T

=901 {_Dguv,@nl +w+¢] +/ (W+d)dA b . (3.12)

B Tdec 4 i i
HereD{’ denotes the density perturbation in the radiation fluid,\affdlis the peculiar velocity of
the baryonic matter component (the emitter and observexdiition).

Evaluating Eq. (3.12) at final timi (today) and initial timetgec, We oObtain the temperature
difference of photons coming from different directiamsandn;
AT _AT(ny) AT(np) _ Eg Ef

T T T - E(nl) - Ei(nZ)' (3.13)

Direction independent contributions Eél) do not enter in this difference.

The largest contribution tQI is the dipole termvj(b) (to)n} which simply describes our motion
with respect to the emission surface. Its amplitude is aiduk 102 and it has been measured
so accurately that even the yearly variation due to the maifdhe earth around the sun has been
detected [15].

For the higher multipoles (polynomials it of degree 2 and higher) we can set

AT(I’]) 1 (r) to

= = |79 +Vj<b>ni+up+cp} (tdec,xdec)Jrt (W4 D)(t,x(t))dt, (3.14)
dec

wherex(t) is the unperturbed photon position at titér an observer axg, andXgec = X(tgec)

(If K =0 we simply havex(t) = xo — (to —t)n.). The first term in Eq. (3.14) is the one we
have discussed in the previous section. It describes thi@sict inhomogeneities of the radia-
tion density on the surface of last scattering, due to a@ostillations prior to decoupling, see
Eq. (2.98). Depending on the initial conditions, it can cifmitte significantly also on super-horizon
scales. This is especially important in the case of adialiaitial conditions. One can show that
(see [3]), in a dust- radiation universe with vanishing curvature, adiabatittahconditions imply
DY (k,t) = —2W(k t) andV® = V() « DY’ whenkt < 1. With ® — W the square bracket of
Eq. (3.14) therefore gives for adiabatic perturbations

()

T = =W (tgec, Xdec)

3

adiabatic

on super-horizon scales. The contributior%fofrom the last scattering surface on very large scales
is called the 'ordinary Sachs—Wolfe effect’ (OSW). It haghealerived for the first time by Sachs
and Wolfe [16].

Apart from adiabatic initial conditions, a dust+radiatEystem can obey so called iso-curvature
initial conditions which are defined by the requirement tHat> O for kt — 0. These initial condi-
tions imply thaiDg)(k,t) — 0 fort — 0 so that the contribution dﬂg) to the ordinary Sachs—Wolfe
effect can be neglected,

AT (n) ©OSW
< (n)> = 2W(tgec Xdec) -

T

iso—curvature
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The second term in (3.14) describes the relative motion dtenand observer. This is the Doppler
contribution to the CMB anisotropies. It appears on the santpilar scales as the acoustic term ;
we call the sum of the acoustic and Doppler contributionstatic peaks’.

The integral in Eq. (3.14) accounts for red-shift or bluétstaused by the time dependence
of the gravitational potential along the path of the photamg represents the so-called integrated
Sachs-Wolfe (ISW) effect. In@ = 1, pure dust universe, as we have seen, the Bardeen paential
are constant and there is no integrated Sachs-Wolfe effechlue-shift which the photons acquire
by falling into a gravitational potential is exactly caneglby the redshift induced by climbing
out of it. This is no longer true in a universe with substdmiaiation contribution, curvature, or
a cosmological constant. The sum of the ordinary Sachs-eNetim and the integral is the full
Sachs-Wolfe contribution (SW).

For vector perturbation®"”) andA vanish and Eq. (3.9) leads to

EN\Y & ot [f

We obtain a Doppler term and a gravitational contributioor tensor perturbationsj.e., gravita-
tional waves, only the gravitational part remains,

E¢ M aj /'f C
— =—[1— [ H;jnn'dA]. 3.16
(5) =2 fynion 316)
Equations (3.12), (3.15) and (3.16) are the manifestly gaogariant results for the energy shift of
photons due to scalar, vector and tensor perturbationsedzisding again the dipole contribution
due to our proper motion, Egs. (3.15,3.16) imply the vechat @nsor temperature fluctuations

V)

(ATT(”)> = V" (tgeo Xded! + / f aj(t,x(t))n'dA | (3.17)
(M f .

(ATT(”)> _ —/i Fij (&,x(6))n nidA . (3.18)

Note that for models where initial fluctuations have beed Bdwn in the very early universe,
vector perturbations are irrelevant as we have alreadytgubiout. In this sense Eq. (3.17) is here
mainly for completeness. However, in models where pertiohs are sourced by some inher-
ently inhomogeneous componeastd. topological defects, see [17]), vector perturbations can b
important.

3.2 Power spectra
3.2.1 General comments

The quantities which we can determine from a given model smally not the precise values of
perturbation variables lik&(x,t), but only expectation values likéP(x,t)W(y,t)). If we assume
that the random process which generates the fluctuatidis stochastically homogeneous and
isotropic, the correlator of the Fourier transfokdik,t) has to vanish for different wave vectdes
The quantity which we can calculate for a given model and ilhen has to be compared with
observations is the power spectrum defined below. Powetrapae the ‘harmonic transforms’
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of the two point correlation functidn If the perturbations of the model under consideration are
Gaussian, arelatively generic prediction from inflatignaiodels, then the two-point functions and
therefore the power spectra contain the full statisticilrimation of the model.

