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1. Introduction

The cosmic microwave background (CMB) has been discovered accidentally in 1965 by Pen-
zias and Wilson [1] who obtained the Nobel prize 1978 for thisdiscovery. It was the decisive
evidence which convinced most physicists in favor of the BigBang model, initiated by Friedmann
and Lemaître and worked out be Gamov, Dicke, Peebles and others, as compared to a steady state
cosmology which had been advocated by Fred Hoyle and collaborators.

More or less immediately after the discovery of the CMB cosmologists began to search for
its fluctuations which must be there if the observed cosmic structures, galaxies, clusters, voids etc.
have formed by gravitational instability from small initial perturbations. For a long time they found
nothing apart from a dipole anisotropy on the level of 1.2×10−3 which can be interpreted by the
Doppler shift due to the motion of the earth with respect to the rest frame of the surface of last
scattering. Finally, in 1992 the fluctuations have been found with the help of the COBE (Cosmic
Background Explorer) Satellite mission from NASA [2]. During the last 15 years, the cosmic
microwave background (CMB) has become the most important observational tool in cosmology.
This is probably partly why G. Smoot has been attributed the Nobel prize of 2006 for this important
discovery.

In these lectures, you will learn why CMB anisotropies and polarization are so important for
cosmology and what we can learn from them. We shall assume that you are already familiar with
Friedmann–Lemaître (FL) cosmology and have some knowledgeof inflation, since this has been
treated in the course by Cliff Burgess. These lectures are based on my book [3] which contains of
course much more than what is presented here. Especially, weshall not talk about CMB lensing
and the CMB frequency spectrum. Furthermore, in this coursewe shall not derive the Boltzmann
equation in any detail and we will not enter in Markov chain Monte Carlo methods.

However, We shall give a thorough overview of cosmological perturbation theory, the calcu-
lation of CMB anisotropies in the instantaneous recombination approximation and the CMB spec-
trum. We shall also discuss the Boltzmann equation which is needed to investigate polarization and
Silk damping. Furthermore, we present the observational results and the principles of parameter
estimation and degeneracies.

Notation: We denote spacetime indices by Greek letters and purely spatial indices by Latin
letters. Spatial 3-vectors are written in bold. We choose the background metric

ds2 = a2(t)[−dt2 + γi j dxidxj ] = gµνdxµdxν , (1.1)

whereγ is the metric of a 3-space with constant curvatureK. Note thatt is conformal time. We
denote cosmic time byτ , dτ = adt. An over-dot denotes the derivative w.r.t conformal timet. Latin
3d indices are raised and lowered with the 3-metricγ while Greek spacetime indices are raised and
lowered withgµν respectivelygµν .

2. Cosmological perturbation theory

Fluctuations in the CMB are small. Therefore they can, to a good accuracy, be treated within
first order perturbation theory. This leads to linear evolution equations for perturbation variables
which can be solved to high accuracy with moderate numericalinvestment. This is one of the main
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reasons why observations of CMB fluctuations are so valuable. Comparing them with calculations
we can accurately determine the values of the parameters of the underlying cosmological model
and the initial perturbations. Therefore, linear cosmological perturbation theory is the basic tool
to investigate CMB anisotropies. This section is devoted toa discussion of the main elements of
cosmological perturbation theory.

2.1 Definition of cosmological perturbations, gauges

Denoting the cosmic scale factor bya(t) and the metric of a 3 dimensional space of constant
curvature byγi j the most general metric of a perturbed Friedmann universe isof the form

ds2 = a2(t)
[
−(1+2Ψ)dt2 +2σidtdxi +(1−2Φ)γi j dxidxj +2Hi j dxidxj]= (ḡµν +hµν)dxµ dxν .

(2.1)
Hi j is traceless,H i

i = Hi j γ i j = 0.
The split into a background ¯gµν and a perturbationhµν is not unique. The only measurable

geometry is the one described by the full metricgµν = ḡµν + hµν . The same is also true for the
energy momentum tensor. The full physical fieldsgµν andTµν are related via Einstein’s equation,

Gµν = 8πGTµν . (2.2)

We can define a background metric and background energy momentum tensor by choosing a foli-
ation of spacetime and averaging the metric and the energy momentum tensor over spatial slices,
gµν → ḡµν andTµν → T̄µν . In general, however, due to the non-linearity of Einstein’s equation,
the averaged metric and energy momentum tensor will not satisfy them,

Gµν(ḡµν) 6= 8πGT̄µν . (2.3)

Let us call an averaging procedure ’admissible’ if it obeys the following two conditions:

1. The averaged fields ¯g and T satisfy Einstein’s equation (which in this case reduce to the
Friedmann equations).

2. The deviations of the averaged fields and the physical fields are small in the sens that

|Tµν −Tµν |
max{αβ}{|Tαβ |}

∼ ε ≪ 1 , and
|gµν −gµν |

max{αβ}{gαβ}
∼ ε ≪ 1.

There may be many different admissible averaging procedures (e.g.,over different hyper–surfaces),
leading to slightly different Friedmann-Lemaître (FL) backgrounds. But since|g− ḡ|/a2 is small,
of orderε , the difference of the two FL backgrounds must also be small of order ε and we can
interpret it as part of the perturbation. We consider now a fixed admissible FL background(ḡ,T)

as chosen. Since the theory is invariant under diffeomorphisms (coordinate transformations), the
perturbations are not unique. For an arbitrary diffeomorphism φ and its push forwardφ∗, the two
metricsg andφ∗(g) describe the same geometry. Since we have chosen the background metric ¯g,
we only allow diffeomorphisms which leave ¯g invariant i.e.,which deviate only in first order from
the identity. Such an ’infinitesimal’ diffeomorphism can berepresented as the infinitesimal flow of
a vector fieldX, φ = φX

ε . Remember the definition of the flow: For the integral curve,γx(s), of X
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with starting pointp, i.e., γx(s= 0) = p we haveφX
s (p) = γx(s). In terms of the vector fieldX, to

first order inε , its push forward is then given by

φ∗ = id + εLX +O(ε2) ,

whereLX denotes the Lie derivative in directionX. The transformationg → φ∗(g) is equivalent
to ḡ+ εa2h→ ḡ+ ε(a2h+ LXḡ)+O(ε2). Under an ’infinitesimal coordinate transformation’ the
metric perturbationh therefore transforms as

h→ h+a−2LXḡ . (2.4)

In the context of cosmological perturbation theory, infinitesimal coordinate transformations are
called ’gauge transformations’. The perturbation of an arbitrary tensor fieldS= S̄+ εS(1) obeys
the gauge transformation law

S(1) → S(1) +LXS̄ . (2.5)

Since every vector fieldX generates a gauge transformationφ = φX
ε , we conclude that only

perturbations of tensor fields withLXS= 0 for all vector fieldsX, i.e., , with vanishing (or con-
stant) ’background contribution’ are gauge invariant. This result is called the ’Stewart-Walker
Lemma’ [4].

The gauge dependence of perturbations has caused many controversies in the literature, since
it is often difficult to extract the physical meaning of gaugedependent perturbations, especially on
super–horizon scales. This problem is solved by gauge invariant perturbation theory which we are
going to use here. The advantage of the gauge-invariant formalism is that gauge-invariant variables
have simple geometric and physical meanings and are not plagued by gauge modes. Although
the derivation requires somewhat more work, the final systemof perturbation equations is usually
simple and well suited for numerical treatment. We shall also see, that on sub-horizon scales, the
gauge-invariant matter perturbation variables approach the usual, gauge dependent ones. Since
one of the gauge-invariant geometrical perturbation variables corresponds to the Newtonian poten-
tial, the Newtonian limit can be performed easily. (In contrast to synchronous gauge where the
Newtonian potential is gauged to zero.)

First we note that all relativistic equations are covariantand can therefore be written in the
form S= 0 for some tensor fieldS. The corresponding background equation isS= 0, henceS(1)

is gauge-invariant. It is thus always possible to express the perturbation equations in terms of
gauge-invariant variables.

The principal sources of this section are the Refs. [3, 5, 6, 7, 8] on gauge-invariant cosmolog-
ical perturbation theory.