There is one additional problem to consider: one can neveadure’ expectation values.
We have only one Universd.e., one realization of the stochastic process which generages t
fluctuations at our disposal for observations. The best wedmawhen we want to determine
the mean square fluctuation on a given scalis to average over many disjoint patches of size
A, assuming that this spatial averaging corresponds to aanevis averaging; a type of 'ergodic
hypothesis’ . This works well as long as the sciles much smaller than the Hubble horizon, the
size of the observable universe. Roxr ﬁ(Ho‘l) we can no longer average over many independent
volumes and the value measured could be quite far from thengnle average. This problem is
known under the name 'cosmic variance’.

For an arbitrary scalar variab¢ in position space, we define the power spectrum in Fourier
space by

(X (K,to) X* (K',to) ) = (2m)38(k — K')Px (K) - (3.19)

In flat spaceK = 0, the functionX (k) is the ordinary Fourier transform of(x). If K # 0 the
situation is more complicated. Thet(k) represents an expansionXfx) in terms of eigenfunc-
tions of the Laplacian and in the calke> 0 the Diracd—function has to be replaced by a discrete
Kroneckerd.

The () indicates a statistical average, ensemble average, @retdm initial conditions’ in a
given model. We assume that no point in space is preferrathar words thaX(x) and any other
stochastic field which we consider has the same distributie@very pointx. Such random fields
are called 'statistically homogeneous’ (or stationary)e frther assume that the distribution of
X(x) has no preferred direction. This means that the randomXiédstatistically isotropic. These
properties imply that the Fourier transform of the 2—poimdtion is diagonalj.e., they explain
the factord(k — k) in Eq. (3.19).

3.2.2 The matter power spectrum

Let us first consider the matter power spectrég(k), which is defined by
(Dgm(K,t0) Dgin (K', o) ) = Po(K)(2m)25(k —K') . (3.20)

Po(K) is usually compared with the observed power spectrum of #hexyg distribution. This is
clearly problematic since it is by no means evident what thation between these two spectra
should be. This problem is known under the name ’biasing’ iaiglvery often simply assumed
that the matter and galaxy power spectra differ only by a teamidactor. The hope is also that
on sufficiently large scales, since the evolution of botHaxjas and dark matter is governed by
gravity, their power spectra should not differ by much. Thigpe seems to be reasonably justified.
In [18] it is found that the observed galaxy power spectruchthie matter power spectrum inferred
from the observation of CMB anisotropies differ only by ab®Q% on large scales.

1The *harmonic transform’ in usual flat space is simply the i@uransform. In curved space it is the expansion
in terms of eigenfunctions of the Laplacian on that spaag,on the sphere it corresponds to the expansion in terms of
spherical harmonics.
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The power spectrum of velocity perturbations satisfies dtegtion

(Vi (K )V (K t0)) = Q¥ ()Q* ()R, (K) (2% (k —K') , (3.21)
R/ (k) ~ H3QM2Py (K)k 2. (3.22)

For ~ we have used thakV(to)| = D§" (to) ~ HoQ%8Dgy on sub-horizon scales (seeg.,[19]).
Here Qn, is the matter density parameter. Unfortunately it is vef§idlilt to measure peculiar
velocities and so far not much use could be made of the vglpoiver spectrum.

3.2.3 The CMB power spectrum

Definition The spectrum in which we are most interested and which camtie imeasured and
calculated to the best accuracy is the CMB anisotropy powectsum. It is defined as follows:
AT /T is a function of positiorx, timet and photon direction. Here,i.e.,atx = Xo and nowj.e., at

t =to, AT /T is a function on the sphere,c S2. We develop it in terms of spherical harmonics,
Yim's. We will often suppress the argumerggndxg in the following calculations. Since our fields
are statistically homogeneous, averages over an enselntgalizations (expectation values) are
independent of position. Furthermore, we assume that theeps generating the initial pertur-
bations is statistically isotropic. This means that theritistion of AT /T (n) is the same for all
directionsn. Like for Fourier transforms of random fields in space, thiplies that the harmonic
transform of AT /T is diagonal. On other words, the off-diagonal correlatdrshe expansion
coefficientsa;my, vanish and we have

AT
- (to,Xo,N) = ;azm(XO)YZm(n)a (&m- &) = O OmmiCy . (3.23)
m

TheC,'s are the CMB power spectrum.
The two point correlation function is related to WGgs by

AT AT . .
(TOTFE) = S G i Vol () =
nn=u ¢/ mm

l
SC S Ymm¥in) = 23 20+ DCR) (324

2
2P ()

where we have used the addition theorem of spherical haomidoi the last equality; thB,’'s are
the Legendre polynomials (see e.g. [12]).
Clearly theay,’s from scalar, vector and tensor perturbations are unictee

<a§2a§)’> > = < ﬁag) > = < %])ag) > =0. (3.25)

Since vector perturbations decay, their contributione(],ﬁ¥), are negligible in models where
initial perturbations have been laid down very eadyg.,after an inflationary period. Tensor per-
turbations are constant on super-horizon scales and pedamped oscillations once they enter
the horizon.
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Scalar perturbations Let us first discuss in somewhat more detail scalar pertioremt We
specialize to the cade = 0 for simplicity. We suppose the initial perturbations todieen by a
spectrum of the form

(W)W (K)) 3 = 2m3A3Ru(K)S(k — k') = (2m)3As(kto) " 18(k —K').  (3.26)

We multiply by the constamgfl, the present comoving size of the horizon, in order to k&ep
dimensionless for all values of The numben is called the spectral indeds then represents the
amplitude of metric perturbations at horizon scale to#tay,1/to.

As we have seen in the previous section, the dominant catityib on super-horizon scales
(neglecting the integrated Sachs—Wolfe effedi+ W ) is the ordinary Sachs-Wolfe effect, OSW,
which for adiabatic perturbations is given by

T 1
?(XO, n,to) ~ §l‘P(Xdec, tdec). (327)
SinceXgec = Xo — N(to — tgec), the Fourier transform of (3.27) gives
AT 1 i
—(k.n,to) = SW(K, taed - gkn(to—taec) (3.28)

Using the decomposition
ghnllo—taec) — Z](zu )i jo(K(to — taed) )P (K - )

wherej, are the spherical Bessel functions; and using the addiieorem of spherical harmonics
repeatedly, we find

AT AT
<?(X0,n,t0)T(X0,n/,t0)> ~

nn’'=u

2410 0 —/d—k<—|w|2> C2(K(to — teed). (3.29)

4 T

Comparing this equation with Eqg. (3.24) we obtain &oliabatic perturbation®n large angu-
lar scales, X ¢ < X (to — tgec) /tdec ~ 100 :
2
i =0~ = / (9212 (Kt~ taed). (3.30)
The functionjf(k( 0 —tdec)) peaks roughly ak(to —tgec) ~ kip ~ ¢. If W is a pure power law

on large scalesktyec<S1 as in Eq. (3.26) and we skfty — tgec) ~ kip, the integral (3.30) can be
performed analytically. For the ansatz (3.26) one finds

csw _ As rE-nmrt—3+9)
‘ 9 B/r22-Dr(e+3-9)

for —3<n<3. (3.31)

Of special interest is thecale invariantor Harrison—Zel'dovich (HZ) spectrunm = 1 which
is generically produced in inflationary models. It leads to

0+ 1)c = As <<ATT (,9g)> > . S =m/t. (3.32)

o
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This is precisely (within the accuracy of the experimené iehavior observed by the DMR (Dif-
ferential Microwave Radiometer) experiment aboard thelltgt COBE [20]. In the mean time, the
scalar spectral index has been determined more precistghtivd WMAP (Wilkinson Microwave
Anisotropy Probe) satellite [21]. The resultris= 0.95+ 0.02.
Inflationary models predict very generically a nearly HZ&pam with n slightly less than
1. The DMR discovery and the WMAP confirmation have therefoeen regarded as a great
success, if not as a proof, of inflation. There are, howeuwberanodels like topological defects
(see [17]), or certain string cosmology models [22] whidoglredict scale—invariante., Harrison
Zel'dovich spectra of fluctuations. These models are oetthie class investigated here, since in
them perturbations are induced by seeds which evolve naa#ly in time. They are not simply led
down as initial conditions for the fluid perturbations butitally affect the perturbations of a given
wave length until it crosses the Hubble scale. This genlgyriteads to iso-curvature perturbations
which are not ruled out by present data since they do not shomipent acoustic peaks, see Fig. 1.
For iso-curvature perturbations, the main contributionlamge scales comes from the inte-
grated Sachs-Wolfe effect and (3.30) is replaced by
2
> . (3.33)

<ISW)N§/%3
o — [k

Inside the horizoV is roughly constant (matter dominated). Using the ansag6{3or W inside
the horizon and setting the integral in (3.33RW(k,t = 1/k)j§(kt0), we obtain again (3.31), but
with A%/ 9 replaced byA%. For a fixed amplitudés of perturbations, the Sachs—Wolfe temperature
anisotropies coming from iso-curvature perturbationgtaeeefore about six times larger than those
coming from adiabatic perturbations (see Fig. 1).
On smaller scale€=100, the contribution t&T /T is dominated by acoustic oscillations, the

first two terms in Eq. (3.14). Instead of (3.33) we then obtain

2

> . (3.34)

To remove the SW contribution froﬂ'r)g) we have simply replaced it b, which is much
smaller thart¥ on super-horizon scales and therefore does not contribuketSW terms. On sub-
horizon scale®, ~ Dg) andV; are oscillating like sine or cosine waves depending on thialin
conditions. Correspondingly tlﬁéAc) will show peaks and minima. For adiabatic initial condison
Dg) and therefore als®, oscillate like a cosine. Its minima and maxima ardx,agec/\/ﬁ = NTt.
Odd values ofn correspond to maxima, 'contraction peaks’, while even nermtare minima,
'expansion peaks’.

These are the ‘acoustic peaks’ of the CMB anisotropies. $ioms they are miss-leadingly
called 'Doppler peaks’ referring to an old misconceptioat tine peaks would be due to the velocity
term in the above formula. Actually the contrary is true. Adxima and minima of the density
contrast, the velocity (being proportional to the derivatdf the density) nearly vanishes.