2.2 Harmonic decomposition

Since the{t = const. } hypersurfaces are homogeneous and isotropic, it is reasonable to
perform a harmonic analysis for the perturbation variablesdefined on them. This means that we
decompose a (spatial) tensor field on these hypersurfaces into components which transform irre-
ducibly under translations and rotations. For functions (tensor fields of rank zero), in the case of
vanishing spatial curvature,K = 0, this is simply the Fourier decomposition,

f (x, t) =
1

(2π)3

∫
d3k f(k, t)e−ikx . (2.6)

4



P
o
S
(
c
a
r
g
e
s
e
)
0
0
6

The Cosmic Microwave Background Ruth Durrer

If K 6= 0 it is the decomposition into eigenfunctions of the Laplacian,

∆Q(S)
k = −k2Q(S)

k . (2.7)

For K = 1 the valuesk are the discrete eigenvalues of the Laplacian on the 3–sphere, k2 = ℓ(ℓ+2)

and forK = −1, they are bounded from below,k2 > 1.

In addition, a tensorial variable (at fixed positionx) can be decomposed into irreducible com-
ponents under the rotation groupSO(3).

For a spatial vector field, this is its decomposition into a gradient and a curl component,

Vi = ∇iϕ +Bi, where Bi
|i = 0. (2.8)

We useX|i to denote the three–dimensional covariant derivative ofX. Hereϕ is the spin 0 andB is
the spin 1 component of the vector fieldV.

For a spatial symmetric tensor field we have

Hi j = HLγi j +

(
∇i∇ j −

1
3

∆γi j

)
HT +

1
2

(
H(V)

i| j +H(V)
j|i

)
+H(T)

i j , (2.9)

where

H(V)|i
i = H(T)i

i = H(T) j

i| j = 0. (2.10)

Here HL and HT are spin 0 components,H(V)
i is the spin 1 component andH(T)

i j is the spin 2
component of the tensor fieldH.

We shall not need higher tensors (or spinors). As a basis for vector and tensor modes we use
the vector and tensor type eigenfunctions of the Laplacian,

∆Q(V)
j = −k2Q(V)

j and ∆Q(T)
ji = −k2Q(T)

ji , (2.11)

whereQ(V)
j is a transverse vector,Q(V)| j

j = 0 andQ(T)
ji is a symmetric transverse traceless tensor,

Q(T) j
j = Q(T)|i

ji = 0. Both,Q(V)
j andQ(T)

ji have two degrees of freedom. In the case of vanishing
curvature we can use an orthonormal basise(1), e(2) in the plane normal tok and we can define
helicity basis vectors,

e± =
1√
2

(
e(1) ± ie(2)

)
. (2.12)

In curved spaces the definition of the helicity basis is analogous, but somewhat more involved.
Since we shall not need the explicite form of this basis, we shall not enter into this. Vector pertur-
bations can be expanded in terms of this basis, while tensor perturbations are expanded either in
terms of the standard tensor basis given by

ed
i j =

1
2

[
e(1)

i e(1)
j −e(2)

i e(2)
j

]
, e×i j =

1
2

[
e(1)

i e(2)
j +e(2)

i e(1)
j

]
, (2.13)

or also in terms of a helicity basis defined by

e(+2)
i j = e+

i e+
j = ed

i j + ie×i j , e(−2)
i j = e−i e−j = ed

i j − ie×i j . (2.14)
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We can develop the vector and tensor basis functions as

Q(V)
j = Q(1)e(1)

j +Q(2)e(2)
j = Q(+)e(+)

j +Q(−)e(−)
j (2.15)

Q(T)
ji = Q(d)e(d)

i j +Q(×)e(×)
i j = Q(+2)e(+2)

i j +Q(−2)e(−2)
i j . (2.16)

The components in the ’helicity basis’,e(±) and e(±2)
i j simply transform with a phasee±iϕ , and

e±2iϕ respectively under rotations aroundk with angleϕ . Hence vector perturbations are spin 1
fields while tensor perturbations are spin 2 fields. The functions Q(+) and Q(+2) have spin up,
m= +1 andm= +2 respectively, whileQ(−) andQ(−2) have spin down. Scalar perturbations of
course have spin zero.

As in Eqs. (2.8) and (2.9), we can construct scalar-type vectors and traceless symmetric tensors
and vector-type traceless symmetric tensors. To this goal we define

Q(S)
j ≡ −k−1Q(S)

| j , Q(S)
i j ≡ k−2Q(S)

|i j +
1
3

γi j Q
(S) and (2.17)

Q(V)
i j ≡ − 1

2k
(Q(V)

i| j +Q(V)
j|i ) . (2.18)

In the following we shall extensively use this decomposition and write down the perturbation equa-
tions for a given modek.

The decomposition of thek–mode of a vector field is then of the form

Vi = VQ(S)
i +V(V)Q(V)

i . (2.19)

The decomposition of a tensor field is given by (compare Eq. (2.9))

Hi j = HLQ(S)γi j +HTQ(S)
i j +H(V)Q(V)

i j +H(T)Q(T)
i j . (2.20)

HereB, B(V), HL, HT , H(V) andH(T) are functions oft andk.
This decomposition is very useful, since scalar, vector andtensor amplitudes of each modek

evolve independently, obeying ordinary differential equations in time.

2.3 Metric perturbations

Perturbations of the metric are of the form

gµν = ḡµν +a2hµν . (2.21)

We parameterize them as

hµνdxµdxν = −2Adt2−2Bidtdxi +2Hi j dxidxj , (2.22)

and we decompose the perturbation variablesBi andHi j according to (2.19) and (2.20).
Let us now investigate the behavior ofhµν under gauge transformations. We set the vector

field defining the gauge transformation to

X = T∂t +Li∂i . (2.23)
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Using the definition of the Lie derivative, we obtain

LX ḡ = a2[−2
(
H T + Ṫ

)
dt2 +2

(
L̇i −T,i

)
dtdxi

+
(
2H Tγi j +Li| j +L j|i

)
dxidxj] . (2.24)

Comparing this with (2.22) and using (2.5), we obtain

A → A+H T + Ṫ ,

Bi → Bi − L̇i +T,i ,

Hi j → Hi j +
1
2

(
Li| j +L j|i

)
+H Tγi j .

Using the decompositions (2.19) and (2.20) forBi and Hi j , this implies the following behavior
of the perturbation variables under gauge transformations(we also decompose the vectorLi =

LQ(S)
i +L(V)Q(V)

i ):

A → A+H T + Ṫ , (2.25)

B → B− L̇−kT , B(V) → B(V) − L̇(V) , (2.26)

HL → HL +H T +
k
3

L , HT → HT −kL , (2.27)

H(V) → H(V)−kL(V) H(T) → H(T) . (2.28)

Two scalar and one vector variable can be set to zero by gauge transformations.
To fix the scalar perturbations of the metric, one often chooses the gauge transformationkL =

HT andkT = B− L̇, so that the transformed variablesHT andB vanish. In this gauge (longitudinal
gauge), scalar perturbations of the metric are of the form (HT |long = B|long = 0):

h(S)
µν = −2Ψdt2−2Φγi j dxidxj . (2.29)

Ψ andΦ are the so-calledBardeenpotentials. In a generic gauge the Bardeen potentials are
given by

Ψ = A−H k−1σ −k−1σ̇ , (2.30)

Φ = −HL−
1
3

HT +H k−1σ = −R +H k−1σ , (2.31)

whereσ = k−1ḢT −B, is the scalar potential for the shear of the hypersurface ofconstant time. A
short calculation shows thatΨ andΦ are indeed invariant under gauge transformations (for more
details see [3]).