The anglef, which subtends the scalg = 11/k, at the last scattering surface is determined by
the angular diameter distance to the last scattering ®Jdattqec) via the relatiorf, = A, /da(tgec)-

to .
W(k,t)j7 (k(to —t))dt

tdec

2 r2dk 5 /|1 : i
cf9 =2 [ <“Dr<k,tdecm<kto>+v<”<k7tdec>12<kfo>
mJo k 4

23



The Cosmic Microwave Background Ruth Durrer

Expanding the temperature anisotropies in spherical haiggpothe angular scal@, corresponds
(roughly) to the harmonic number

ln >~ 11/ By = TdA(tdec) /An = Oa(tdec)kn = n\/gndA(tdec)/tdec' (3.35)

For a flat matter dominated univerdg(tgec) ~ to leading to¢, ~ 18n. This crude approximation
deviates by about 15% from the precise numerical value, wid@pends witlta strongly on cur-
vature but also on the Hubble parameter and on the cosmalagpastant. Furthermore, the peak
positions depend on the sound speed of the radiation-bgrigsma which we have simply set to
¢s = 1/4/3 in this approximation. A detailed discussion of the par@mdependence of the peak
positions can be found in [3]. Note, however, that the pasitf the first peak differs significantly
for the iso-curvature mode, for whidhg) oscillates like a sine. For generic initial conditions, we
would expect a mixture of the sine and cosine modes whichsléaé displacement of the first
peak. The observed CMB anisotropies are consistent withrelypadiabatic mode and require, at
least, that the adiabatic mode dominates [23, 24].

For a flat universeQ = 1, then-th peak therefore is placed at

O ~ Koty ~ NTTV/3-2- (3.36)
tdec

For a flat matter dominated universe we h%‘?ﬁ‘?N V/Zdec ~ 33.2 which yields/; ~ 180. Here we

have usedyec ~ 1100. This approximation is not very good since the univéssaot very well

matter dominated dfec. A somewhat more accurate estimate giges- 220, in good agreement

with the numerical value. Subsequent peaks are then givép-byn/;.

Our discussion is only valid in flat space. In curved spacesitponentials ex(ik(to — tgec))
have to be replaced with the harmonics of the curved spaaasth€ positions of the peaks, this
corresponds to repladgto by knx (to), hence by replacint by the comoving angular diameter dis-
tance to the last scattering surface. Instead of Eq. (3.8@hen obtain the following approximate
relation for the peak positions,

ln ~ nn\/ﬁm . (3.37)
dec
For values of2 close to unity this scales like/1/Q.

On very small scales the acoustic peaks are damped by thermptiiffusion which takes place
during the recombination process. This effect must be destrwith the Boltzmann equation
approach (see next section and [3]).

Tensor perturbations For gravitational waves a formula analogous to (3.31) canmldrived

(see [3]),
m_ 2 2\ (142)!
c') = I—T/dkkz < > . (3.38)

(£—2)!
To a crude approximation we may assubié) = 0 on super-horizon scales and

0 M (Ko —t))
tdecdtH (tjk) (k(to—t))z

[ AR ju(kto ~ 1) ~ HT e = 1/K) (k)
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103
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Figure 1: Examples of COBE normalized adiabatic (solid line) and dsovature (dashed line) CMB
anisotropy spectra,(¢ 4+ 1)C,/(2m) in units of (uK)? are shown on the top panel. In the bottom panel
the ratio of the iso-curvature to adiabatic temperatureiktions is plotted.

For a pure power law,
2
(M et = 10| ) = Ar o)™ (3.39)

one then obtains

e ~ 2 (L2t /°° dX o J7()
0

-2 T X x4
(+2)! r6—n)r(¢—2+%
:(+ )I T 6_n(27T) ( +2)nT . (3.40)
(6—=2)0 " 26-mr2(f —np)r(e+4-"1)
For a scale invariant spectrumy(= 0) this results in
8 l+1
06+ 1)ct” (+1) (3.41)

S+ 3)(i—2)

The singularity a¥ = 2 in this crude approximation is not real, but there is someaoement of
00+ 1)C§T) for £ <510 (see Fig. 2).

Since tensor perturbations decay on sub-horizon scéteH)0, they are not very sensitive
to cosmological parameters. Again, inflationary modelsl (Epological defects) predict a scale
invariant spectrum of tensor fluctuations (~ 0).

Comparing the tensor and scalar result for scale invariartugbations we obtain for large
scales/ < 50

c”  72Ar _

—=~——2=T. 3.42
c¥ 15As r (3.42)
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Present CMB anisotropy data favor a roughly scale invasaettrum with amplitude
((£+1)Cy~6x 101 for ¢<50.

If the perturbations are purely scalar, this requites~ 1.7 x 1078, if they were purely tensorial
(which we know they are not), we would nedg ~ 3.5 x 107°. In general observations require
As 10
—(14+r)~6x10". 3.43
5 (14 1) 6 (3.43)
On small angular scalez2800, fluctuations are damped by collisional damping (Silknga
ing). This effect has to be discussed with the Boltzmann éguudor photons which is presented
in the next section.
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Scalar Tensor
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Figure 2: Adiabatic scalar and tensor CMB anisotropy spectra arégugt(¢ + 1)C,/(27) in units of (uK)?

in log-scale (top panels), where the Sachs Wolfe platede#sly visible and in linear scale (bottom panels)
which shows the equal spacing of the acoustic peaks. The l§odi shows the temperature spectrum, the
dashed line is the polarization and the dotted line showsetimperature-polarization cross correlation (see
next section). The latter can become negative, the deepssirikhe dotted curves in the left hand panels are
actually sign changes. The left hand side shows scalar #tiotuspectra, while the right hand side shows
tensor spectra. The observational data are well fitted byelyscalar spectrum. Comparison of data and a
model scalar spectrum are shown in Figs. 5to 7.
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3.3 The Boltzmann equation
Photons (or any kind of “classical particle”) can be desmlilby the distribution functiorf
defined on the 7-dimensional phase space, the mass shell
Po={(xp) € T. | gu () p"p’ = -1’} . (3.44)
Here.¥ is the spacetime manifold afdy is the tangent space. For photans= 0. The energy
momentum tensor is given by integrals of the second momenmetstoe 'fiber’
Pn(X) = {p€ T | gu () pH p’ = -7} . (3.45)
HereT,.7 is the tangent space of at the pointx € .Z .
f:Ph—=R:(x,p) — f(x,p) (3.46)

is the one particle distribution function and the energy rantum tensor of the particles is given
by
X)|
v = [ VI e . 3.47
) et [P0 ) P P Gop)dp (3:47)
If the particles are not interacting (collisionless) thegva along geodesics,

$H4+TH XX =0. (3.48)

The dot denotes the derivative with respect to proper siuhefined by the conditiog,,, (X)X x" =
x> = —1. In the case of massless (lightlike) particles, the prdjmee is only defined up to a
multiplicative constant. For the distribution functioniglimplies the Liouville equation,

df i 7}
If there are collisions, the zero on the right hand side h&gteplaced by the Boltzmann collision

integral.

In an unperturbed Friedmann universe the Liouville equafist implies that physical mo-
menta are redshiftedy = \/gi;p'p! 0 1/a. Hence the comoving momenta scalepas] 1/a°.
Settingv = apand interpretingf as function ot andv only, the Liouville equation on a Friedmann
universe reduces @ f = 0. Hencef = f(v) is a function of the redshift corrected momenta only.

We now definef (v,t,n,x) = f_(v) +o6f(vt,n,x) and

_om _10py(t,n,x) T
A (t,0,X) = W/v“éfdvz T R (3.50)

After a lengthy derivation which is presented in [3], the liille equation for scalar perturbations

then becomes
oS +nd.aS =0+ . (3.51)

This equation can be solved formally for any given sourcent@r+ Y. One easily checks that the
solution with initial condition.z (9 (tj,,x, n) is
A (t,x,n) = A (tn,x—n(t—tin),n)
t
— [ dtn'g(W+d)(t',x—n(t—t)). (3.52)

tin
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Using
%(w O)(t',x—n(t—t)) = d(W+D)(t',x—n(t—t'))
+n 3 (W4 D) (', x—n(t—t))

we can replace the second term on the right hand side to obtain

AP (t,x,n) = A (tn,x—n(t —tn),N)
+(W+ @) (tin,Xx—n(t —tin))
+ [ dta(W+ ). n(t~t)) +monopole (3.53)

By 'monopole’ we denote the uninterestingndependent contributior (W + ®)(t,x) which does
not affect the CMB anisotropy spectrum. The Bardeen pakyi! and®, however, are given via
Einstein’s equation in terms of the perturbations of thergmenomentum tensor which contain
contributions from the photons which are in turn the momenitaotegrals of.# given below.
Therefore, even though it might look like it, this is not awta@n of the Liouville equation. The
term on the right hand side also depends .

Let us compare Eq. (3.53) with the result from the integratblightlike geodesics after de-
coupling in Egs.(3.12) and (3.14). Here we have solved tbeniile equation which also does not
take into account the scattering of photons and is therefquavalent to our approach in the pre-
vious section. They both correspond to the 'sudden deaugipdipproximation, where we assume
that photons behaved like a perfect fluid before decouplinthveere entirely free after decoupling.
This is a relatively good approximation for all scales which much larger than the duration of the
process of recombination which correspond to multipdke800. The comparison with Egs.(3.12)
and (3.14) yields

1
M (tgee X — Nt —tgeq),N) = (ZDg +n- V(b>> (tdee X — N(t —tged) (3.54)
and 5T
A9 (t,x,n) = < (tx.n). (3.55)

In Fourier space equation (3.52) becomes
_ t . , N
At k,n) = e KHEn) 7zt kon)+ [ dte k(@ + W) (kt), p=n-k. (3.56)
tin
3.4 Polarization
A photon with momentunpn is an electromagnetic wave propagating in directionWe

define the polarization bas&gV), &2, such that(¢V), €2 n) form a right handed orthonormal
system. Transversality of the electric field then requihed t

E=FE e +Ee®?.

The polarization tensor is defined ByE;. This is a hermitian 2 2 matrix and can therefore be

written as 1 1
Eaf =5 [I 0¥ +uolt +val?d + Qaéﬁ)] =l oL +Pab (3.57)
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whereo(?) denote the Pauli matrices and the four real functions of toegm directiomn, 1, U,V
andQ are the Stokes parameters.

10 01
©) — L _
0 —i 10
2 _— @) —
o (i O) , o <0_1> . (3.58)

In terms of the electric field, the Stokes parameters are

| = B2+ B2, Q=|E2-|Ef?,
U = (EfE2+E3E;) = 2ReE;E;), V =2Im(EEy) . (3.59)

| is simply the intensity of the electromagnetic wa@xepresents the amount of linear polarization
in directionseM) ande @, i.e.,Qis the difference between the intensity of radiation patiialong
£ and the intensity polarized in directi@?. The parameter® andU describe the symmetric
traceless part of the polarization tensor whilanultiplies the anti-symmetric Pauli matrix(?.
This part describes a phase difference betwegand E, which results in circular polarization.
This is best seen by expressiRyg, in terms of the helicity basis®) = % (6@ +ig?@), where
one finds thaV is the difference between the left and right handed circptdarized intensities
(see e.g. [25]). Thomson scattering does not introduceileirgolarization. We therefore expect
theV—-Stokes parameter of the CMB radiation to vanish. We nedlétthe following. IfV =0,
we haveP,p = Py, = Pha. HencePyy is a real, symmetric, traceless matrix.