In a FL universe the Weyl tensor (seee.g., [9]) vanishes. It therefore is a gauge-invariant
perturbation. For scalar perturbations one finds

Ei j ≡Cµ
iν juµuν = −C0

i0 j =
−1
2

[
(Ψ+ Φ)|i j −

1
3

∆(Ψ+ Φ)γi j

]
. (2.32)

All other components vanish.
For vector perturbations it is convenient to setkL(V) = H(V) so thatH(V) vanishes and we have

h(V)
µν dxµdxν = 2a2σ (V)Q(V)

i dtdxi . (2.33)
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We shall call this gauge the “vector gauge”.
The Weyl tensor from vector perturbation is given by

Ei j = −C0
i0 j =

−k
2

σ̇ (V)Q(V)
i j , (2.34)

Bi j ≡ 1
2

εiν
ρσCρσ

jαuνuα = εilmC0
jlm

=
−k
2

σ (V)εilm

[
Q(V)

jl |m−Q(V)
jm|l −

1
3

γ jl Q
(V)
m|k

k +
1
3

γ jmQ(V)
l |k

k
]
. (2.35)

Note that from their definitionEi j andBi j are symmetric and sinceu= (u0,0) to lowest order, only
C0

i0 j andC0
ilm respectively contribute. The tensorsEi j andBi j , determine the Weyl tensor fully.

Clearly there are no tensorial (spin 2) gauge transformations and henceH(T)
i j is gauge-invariant.

The expression for the Weyl tensor from tensor perturbationis

Ei j =
1
2
(∂ 2

t −k2)H(T)Q(T)
i j , (2.36)

Bi j = −Ḣ(T)εilm

[
Q(T)

jl |m−Q(T)
jm|l

]
. (2.37)

2.4 Perturbations of the energy momentum tensor

Let Tµ
ν = T

µ
ν + θ µ

ν be the full energy momentum tensor. We define its energy density ρ and
its energy flux 4-vectoru as the time-like eigenvalue and eigenvector ofTµ

ν :

Tµ
ν uν = −ρuµ , u2 = −1. (2.38)

We then parameterize their perturbations by

ρ = ρ̄ (1+ δ ) , u = u0∂t +ui∂i. (2.39)

To first order, the componentu0 is fixed by the normalization condition,

u0 =
1
a
(1−A). (2.40)

The spatial components provide new perturbations. We set

ui =
1
a

vi =
1
a

(
vQ(S)i +v(V)Q(V)i

)
. (2.41)

Pµ
ν ≡ uµuν +δ µ

ν is the projection tensor onto the subspace of tangent space normal tou. We define
the stress tensor

τ µν = Pµ
α Pν

β Tαβ . (2.42)

With this we can write
Tµ

ν = ρuµuν + τ µ
ν . (2.43)

In the unperturbed case we haveτ0
µ = τ µ

0 = 0 andτ i
j = P̄δ i

j . Including first order perturbations, the
componentsτ0µ are determined by the perturbation variables which we have already introduced.
We obtain

τ0
0 = 0, and τ j

0 = −P̄vj , τ0
j = P̄(v j −B j). (2.44)
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But τ i
j contains in general new perturbations. We define

τ i
j = P̄

[
(1+ πL)δ i

j + Πi
j

]
, with Πi

i = 0. (2.45)

From our definitions we can determine the perturbations of the energy momentum tensor. A short
calculation gives

T0
0 = −ρ̄(1+ δ ) , T0

j = (ρ̄ + P̄)(v j −B j) , T j
0 = −(ρ̄ + P̄)v j and (2.46)

T i
j = P̄

[
(1+ πL)δ i

j + Πi
j
]

. (2.47)

The traceless part of the stress tensor,Πi
j , is called the anisotropic stress tensor. We decompose it

as

Πi
j = ΠQ(S) i

j + Π(V)Q(V) i
j + Π(T)Q(T) i

j . (2.48)

We now study the gauge transformation properties of these perturbation variables. First we
note thatρ is a scalar, henceLXρ̄ = ˙̄ρT = −3(1+w)H ρ̄T. Here we made use of the background
energy conservation equation,˙̄ρ = −3(ρ̄ + P̄)H = −3ρ̄(1+ w)H , with w = P̄/ρ̄ . The same
is true for P̄(1+ πL) which is 1/3 of the trace ofτ µ

ν . With c2
s ≡ ˙̄P/ ˙̄ρ , we obtainLXP̄ = ˙̄PT =

−3c2
s

w (1+ w)H P̄T. The background contribution to the anisotropic stress tensor, Πµ
ν = τ µ

ν −
1
3τα

α δ µ
ν , vanishes, hence the Stewart–Walker lemma implies thatΠµ

ν is gauge-invariant. lemma.
For perfect fluidsΠµ

ν = 0. For the velocity we useLXū = [X, ū] = (−Tȧa−2−a−1Ṫ)∂t −a−1L̇i∂i.
Inserting our decomposition into scalar, vector and tensorperturbation variables for a fixed mode
k, we obtain finally the following transformation behavior

δ → δ −3(1+w)H T , πL → πL −3
c2

s

w
(1+w)H T , (2.49)

v → v− L̇ , Π → Π (2.50)

v(V) → v(V) − L̇(V) , Π(V) → Π(V) , (2.51)

Π(T) → Π(T) . (2.52)

Apart from the anisotropic stress perturbations, there is only one gauge-invariant variable
which can be obtained from the energy momentum tensor alone,namely

Γ = πL −
c2

s

w
δ . (2.53)

One can show (see [3]) thatΓ is proportional to the divergence of the entropy flux of the perturba-
tions. Adiabatic perturbations are characterized byΓ = 0.

Gauge-invariant density and velocity perturbations can befound by combiningδ , v andv(V)
i

with metric perturbations. We shall use

V ≡ v− 1
k

ḢT = vlong , (2.54)

Ds ≡ δ +3(1+w)H (k−2ḢT −k−1B) ≡ δ long , (2.55)

D ≡ δ long+3(1+w)
H

k
V = δ +3(1+w)

H

k
(v−B)
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= Ds+3(1+w)
H

k
V , (2.56)

Dg ≡ δ +3(1+w)

(
HL +

1
3

HT

)
= δ long−3(1+w)Φ

= Ds−3(1+w)Φ , (2.57)

V(V) ≡ v(V) − 1
k

Ḣ(V) = v(vec) , (2.58)

Ω ≡ v(V) −B(V) = v(vec)−B(V) , (2.59)

Ω−V(V) = σ (V). (2.60)

Herevlong, δ long andv(vec) are the velocity (and density) perturbations in longitudinal and vector
gauge respectively, andσ (V) is the metric perturbation in vector gauge and the vector type contri-
bution to the shear of thet =constant hyper–surfaces.

These variables can be interpreted nicely in terms of gradients of the energy density and the
shear and vorticity of the velocity field [10].

We now want to show that on scales much smaller than the Hubblescale,k≫H ∼ t−1, metric
perturbations are much smaller thanδ andv and we can thus neglect the difference between differ-
ent gauges and/or gauge-invariant variables. This is especially important when comparing experi-
mental results with gauge-invariant calculations. Let us neglect spatial curvature in the following
order of magnitude argument. Then, the perturbations of theEinstein tensor are a combination
of second derivatives of the metric perturbations,H times first derivatives andH 2 or Ḣ times
metric perturbations. The first order perturbation of Einstein’s equations therefore generically yield
the following order of magnitude estimate 8πGδTµν = δGµν :

O

(
δρ
ρ

)
O (8πGρ)︸ ︷︷ ︸

O(a2/t2)

= O

(
1
t2 a2h+

k
t
a2h+k2a2h

)
(2.61)

O

(
δρ
ρ

)
= O

(
h+kth+(kt)2h

)
. (2.62)

Forkt ≫ 1 this givesO(δ ,v) = O

(
δTµν

ρ

)
= O

(
(kt)2h

)
≫ O(h). Therefore, on sub-horizon scales

the differences betweenδ , δ long, Dg andD are negligible as well as the differences betweenv andV
or v(V), V(V) andΩ(V). Since measurements of density and velocity perturbationscan only be made
on sub–horizon scales, we may therefore use any of the gauge-invariant perturbation variables to
compare with measurements.

2.5 The perturbation equations

We do not derive the first order perturbations of Einstein’s equations. By elementary algebraic
methods, this is quite lengthy and cumbersome. However, we recommend the student to simply
determineδGµν in longitudinal (vector) gauge using some algebraic package like Maple or Mathe-
matica and then write down the resulting Einstein equationsusing gauge-invariant variables. Since
we know that these variables do not depend on the coordinateschosen, the equations obtained in
this way are valid in any gauge. Here, we just present the resulting equations in gauge-invariant
form. A rapid derivation by hand is possible using the 3+1 formalism of general relativity and

10
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working with Cartan’s formalism for the Riemann curvature,see [11]. In order to simplify the no-
tation, we suppress the over-bar on background quantities whenever this does not lead to confusion.