We define also

P=P,, =2PP{Vel") = Q+iU and (3.60)
P=P —2Pgllelt) —opabel el — QiU . (3.61)

Rotating the basise(Y, £?) by an anglap around the directiom, the polarization turns like
Py — e 0P, . (3.62)

Pap is a spin 2 tensor field on the sphere @hd. are its helicity+2 components. Such a tensor
field can be expanded in terms of spin weighted spherical dwiog, ¥;m. Fors= 0 these are the
usual spherical harmonics and fof 0 they depend not only ambut also on the basig, £(?))
on the sphere which is traditionally taken to (®s,e;), whereey = dy andey = +5ds. The
spin weighted spherical harmonics are eigenfunctions el tiplace operator on the sphere with
eigenvalue—/(¢+ 1) and they transform with helicitg under rotations around. For ¢ < sthey
vanish, o¥ym = 0. More properties of the spin weighted spherical harmoaius especially their
relation to the matrix elements of the irreducible représtions of the rotation group can be found
in [3].

The perturbations/ is nothing else than the relative perturbation of the intgns7 = %15I /1.
Correspondingly we define the dimensionless perturbaioiables

_Q _Y _Pe gl P9
2—4 and %_4I’ P = A =24+iU, P__= 2l =2—-iU .
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Since the polarization of the background vanishes, thesédath gauge-invariant. We can now
expand the polarization in spin weighted spherical haremni

¢
Pi=(2xi%)n) = Z agm iZYZm ; (3.63)
m=—

14

™M M

14
Z epmilbgm) iZYFm( ) . (364)
m=—/

Hence

1/ ) —i 2 -2
&m= > (agnz +a§m )) , bm= > (agni —agm )) . (3.65)

Under a ’parity’ transformationn — —n the basis vectorg®) transform asel®*) — ).
Hence the coeﬁicierﬂéﬁi turns intoaé;z) andaﬁ;z) — agﬁi so thate;y, remains invariant whilé@.m,
changes sign.

The expansion iraiﬁ2> is a decomposition into positive and negative helicity, le/(@sm, bym)
is a decompoasition into th& and% Stokes parameter with respect to the canonical basis on the
sphere which requires the choice af-axis.

One can also define differential operators which are spsingiand lowering operatorg
and ¢* (see [3]), similar to the quantum mechanical angular moomanbperatord, andL_
which raise and lower the magnetic quantum numberThe operatorsﬂ(*) have the properties
0 Yom O s 1Yom and @™ &ym O s_1Yym. Actually one obtains

9% (- Nem) = \/ E§+2;:Y£m (3.66)

() (i) = | L2

I\)

Yfm : (3.67)

Applying this to2 +i% we find

0@ =+ = 5§ Al Y. (3.69
P2 i) = =i = 5§ a? [ R (3.69)
where &(n) — : ééegm Eﬁfginm(n), (3.70)
F(n) = gé_(}mm Eﬁfg:nm(n). (3.71)

We also define the (non-local) scalar quantities
&(n) = gmizeémYZm(n) , (3.72)
#(n) = o_o mibzmm(n). (3.73)
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Like temperature fluctuations; and% are invariant under rotation. Since the sigrbgf changes
under parity,% has negative parity whilg and.# have positive parity. Actually one can show [3]
that (§*)? = 2(0_)? and(@)? = 2(0, )?, so that

E=0.0.2,+0,0,2  =200,%;=2dvdiv?,

B=00 2, -0,0,P = 26m&010;Pjm= 2rotrot? . (3.74)

Hence& measures gradient contributions whi#tmeasures curl contributions to the electric field
considered as a function on the sphere as shown in Fig. 3.ef€htic field is transverse and hence
tangent to the sphere of photon directions.)

AN \//\

4 | N N\

N <"

Figure 3: E—polarization (left) and—polarization (right) patterns are shown around the phdiogction
indicated as the central asterisk. polarization can be either radial or tangential, wilg@olarization is
clearly of curl type.

3.5 The collision term

So far, we have not discussed Thomson scattering which rekieant scattering process right
before recombination. To study it we consider an incomingti from directiom’ which is then
scattered into directiom with n-n’ = cosf3. For photons which are polarized in the scattering
plane, the scattered field amplitude is suppressed by & faig3|, while normal to the plane it is
not suppressed. In the rest frame of the electron one find$25¢

Ne€” 3
EI(\C> = r‘;e cosBE| = \/S—HneaT cosBE; (3.75)
e /3
E(ﬁ — nr‘;e E, = 8—nneoTEL. (3.76)
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Defining the vector
M
V=\|2+4+i% |, (3.77)
2—iu
we can derive the following form of the collision term in thadkground frame [3] (see Chan-
drasekhar for the original derivation [26])

1 . 2
Cl#] = aneor |25 [Qu 3 Puln.n)¥ (W)= ¥ (n)
m=-2
1 1
il ! RVIC)
+[4H/Qn/.///(n)+n Y, } 8 . (378)

wherePn(n,n’) is given in terms of spin weighted spherical harmonicsmard0 couples to scalar
perturbationsm= +1 to vector perturbations anmd= +2 to tensor perturbations

Yom(N)Y5m(N') —\/ngm ) 2Vom(N \[ Yom() —2¥5m(N')
P(n, 1) = | /8 Xom(N)Yzim(M') 3 NXam(N) Yzom(n ) 3 Mam(n) _Mg(n') | - (B-79)
V6 _Xom(N)¥zm(N') 3 -Nom(N) Mz (n') 3 —2Yom(n) V5 (0)
The Boltzmann equation can then be written for the Fouriedeso This is best done using
the total angular momentum method (see [27, 3]) from whicallfrthe CMB power spectra can
be determined as integrals over wave numbers,

Ci) = (lam|®)  where (3.80)
Y 14
A (X,n) = [z Z am(X)Yem(n) , (3.81)
=0m=—/¢
Cf) = (|eml?) (3.82)
i = (lbm[?) (3.83)
cl ) = (@) em) . (3.84)

These spectra can be calculated very rapidly using one opubécly available codes, CMB-
fast [28], the original or CAMBCODE [29] the presently mostyerful code or CMBEASY [30],
the most user friendly code. More details can be found in [3].

4. Observations and parameter estimation

Since the perturbation equations are linear, the CMB amipptand polarization amplitudes
depend linearly on the initial conditions. Let us, for simjy (and also since this is the situation
for most inflationary models), assume that the initial ctinds are given by two power spectra,

(2m)°3Ry(K)B(k —K') = (W(K,tin)¥* (K tn))  and
(2m)°*P(k)3(k — k') = (Hya(K,tn)Hio(K' tn)) = (Hoa(K,tin)H 5(K' tin)) -
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Figure 4: The scalar CMB anisotropy transfer functi@q)(k, 0) is shown. The first two acoustic peaks

and the SW plateau are clearly visible. In the presentatiotine left hand panel all points with amplitude

smaller that% of the maximum are set to dark blue while on the right hand ptey are set to white.

It is interesting to see how narrow th&, ¢) correlation is. In the right hand panel the ’ringing’ due to
secondary maxima of the Bessel functions is better visiblee cosmological parameters chosen for this
plot areQa = 0.73,Quh? = 0.13 Qph? = 0.022 andK = 0.

As the final perturbations depend linearly on the initial ditions, we can express the amplitudes
am, €&m andby, in the form
m = /dngé(n:)(Ko)q"(katin)+T(T)(k>+2)H+2(k,tin)+T(T)(k,—2)H,2(k,tin) ,

/m /m

€m = /d3kT€(r:1£>(k>0)qJ(katin)+T[(nf>(k,+2)H+2(k,tin)+T€(In§)(k,_2)H72(k,tm) ,

/m

me = /dgkn(nB\)(k7+2)H+2(k7tin)+T(B)(k7_2)H_2(k7tin)’

for some 'transfer functionsTé(,;(). For the power spectra we then obtain

dkr

e = am [ [T k0 PRRu0 +2T,7 (k 2 AR (K] | (4.1)

c\™® = 4n / d_kk T (0P (k) + 2T (K, 2R (K) | | (4.2)
dkr

c® = an [ S5 [Tk 0)Ru(K) + 2T (k 2)PR(K) (4.3)

dk
c® = 8 / ST 2) PR (4.4)
where we have defined the direction integrated transfertifums;
1 a
TXks)? = o= [ dagimad (e s). (4.5)
T (ks) = %T / a2, T (k, 97,5 (k,9) . (4.6)
(TE)

Because of statistical isotropy, these integrals do noeneémnm. Note thatT, ~(k,s) can be
negative since both’z(mT)(k,s) and Tg(r?*(k,s) are in general complex Fourier transforms of real
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functions, so tha(Té(nP(k,s)TZ(r:f)*(k,s))* = Tf(n:)(—k,s)TZﬁ)*(—k,s). Therefore the integral (4.6)
is real but not necessarily positive. We have also used tta@arsand tensor perturbations are
uncorrelated. These transfer functions only depend ondbkground cosmology, hence on cos-
mological parameters. However, as is clear from Egs. (4.13#), we need to know the initial
power spectrd®y and B, to infer the transfer functions and hence the cosmologieaampeters
from the observed power spectra. Usually this is done bynpetrerizing the initial conditions with
a few parameterse.g., Py(k)k3 = Ag(ktp)"s~1 and By (k)k® = At (kip)"™. One then fits jointly the
parameters describing the initial conditions and the cdsgical parameters which determine the
transfer functions.

The presently available data on temperature anisotropyoangolarization are shown in

Figs. 5,6 and 7
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Figure 5: The observed CMB anisotropy spectrum from WMAP [31] extehdg Boomerang [32] and
Acbar [33] in linear (left) and log (right) scale. The lineagirs the best fi\CDM model.

Also shown in these figures is a line which is the best®DM model. Obtained by a Markov
Chain Monte Carlo (MCMC) method [35] parameter fit to the d&tare details about parameter
fitting can be found in [3]. Here we just want to present the pessently available cosmological
parameters from different data sets and obtained makifgyelift assumptions.