2.5.1 Einstein’s equations

The constraints: The Einstein equationsG0µ = 8πGT0µ lead to two scalar and one vector con-
straint equations,

4πGa2ρD = −(k2−3K)Φ (00)
4πGa2(ρ +P)V = k

(
H Ψ+ Φ̇

)
(0i)

}

(scalar), (2.63)

8πGa2(ρ +P)Ω =
1
2

(
2K −k2)σ (V) (0i) (vector). (2.64)

The dynamical equations: The Einstein equationsGi j = 8πGTi j provide two scalar, one vector
and one tensor perturbation equation,
scalar:

k2(Φ−Ψ) = 8πGa2PΠ(S) , (i 6= j) (2.65)

Φ̈+2H Φ̇+H Ψ̇+

[
2Ḣ +H

2− k2

3

]
Ψ =

4πGa2ρ
[

1
3

D+c2
sDs+wΓ

]
, (ii) (2.66)

vector:

k
(

σ̇ (V) +2H σ (V)
)

= 8πGa2PΠ(V) , (2.67)

tensor:

Ḧ(T) +2H Ḣ(T) +
(
2K +k2)H(T) = 8πGa2PΠ(T) , (2.68)

The second dynamical scalar equation is somewhat cumbersome and not often used, since we may
use one of the conservation equations given below instead. For the derivation of the perturbed
Einstein equation the following relations are useful. Theycan be derived from the Friedmann
equations.

4πGa2ρ(1+w) = H
2− Ḣ +K , (2.69)

Ḣ = −1+3w
2

(
H

2 +K
)

, (2.70)

4πGa2ρ(1+w)3c2
s =

Ḧ

H
− Ḣ −H

2−K , (2.71)

c2
s =

Ḧ

H
− Ḣ −H 2−K

3
[
H 2− Ḣ +K

] . (2.72)

For the calculations below we shall also make use of

ẇ = 3(w−c2
s)(1+w)H . (2.73)
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Note that for perfect fluids, whereΠi
j ≡ 0, we haveΦ = Ψ. As we shall see below, for perfect

fluids withΓ = Π = 0, the behavior of scalar perturbations is given byΨ which describes a damped
wave propagating with speedc2

s.
Tensor perturbations are given byH(T) which for perfect fluids also obeys a damped wave

equation propagating with the speed of light. On small scales (over short time periods) when
t−2<∼2K + k2, the damping term can be neglected andHi j represents propagating gravitational
waves. For vanishing curvature ork2 ≫ K, small scales are just the sub-Hubble scales,kt>∼1. For
K < 0, waves oscillate with a somewhat smaller frequency,ω =

√
2K +k2 < k, while for K > 0

the frequency is somewhat higher thank.
Vector perturbations of a perfect fluid are determined by theσ (V)–equation, Eq. (2.67), which

impliesσ (V) ∝ 1/a2. Hence vector perturbations do not oscillate, they simply decay.

2.5.2 Energy momentum conservation

The conservation equations,Tµν
;ν = 0 (here ;ν denotes the four-dimensional covariant deriva-

tive) lead to the following perturbation equations:

Ḋg+3
(
c2

s −w
)
H Dg+(1+w)kV+3wH Γ = 0

V̇ +H
(
1−3c2

s

)
V = k

(
Ψ+3c2

sΦ
)
+ c2

sk
1+wDg

+ wk
1+w

[
Γ− 2

3

(
1− 3K

k2

)
Π
]

,





(scalar), (2.74)

Ω̇+
(
1−3c2

s

)
H Ω = − w

2(1+w)

(
k− 2K

k

)
Π(V) . (vector). (2.75)

It is sometimes also useful to express the scalar conservation equations in terms of the variable
pair (D,V). UsingD = Dg+3(1+w)

[
H k−1V + Φ

]
in (2.74) one obtains after some algebra and

making use of the(0i) constraint equation (2.63)

Ḋ−3wH D = −
(

1− 3K
k2

)
[(1+w)kV +2H wΠ] , (2.76)

V̇ +H V = k

[
Ψ+

c2
s

1+w
D+

w
1+w

Γ− 2
3

(
1− 3K

k2

)
w

1+w
Π
]
. (2.77)

The conservation equations can of course also be obtained from the Einstein equations since they
are equivalent to the contracted Bianchi identities.Γ and Π have to be determined via matter
equations. For example, for adiabatic perturbations of an ideal fluid one hasΓ = Π = 0.

One can now use the(00) and(0i) Einstein equations, (2.63) to derive a second order equa-
tion for Φ andΨ from the conservation equations. Eliminating finallyΦ with the i 6= j Einstein
equation,(2.65) yields the Bardeen equation,

Ψ̈+3(1+c2
s)H Ψ̇+

[
3(c2

s −w)H 2− (2+3w+3c2
s)K +c2

sk2]Ψ = S (Π,Γ) . (2.78)

The right hand side is a ’source term’ linear inΓ and Π. It is very complicated and not very
illuminating, therefore we do not write it down here.

For scalar perturbations we have in principle 4 independentequations and 6 variables. For
vector perturbations we have 2 equations and 3 variables, while for tensor perturbations we have
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1 equation and 2 variables. To close the system we must add matter equations. The simplest
prescription is to setΓ = Πi j = 0. This matter equation, which describes adiabatic perturbations
of a perfect fluid gives us exactly two additional equations for scalar perturbations and one each
for vector and tensor perturbations. Ifc2

s 6= 0 the scalar equation (2.78) is a wave equation like
the tensor equation discussed above. The first order term, 3(1+ c2

s)H describes damping due to
expansion, and the term in square brackets is of the formm2(t) + c2

sk2, where the contributions
proportional toK andH 2 are interpreted as a time dependent ’mass term’. IfK = 0 andc2

s = w
the mass term vanishes and the Bardeen potential simply performs damped acoustic oscillations.
This scalar wave equation describes the ’acoustic oscillations’ of the fluid where the fluid pressure
counter acts gravitational collapse. The vector perturbation equation, however, is of first order.
Π(V) = 0 impliesσ (V) ∝ 1/a2 andΩ ∝ a−1+3c2

s . Hence vector perturbations simply decay if there
are no anisotropic stresses to source them.

Another simple example is a universe with matter content given by a scalar field which is
relevant for inflation [3]. More complicated are several interacting particle species of which some
have to be described by a Boltzmann equation. This is the actual universe at late times,z<∼107.

2.6 Simple but important examples

2.6.1 Free gravity waves

If there are no anisotropic stresses, like for example for a perfect fluid or a scalar field, and
if curvature can be neglected,K = 0 and expansion can be approximated by a simple power law,
a(t) ∝ tq, the tensor perturbation equation reduces to

Ḧ(T) +
2q
t

Ḣ(T) +k2H(T) = 0 . (2.79)

The general solution of this equation can be given in terms ofspherical Bessel functions,

H(T) =
kt
a

[A jq−1(kt)+B j−q(kt)] . (2.80)

Here jν denotes the spherical Bessel function of indexν , seee.g.,[12]. The second term diverges
if q > 1/2, for example in a radiation dominated universe whereq = 1, or in a matter dominated
universe whereq= 2. (Not, however, in an inflating universe whereq< 0.) Therefore, in a radiation
(or matter) dominated universe we have to setB = 0, so thatH(T)(t) → const. fort → 0. At late
time we then find

H(T) ≃ A
a

sin(kt− q−1
2

π) , kt ≫ 1 . (2.81)

The energy density in gravitational waves per logarithmic frequency interval is then given by

dρH

d logk
= 2

4π〈| d
dτ H(T)|2〉k3

16πG
=

A2(k)k5

4Ga4 . (2.82)

Here d
dτ = a−1 d

dt is the derivative with respect to cosmic time and the factor 4πk3 is the phase space
volume per logarithmic frequency interval. The factor 2 comes from the two helicity modes. The
brackets,〈· · ·〉 indicate an average over several periods of the wave as well as an ensemble average
(see Section 3.2).
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Note thatρH ∝ a−4 as we expect it for a component of massless particles. Furthermore, if the
gravity wave power spectrum is scale invariant on large scales,〈|H(T)|2〉k3 ∝ 1

2A2(k)k3+2q(tq/a)2=const.
for kt ≪ 1 andnT = 0 (see Section 3.2). This implies thatA2(k) ∝ k−3−2q. Hence on scales which
enter the horizon in the matter dominated era,q = 2, the energy density decays with the wavenum-
ber like k−2 while it is independent of scale for wave numbers which enterthe horizon in the
radiation dominated era,q = 1. A rough estimate neglecting the matter/radiation transition gives
for scales which enter the horizon in the radiation dominated era,k > Heq≃ 1/teq

dΩH(k)
d logk

=
dρH

d logk
ρ−1

radΩrad≃ r ×10−10Ωrad , k > Heq. (2.83)

The ratior denotes the tensor to scalar ratio of the CMB anisotropy spectrum, see Section 3.2.

2.6.2 Nonrelativistic matter, dust

We now consider the case of nonrelativistic particles, dust, where we may neglect pressure,
w = c2

s = 0. To simplify the equations we also neglect curvature,K = 0. Thena ∝ t2 and the
Bardeen equation then reduces to

Ψ̈+
6
t

Ψ̇ = 0 (2.84)

with solution
Ψ = A+

B
(kt)5 . (2.85)

The second term is decaying and can therefore soon be neglected so thatΨ = A≡ Ψ0 is constant.
The momentum conservation equation now yields

V̇ +
2
t
V = kA (2.86)

which is solved by

V(t) =
A
3

kt+C(kt)−2 . (2.87)

Again, the second term describes a decaying solution which we neglect. From

Ḋg +kV = 0 (2.88)

we find
Dg = −A

6
(kt)2 +A′ . (2.89)

Here we cannot neglect the constant modeA′ since it dominates on very large scales,kt ≪ 1.
Inserting the solution in the(00) Einstein equation,

D = Dg +3k−1
H V +3Ψ = − k2

4πGa2ρ
Ψ = −1

6
(kt)2Ψ , (2.90)

one findsA′ = −5A. We therefore end up with

Ψ = A = Ψ0 = const., (2.91)

V =
1
3

Ψ0kt , (2.92)

Dg = −5Ψ0−
1
6

Ψ0(kt)2 , D = −1
6

Ψ0(kt)2 . (2.93)
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The metric perturbationΨ stays constant, it does not grow. This led Lifshitz, who was the first
to investigate relativistic cosmological perturbation theory, to the conclusion that galaxies cannot
have grown out of small initial fluctuations by gravitational instability [13]. However, as we see
from Eq. (2.93), density perturbations do grow and therefore, on sufficiently small scales,k≫ H ,
gravitational collapse is possible. Nevertheless, the fluctuations in the CMB which, as we shall
see, reflect the amplitude of the gravitational potentialΨ, are of the order of the initial fluctuations
generated during inflation.

2.6.3 Radiation

We now consider a spatially flat, radiation dominated universe,w = c2
s = 1/3 andK = 0 so that

a ∝ t andH = 1/t. The Bardeen equation reduces to

Ψ̈+
4
t

Ψ̇+
k2

3
Ψ = 0 , (2.94)

with solution

Ψ =

√
3

kt

[
A j1

(
kt√

3

)
+By1

(
kt√

3

)]
. (2.95)

Here j1 and y1 are spherical Bessel functions, seee.g. [12]. Since they1-mode is singular for
t → 0, we have to setB = 0. To determine the density and velocity perturbations, we use energy
conservation and the Poisson equation (00 Einstein eq.) forradiation. Definingx = kt/

√
3 and

′ = d
dx these become

D′
g = − 4√

3
V , (2.96)

−2x2Ψ = Dg+4Ψ+
4√
3x

V . (2.97)

Inserting the solution (2.95) withB = 0 for Ψ, we obtain

Dg = 2A

[
cos(x)− 2

x
sin(x)

]
, (2.98)

V = −
√

3
4

D′
g , (2.99)

Ψ = −
Dg + 4√

3x
V

4+2x2 . (2.100)

For Eq. (2.98) we have used the explicite form of the spherical Bessel functionj1(x) = x−2sin(x)−
x−1 cos(x).

In thesuper-horizon regime, x≪ 1, this yields

Ψ =
A
3

, Dg = −2A(1+
1
3

x2), V =
A

2
√

3
x . (2.101)

On sub-horizon scales, x ≫ 1, we find oscillating solutions with constant amplitude andwith
frequencyk/

√
3 for the density and velocity perturbations and an oscillating and decaying gravita-

tional potential,

V =

√
3A
2

sin(x) , (2.102)

Dg = 2Acos(x) , Ψ = −Acos(x)/x2 . (2.103)
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The radiation fluid cannot simply ’collapse’ under gravity.Like for acoustic waves, the restoring
force provided by the pressure leads to oscillations with constant amplitude. These are called the
’acoustic oscillations’ of the radiation fluid. As we shall see in the next section, they are responsible
for the acoustic peaks in the CMB fluctuation spectrum.

Also for radiation perturbations

D = − A

3
√

3
x2 ≪ Ψ

is small on super horizon scales,x≪ 1.
The perturbation amplitude is given by the largest gauge-invariant perturbation variable. We

conclude therefore that perturbations outside the Hubble horizon are frozen to first order. Once they
enter the horizon they start to collapse, but pressure resists the gravitational force and the radiation
fluid fluctuations oscillate at constant amplitude. The perturbations of the gravitational potential
oscillate and decay like 1/a2 inside the horizon.

3. CMB anisotropies and polarization

3.1 Lightlike geodesics and CMB anisotropies

After decoupling,t > tdec, photons follow to a good approximation light-like geodesics. The
temperature shift of a Planck distribution of photons is equal to the energy shift of any given photon.
The relative energy shift,∆ω/ω , (red- or blueshift) is independent of the photon energy (gravity is
’achromatic’).

The unperturbed photon trajectory is given by

(xµ(t)) ≡
(

t,−
∫ t0

t
n(t ′)dt′ +x0

)
,

wherex0 is the photon position at timet0 andn is the (parallel transported) photon direction, pro-
portional to the momentum of the photon. We determine the components of the photon momentum
with respect to a geodesic basis(ei)

3
i=1 on the constant time hypersurfaces. We choose

ei =

{
∂

∂xi , if K = 0 ,

εi , with γ(εi ,ε j) = δi j if K 6= 0 .
(3.1)

In other words, the vector fieldsεi form an orthonormal basis for the spatial metricγi j .
Our perturbed metric is of the form

ds̃2 = a2ds2 , with (3.2)

ds2 =
(
γµν +hµν

)
dxµdxν , γ00 = −1, γi0 = 0, γi j = γ ji . (3.3)

We make use of the fact that light-like geodesics are conformally invariant. More precisely,ds2

andds̃2 have the same light-like geodesics, only the correspondingaffine parameters are different.
Let us denote the two affine parameters byλ and λ̃ respectively, and the tangent vectors to the
unperturbed geodesic by

n =
dx
dλ

, ñ =
dx

dλ̃
, n2 = ñ2 = 0 , n0 = 1 , n2 = 1. (3.4)
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The photon 4-momentumpµ is then given bypµ = ωnmu, whereω is the constant energy of the
photon moving in the metricds2. We have seen that in expanding space the photon momentum is
redshifted. Actually, the components behave like ˜ni ∝ 1/a2 so thatñ2 = a2 ∑i(ñ

i)2 ∝ 1/a2, hence
we have to choosẽλ = a2λ . As always for lightlike geodesics,λ̃ andλ are only determined up to
a multiplicative constant which we have fixed by the conditionsn2 = 1 andλ̃ = a2λ .