4.1 Degeneracies

When estimating cosmological parameters with an MCMC ngthiwe resulting best fit pa-
rameters and the error bars depend on the model assumplioaefore, we must be very careful
when interpreting the results. Clearly, when allowing farsnmodel parameters, the errors do in
general increase. But there is a much more serious problegengracies. The transfer functions
depend strongly on certain combinations of cosmologicedipaters like the angular diameter dis-
tance to the last scattering surface, which determinesdhi¢igns of the acoustic peaks afihh?
which determines the amplitude of the gravitational postrt the last scattering surface, as well
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Figure 6: The CMB anisotropy spectrum and the temperature-pol@oizatoss-correlation obtained from
the WMAP 3 year data (figure from [31]).

asQph? which determines the asymmetry of even and odd peaks andithpidg scale. However,
when keeping(da, Qmh?,Qph?) fixed and varyinge.g., curvature and the Hubble parameter, the
CMB anisotropy and polarization spectra remain virtuathhanged, see Fig. 8.

To lift such degeneracies we usually need to resort to camgitary data, like the Hubble
key project measurement of the Hubble paramdtet,0.72+ 0.08 or galaxy surveys which are
sensitive to the combinatio,h etc. The most important lesson is of course that we do need
as much complementary data as possible, since first of alleed to lift the degeneracies in the
parameter dependence of the CMB and secondly the valuesmiotogical parameters determined
by MCMC methods are always more or less model dependent.
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Figure 7: The measured EE polarization spectrum from Wmap 3 year, Boang and others. For more
details see [34] from where this figure is taken.

WMAP WMAP | WMAP+ACBAR | WMAP +
Only +CBI+VSA | +BOOMERanG | 2dFGRS

Parameter
100 || 2.23372902 | 22127958 2.23172310 2.223723%¢
QP | 01268°3%%2 | 012339970 | 01250°3%077 | 0.1262 3%
h 07347555 | 0743%g3 | 0739505 | 073270
A | 0sor$sE | 079638 | 07080% | 0799100
r | oossiS | oosstSy | oossple | oos3fl
s 09510019 | 094701y | 0.95170gp | 0.948%g0ig
gg 07440080 | 0.722700s3 | 0.73%%Ggee | 0.737'00u
Qu | 02385, | 0226%0g55 | 0.233%ggs) | 0.236%g7

Table 1: Joint Likelihoods for a flat\CDM model with purely scalar perturbations. The WMAP threary
data are combined with small scale CMB experiments (CBI+YBAROMERanG) or galaxy survey data
(2dFGRS)A is the amplitude of density fluctuationslat 0.002/Mpc andr is the optical depth to the last
scattering surface. The parametegandQ, are derived. Table from [36].

5. Conclusions

In these lectures we have explained to you that one of the imgniortance of the CMB is that
it can nearly fully be calculated within linear perturbatitheory and therefore these calculations
can be performed relatively easily to high accuracy. In adsgy high accuracy means 0.5 to
1 %. Doing better than this is difficult and is a subject of prasresearch. We have given an
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WMAP+ WMAP+ WMAP + WMAP+
SDSS SNLS SN Gold CFHTLS

Parameter
1000,7 | 223300 | 223300 | 222700 | 225500
Quif | 0132909 | 012050 | 01349 055 | 0 1408 000
n | o70wdRE | o723 | 070r$it | oesr itk
A | 0813992 | ososloi | 0s2rlft | oase 0y
| 007l | 008500 | 007900 | 00se30%
n | 094888k | 00s0'dSh | 0oadlE | oesslis
0 | 077205 | 0756008 | 078400% | 0626302
Qn | 026680 | 02498 | 0276888 | 020008

Table 2: As in Table 1 but including other data sets: galaxy survey3SS), supernovae (SNLS and SN
Gold) and weak lensing (CFHTLS). Table from [36].

overview of how CMB anisotropies and polarization are calid and briefly discussed the main
physical effects which enter. Then you have learned howeusiinple assumptions for the initial
conditions, these results can be used to estimate cosroalqgirameters.

Other interesting aspects of CMB anisotropies and polaoizs. which we have not touched
upon in these lectures are,g.,nonlinearities like CMB lensing [3] or non-Gaussianitiddon-
Gaussianities are a very active field of research which amtalot of additional information about
inflation and about the non-linearities in the CMB. The peoblis that most theories of inflation
predict very small non-Gaussianities while most experit@esetups will lead to non-Gaussian
errors at some level. Therefore, the measurement of prialardn-Gaussianities so far remains a
challenge for the future. A theoretical overview can be fbarg.,in Ref. [37].
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Figure 8: On the top panel lines of equal angular diameter distancedigated. The numbeRis the ratio
of the angular diameter distance of the model to the one ohaardance model witkp = 0.7, Qmy, = 0.3,
h=0.7 . The lines of constant curvature are parallel to the diabahich is also drawn. In the lower left
panel we show CMB anisotropy spectra witlx > 0 (dashed)Qk < O (dotted) and2x = O (solid), which
have identical angular diameter distance, matter densitybaryon density. They correspond to the bullets
indicated in the top panel. The spectra overlay so prectbelywe cannot distinguish them by eye. On the
lower right panel we show three spectra with curvature Zzdemtical matter density and baryon density, but
different angular diameter distances (the squares iretidatthe top panel on th€ = 0 line). The spectra
are significantly different.
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