Let us now introduce perturbationsδnµ . For example, we setn0 = 1+ δn0. The geodesic
equation for the perturbed metric

ds2 = (γµν +hµν)dxµdxν (3.5)

yields, to first order,
d

dλ
δnµ = −δΓµ

αβ nαnβ . (3.6)

For the energy shift, we have to determineδn0. Sinceg0µ = −δ0µ +first order, we obtainδΓ0
αβ =

−1
2(hα0|β +hβ0|α − ḣαβ), so that

d
dλ

δn0 = hα0|β nβ nα − 1
2

ḣαβ nαnβ . (3.7)

Integrating this equation we usehα0|β nβ nα = d
dλ (hα0nα), so that the change ofn0 between some

initial time ti and some final timet f is given by

δn0| f
i =

[
h00+h0 jn

j] f
i −

1
2

∫ f

i
ḣµνnµnνdλ . (3.8)

The energy of a photon with 4-momentum ˜pµ as seen by an observer moving with 4-velocity ˜u is
given byE = −(ũ ·̃ p̃), where ˜· denotes the scalar product in an expanding universe, containing the
factora2. Hence, the ratio of the energy of a photon measured by some observer att f to the energy
emitted atti is

Ef

Ei
=

(ñ ·̃ ũ) f

(ñ ·̃ ũ)i
=

ai

af

(n·u) f

(n·u)i
. (3.9)

Hereũ is the emitter and receiver four-velocity in an expanding universe,ũ= a−1u while uf andui

are the four-velocities of the observer and emitter respectively in the non-expanding conformally
related geometry given by

u = (1−A)∂t +viei = aũ . (3.10)

Together with ˜n = a−2n this implies the result (3.9). The ratioai/af = Ti/Tf is the usual (unper-
turbed) redshift which relatesn andñ. An observer measuring a temperatureT0 receives photons
that were emitted at the timetdec of decoupling of matter and radiation, at the fixed temperature
Tdec. In first-order perturbation theory, we find the following relation between the unperturbed
temperaturesTf , Ti , the true temperaturesT0 = Tf + δTf , Tdec = Ti + δTi , and the photon density
perturbation:

ai

af
=

Tf

Ti
=

T0

Tdec

(
1− δTf

Tf
+

δTi

Ti

)
=

T0

Tdec

(
1− 1

4
δr | f

i

)
, (3.11)

whereδr is the intrinsic density perturbation in the radiation and we have usedρr ∝ T4 in the last
equality. Inserting the above equation and Eq. (3.8) into Eq. (3.9), and using Eq. (2.22) for the
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definition ofhµν , as well as Eqs. (2.30, 2.31, 2.57) and (2.54) one finds, afterintegration by parts,
the following result for scalar perturbations [14]:

Ef

Ei
=

T0

Tdec

{
1−
[

1
4

D(r)
g +V(b)

j n j + Ψ+ Φ
] f

i
+

∫ f

i
(Ψ̇+ Φ̇)dλ

}
. (3.12)

HereD(r)
g denotes the density perturbation in the radiation fluid, andV(b) is the peculiar velocity of

the baryonic matter component (the emitter and observer of radiation).
Evaluating Eq. (3.12) at final timet0 (today) and initial timetdec, we obtain the temperature

difference of photons coming from different directionsn1 andn2

∆T
T

≡ ∆T(n1)

T
− ∆T(n2)

T
≡ Ef

Ei
(n1)−

Ef

Ei
(n2). (3.13)

Direction independent contributions toEf

Ei
do not enter in this difference.

The largest contribution to∆T
T is the dipole term,V(b)

j (t0)n j which simply describes our motion
with respect to the emission surface. Its amplitude is about1.2×10−3 and it has been measured
so accurately that even the yearly variation due to the motion of the earth around the sun has been
detected [15].

For the higher multipoles (polynomials inn j of degree 2 and higher) we can set

∆T(n)

T
=

[
1
4

D(r)
g +V(b)

j n j + Ψ+ Φ
]
(tdec,xdec)+

∫ t0

tdec

(Ψ̇+ Φ̇)(t,x(t))dt , (3.14)

wherex(t) is the unperturbed photon position at timet for an observer atx0, andxdec = x(tdec)

(If K = 0 we simply havex(t) = x0 − (t0 − t)n.). The first term in Eq. (3.14) is the one we
have discussed in the previous section. It describes the intrinsic inhomogeneities of the radia-
tion density on the surface of last scattering, due to acoustic oscillations prior to decoupling, see
Eq. (2.98). Depending on the initial conditions, it can contribute significantly also on super-horizon
scales. This is especially important in the case of adiabatic initial conditions. One can show that
(see [3]), in a dust+ radiation universe with vanishing curvature, adiabatic initial conditions imply
D(r)

g (k, t) = −20
3 Ψ(k, t) andV(b) = V(r) ≪ D(r)

g whenkt ≪ 1. With Φ = Ψ the square bracket of
Eq. (3.14) therefore gives for adiabatic perturbations

(
∆T(n)

T

)(OSW)

adiabatic
=

1
3

Ψ(tdec,xdec)

on super-horizon scales. The contribution to∆T
T from the last scattering surface on very large scales

is called the ’ordinary Sachs–Wolfe effect’ (OSW). It has been derived for the first time by Sachs
and Wolfe [16].

Apart from adiabatic initial conditions, a dust+radiationsystem can obey so called iso-curvature
initial conditions which are defined by the requirement thatΨ → 0 for kt → 0. These initial condi-
tions imply thatD(r)

g (k, t)→ 0 for t → 0 so that the contribution ofD(r)
g to the ordinary Sachs–Wolfe

effect can be neglected, (
∆T(n)

T

)(OSW)

iso−curvature
= 2Ψ(tdec,xdec) .
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The second term in (3.14) describes the relative motion of emitter and observer. This is the Doppler
contribution to the CMB anisotropies. It appears on the sameangular scales as the acoustic term ;
we call the sum of the acoustic and Doppler contributions ‘acoustic peaks’.

The integral in Eq. (3.14) accounts for red-shift or blue-shift caused by the time dependence
of the gravitational potential along the path of the photon,and represents the so-called integrated
Sachs-Wolfe (ISW) effect. In aΩ = 1, pure dust universe, as we have seen, the Bardeen potentials
are constant and there is no integrated Sachs-Wolfe effect;the blue-shift which the photons acquire
by falling into a gravitational potential is exactly canceled by the redshift induced by climbing
out of it. This is no longer true in a universe with substantial radiation contribution, curvature, or
a cosmological constant. The sum of the ordinary Sachs–Wolfe term and the integral is the full
Sachs-Wolfe contribution (SW).

Forvector perturbationsδ (r) andA vanish and Eq. (3.9) leads to

(
Ef

Ei

)(V)

=
ai

af
[1−V(b)

j n j | f
i +

∫ f

i
σ jn

jdλ ] . (3.15)

We obtain a Doppler term and a gravitational contribution. For tensor perturbations,i.e., gravita-
tional waves, only the gravitational part remains,

(
Ef

Ei

)(T)

=
ai

af
[1−

∫ f

i
Ḣl j n

l n jdλ ] . (3.16)

Equations (3.12), (3.15) and (3.16) are the manifestly gauge-invariant results for the energy shift of
photons due to scalar, vector and tensor perturbations. Disregarding again the dipole contribution
due to our proper motion, Eqs. (3.15,3.16) imply the vector and tensor temperature fluctuations

(
∆T(n)

T

)(V)

= V(b)
j (tdec,xdec)n

j +

∫ f

i
σ j(t,x(t))n j dλ , (3.17)

(
∆T(n)

T

)(T)

= −
∫ f

i
Ḣl j (t,x(t))nl n jdλ . (3.18)

Note that for models where initial fluctuations have been laid down in the very early universe,
vector perturbations are irrelevant as we have already pointed out. In this sense Eq. (3.17) is here
mainly for completeness. However, in models where perturbations are sourced by some inher-
ently inhomogeneous component (e.g. topological defects, see [17]), vector perturbations can be
important.

3.2 Power spectra

3.2.1 General comments

The quantities which we can determine from a given model are usually not the precise values of
perturbation variables likeΨ(x, t), but only expectation values like〈Ψ(x, t)Ψ(y, t)〉. If we assume
that the random process which generates the fluctuationsΨ is stochastically homogeneous and
isotropic, the correlator of the Fourier transformΨ(k, t) has to vanish for different wave vectorsk.
The quantity which we can calculate for a given model and which then has to be compared with
observations is the power spectrum defined below. Power spectra are the ‘harmonic transforms’
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of the two point correlation function1. If the perturbations of the model under consideration are
Gaussian, a relatively generic prediction from inflationary models, then the two-point functions and
therefore the power spectra contain the full statistical information of the model.

There is one additional problem to consider: one can never ’measure’ expectation values.
We have only one Universe,i.e., one realization of the stochastic process which generates the
fluctuations at our disposal for observations. The best we can do when we want to determine
the mean square fluctuation on a given scaleλ is to average over many disjoint patches of size
λ , assuming that this spatial averaging corresponds to an ensemble averaging; a type of ’ergodic
hypothesis’ . This works well as long as the scaleλ is much smaller than the Hubble horizon, the
size of the observable universe. Forλ ∼O(H−1

0 ) we can no longer average over many independent
volumes and the value measured could be quite far from the ensemble average. This problem is
known under the name ’cosmic variance’.

For an arbitrary scalar variableX in position space, we define the power spectrum in Fourier
space by 〈

X (k, t0)X∗ (k ′, t0
)〉

= (2π)3δ (k −k ′)PX(k) . (3.19)

In flat space,K = 0, the functionX(k) is the ordinary Fourier transform ofX(x). If K 6= 0 the
situation is more complicated. ThenX(k) represents an expansion ofX(x) in terms of eigenfunc-
tions of the Laplacian and in the caseK > 0 the Diracδ–function has to be replaced by a discrete
Kroneckerδ .

The〈 〉 indicates a statistical average, ensemble average, over ‘random initial conditions’ in a
given model. We assume that no point in space is preferred, inother words thatX(x) and any other
stochastic field which we consider has the same distributionin every pointx. Such random fields
are called ’statistically homogeneous’ (or stationary). We further assume that the distribution of
X(x) has no preferred direction. This means that the random fieldX is statistically isotropic. These
properties imply that the Fourier transform of the 2–point function is diagonal,i.e., they explain
the factorδ (k −k ′) in Eq. (3.19).

3.2.2 The matter power spectrum

Let us first consider the matter power spectrum,PD(k), which is defined by

〈
Dgm(k, t0)D∗

gm

(
k ′, t0

)〉
= PD(k)(2π)3δ (k −k ′) . (3.20)

PD(k) is usually compared with the observed power spectrum of the galaxy distribution. This is
clearly problematic since it is by no means evident what the relation between these two spectra
should be. This problem is known under the name ’biasing’ andit is very often simply assumed
that the matter and galaxy power spectra differ only by a constant factor. The hope is also that
on sufficiently large scales, since the evolution of both, galaxies and dark matter is governed by
gravity, their power spectra should not differ by much. Thishope seems to be reasonably justified.
In [18] it is found that the observed galaxy power spectrum and the matter power spectrum inferred
from the observation of CMB anisotropies differ only by about 10% on large scales.

1The ‘harmonic transform’ in usual flat space is simply the Fourier transform. In curved space it is the expansion
in terms of eigenfunctions of the Laplacian on that space,e.g.,on the sphere it corresponds to the expansion in terms of
spherical harmonics.
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The power spectrum of velocity perturbations satisfies the relation

〈
Vj (k, t0)V∗

i

(
k ′, t0

)〉
= Q(S)

j (k)Q(S)∗
i (k ′)PV(k)(2π)3δ (k −k ′) , (3.21)

PV(k) ≃ H2
0Ω1.2

m PD(k)k−2 . (3.22)

For ≃ we have used that|kV(t0)| = Ḋ(m)
g (t0) ∼ H0Ω0.6

m Dg on sub-horizon scales (seee.g., [19]).
Here Ωm is the matter density parameter. Unfortunately it is very difficult to measure peculiar
velocities and so far not much use could be made of the velocity power spectrum.

3.2.3 The CMB power spectrum

Definition The spectrum in which we are most interested and which can be both, measured and
calculated to the best accuracy is the CMB anisotropy power spectrum. It is defined as follows:
∆T/T is a function of positionx, timet and photon directionn. Here,i.e.,atx = x0 and now,i.e.,at
t = t0, ∆T/T is a function on the sphere,n ∈ S

2. We develop it in terms of spherical harmonics,
Yℓm’s. We will often suppress the argumentst0 andx0 in the following calculations. Since our fields
are statistically homogeneous, averages over an ensemble of realizations (expectation values) are
independent of position. Furthermore, we assume that the process generating the initial pertur-
bations is statistically isotropic. This means that the distribution of ∆T/T(n) is the same for all
directionsn. Like for Fourier transforms of random fields in space, this implies that the harmonic
transform of∆T/T is diagonal. On other words, the off-diagonal correlators of the expansion
coefficientsaℓm vanish and we have

∆T
T

(t0,x0,n) = ∑
ℓ,m

aℓm(x0)Yℓm(n), 〈aℓm ·a∗ℓ′m′〉 = δℓℓ′δmm′Cℓ . (3.23)

TheCℓ’s are the CMB power spectrum.
The two point correlation function is related to theCℓ’s by

〈
∆T
T

(n)
∆T
T

(n′)

〉

n·n′=µ
= ∑

ℓ,ℓ′,m,m′
〈aℓm ·a∗ℓ′m′〉Yℓm(n)Y∗

ℓ′m′(n′) =

∑
ℓ

Cℓ

ℓ

∑
m=−ℓ

Yℓm(n)Y∗
ℓm(n′)

︸ ︷︷ ︸
2ℓ+1
4π Pℓ(n·n′)

=
1

4π ∑
ℓ

(2ℓ+1)CℓPℓ(µ), (3.24)

where we have used the addition theorem of spherical harmonics for the last equality; thePℓ’s are
the Legendre polynomials (see e.g. [12]).

Clearly thealm’s from scalar, vector and tensor perturbations are uncorrelated,
〈

a(S)
ℓma(V)

ℓ′m′

〉
=
〈

a(S)
ℓma(T)

ℓ′m′

〉
=
〈

a(V)
ℓm a(T)

ℓ′m′

〉
= 0. (3.25)

Since vector perturbations decay, their contributions, theC(V)
ℓ , are negligible in models where

initial perturbations have been laid down very early,e.g.,after an inflationary period. Tensor per-
turbations are constant on super-horizon scales and perform damped oscillations once they enter
the horizon.
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Scalar perturbations Let us first discuss in somewhat more detail scalar perturbations. We
specialize to the caseK = 0 for simplicity. We suppose the initial perturbations to begiven by a
spectrum of the form

〈
Ψ(k)Ψ∗(k ′)

〉
k3 = (2π)3k3PΨ(k)δ (k −k ′) = (2π)3AS(kt0)

n−1δ (k −k ′). (3.26)

We multiply by the constanttn−1
0 , the present comoving size of the horizon, in order to keepAS

dimensionless for all values ofn. The numbern is called the spectral index.AS then represents the
amplitude of metric perturbations at horizon scale today,k = 1/t0.

As we have seen in the previous section, the dominant contribution onsuper-horizon scales
(neglecting the integrated Sachs–Wolfe effect

∫
Φ̇+ Ψ̇ ) is the ordinary Sachs–Wolfe effect, OSW,

which for adiabatic perturbations is given by

∆T
T

(x0,n, t0) ≃
1
3

Ψ(xdec, tdec). (3.27)

Sincexdec= x0−n(t0− tdec), the Fourier transform of (3.27) gives

∆T
T

(k,n, t0) =
1
3

Ψ(k, tdec) ·eikn(t0−tdec) . (3.28)

Using the decomposition

eikn(t0−tdec) =
∞

∑
ℓ=0

(2ℓ+1)iℓ jℓ(k(t0− tdec))Pℓ(k̂ ·n) ,

where jℓ are the spherical Bessel functions; and using the addition theorem of spherical harmonics
repeatedly, we find

〈
∆T
T

(x0,n, t0)
∆T
T

(x0,n′, t0)

〉

nn′=µ
≃

∑
ℓ

2ℓ+1
4π

Pℓ(µ)
2
π

∫
dk
k

〈
1
9
|Ψ|2

〉
k3 j2ℓ (k(t0− tdec)). (3.29)

Comparing this equation with Eq. (3.24) we obtain foradiabatic perturbationson large angu-
lar scales, 2≤ ℓ ≪ χ(t0− tdec)/tdec∼ 100 :

C(SW)
ℓ ≃C(OSW)

ℓ ≃ 2
9π

∫ ∞

0

dk
k

〈
|Ψ|2

〉
k3 j2ℓ (k(t0− tdec)) . (3.30)

The function j2ℓ (k(t0− tdec)) peaks roughly atk(t0− tdec) ≃ kt0 ≃ ℓ. If Ψ is a pure power law
on large scales,ktdec<∼1 as in Eq. (3.26) and we setk(t0 − tdec) ∼ kt0, the integral (3.30) can be
performed analytically. For the ansatz (3.26) one finds

C(SW)
ℓ =

AS

9

Γ(3−n)Γ(ℓ− 1
2 + n

2)

23−nΓ2(2− n
2)Γ(ℓ+ 5

2 − n
2)

for −3 < n < 3 . (3.31)

Of special interest is thescale invariantor Harrison–Zel’dovich (HZ) spectrum,n = 1 which
is generically produced in inflationary models. It leads to

ℓ(ℓ+1)C(SW)
ℓ =

AS

9π
≃
〈(

∆T
T

(ϑℓ)

)2
〉

, ϑℓ ≡ π/ℓ . (3.32)
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This is precisely (within the accuracy of the experiment) the behavior observed by the DMR (Dif-
ferential Microwave Radiometer) experiment aboard the satellite COBE [20]. In the mean time, the
scalar spectral index has been determined more precisely with the WMAP (Wilkinson Microwave
Anisotropy Probe) satellite [21]. The result isn = 0.95±0.02.

Inflationary models predict very generically a nearly HZ spectrum with n slightly less than
1. The DMR discovery and the WMAP confirmation have thereforebeen regarded as a great
success, if not as a proof, of inflation. There are, however, other models like topological defects
(see [17]), or certain string cosmology models [22] which also predict scale–invariant,i.e.,Harrison
Zel’dovich spectra of fluctuations. These models are outside the class investigated here, since in
them perturbations are induced by seeds which evolve non–linearly in time. They are not simply led
down as initial conditions for the fluid perturbations but typically affect the perturbations of a given
wave length until it crosses the Hubble scale. This generically leads to iso-curvature perturbations
which are not ruled out by present data since they do not show prominent acoustic peaks, see Fig. 1.

For iso-curvature perturbations, the main contribution onlarge scales comes from the inte-
grated Sachs-Wolfe effect and (3.30) is replaced by

C(ISW)
ℓ ≃ 8

π

∫
dk
k

k3

〈∣∣∣∣
∫ t0

tdec

Ψ̇(k, t) j2ℓ (k(t0− t))dt

∣∣∣∣
2
〉

. (3.33)

Inside the horizonΨ is roughly constant (matter dominated). Using the ansatz (3.26) forΨ inside
the horizon and setting the integral in (3.33)∼ 2Ψ(k, t = 1/k) j2ℓ (kt0), we obtain again (3.31), but
with A2

S/9 replaced by 4A2
S. For a fixed amplitudeASof perturbations, the Sachs–Wolfe temperature

anisotropies coming from iso-curvature perturbations aretherefore about six times larger than those
coming from adiabatic perturbations (see Fig. 1).

On smaller scales,ℓ>∼100, the contribution to∆T/T is dominated by acoustic oscillations, the
first two terms in Eq. (3.14). Instead of (3.33) we then obtain

C(AC)
ℓ ≃ 2

π

∫ ∞

0

dk
k

k3

〈∣∣∣∣
1
4

Dr(k, tdec) jℓ(kt0)+V(r)(k, tdec) j ′ℓ(kt0)

∣∣∣∣
2
〉

. (3.34)

To remove the SW contribution fromD(r)
g we have simply replaced it byDr which is much

smaller thanΨ on super-horizon scales and therefore does not contribute to the SW terms. On sub-
horizon scalesDr ≃ D(r)

g andVr are oscillating like sine or cosine waves depending on the initial
conditions. Correspondingly theC(AC)

ℓ will show peaks and minima. For adiabatic initial conditions

D(r)
g and therefore alsoDr oscillate like a cosine. Its minima and maxima are atkntdec/

√
3 = nπ.

Odd values ofn correspond to maxima, ’contraction peaks’, while even numbers are minima,
’expansion peaks’.

These are the ‘acoustic peaks’ of the CMB anisotropies. Sometimes they are miss-leadingly
called ’Doppler peaks’ referring to an old misconception that the peaks would be due to the velocity
term in the above formula. Actually the contrary is true. At maxima and minima of the density
contrast, the velocity (being proportional to the derivative of the density) nearly vanishes.

The angleθn which subtends the scaleλn = π/kn at the last scattering surface is determined by
the angular diameter distance to the last scattering surface,dA(tdec) via the relationθn = λn/dA(tdec).
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Expanding the temperature anisotropies in spherical harmonics, the angular scaleθn corresponds
(roughly) to the harmonic number

ℓn ≃ π/θn = πdA(tdec)/λn = dA(tdec)kn = n
√

3πdA(tdec)/tdec . (3.35)

For a flat matter dominated universedA(tdec) ≃ t0 leading toℓn ≃ 180n. This crude approximation
deviates by about 15% from the precise numerical value, which depends withdA strongly on cur-
vature but also on the Hubble parameter and on the cosmological constant. Furthermore, the peak
positions depend on the sound speed of the radiation-baryonplasma which we have simply set to
cs = 1/

√
3 in this approximation. A detailed discussion of the parameter dependence of the peak

positions can be found in [3]. Note, however, that the position of the first peak differs significantly
for the iso-curvature mode, for whichD(r)

g oscillates like a sine. For generic initial conditions, we
would expect a mixture of the sine and cosine modes which leads to a displacement of the first
peak. The observed CMB anisotropies are consistent with a purely adiabatic mode and require, at
least, that the adiabatic mode dominates [23, 24].

For a flat universe,Ω = 1, then-th peak therefore is placed at

ℓn ≃ knt0 ≃ nπ
√

3
t0

tdec
. (3.36)

For a flat matter dominated universe we havet0
tdec

∼√
zdec∼ 33.2 which yieldsℓ1 ∼ 180. Here we

have usedzdec∼ 1100. This approximation is not very good since the universeis not very well
matter dominated attdec. A somewhat more accurate estimate givesℓ1 ∼ 220, in good agreement
with the numerical value. Subsequent peaks are then given byℓn = nℓ1.

Our discussion is only valid in flat space. In curved space theexponentials exp(ik(t0 − tdec))

have to be replaced with the harmonics of the curved spaces. For the positions of the peaks, this
corresponds to replaceknt0 by knχ(t0), hence by replacingt0 by the comoving angular diameter dis-
tance to the last scattering surface. Instead of Eq. (3.36) we then obtain the following approximate
relation for the peak positions,

ℓn ∼ nπ
√

3
χ(t0)
tdec

. (3.37)

For values ofΩ close to unity this scales like 1/
√

Ω.

On very small scales the acoustic peaks are damped by the photon diffusion which takes place
during the recombination process. This effect must be described with the Boltzmann equation
approach (see next section and [3]).

Tensor perturbations For gravitational waves a formula analogous to (3.31) can bederived
(see [3]),

C(T)
ℓ =

2
π

∫
dkk2

〈∣∣∣∣
∫ t0

tdec

dtḢ(T)(t,k)
jℓ(k(t0− t))
(k(t0− t))2

∣∣∣∣
2
〉

(ℓ+2)!
(ℓ−2)!

. (3.38)

To a crude approximation we may assumeḢ(T) = 0 on super-horizon scales and

∫
dtḢ(T) jℓ(k(t0− t)) ∼ H(T)(t = 1/k) jℓ(kt0) .
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Figure 1: Examples of COBE normalized adiabatic (solid line) and iso-curvature (dashed line) CMB
anisotropy spectra,ℓ(ℓ + 1)Cℓ/(2π) in units of (µK)2 are shown on the top panel. In the bottom panel
the ratio of the iso-curvature to adiabatic temperature fluctuations is plotted.

For a pure power law,

k3
〈∣∣∣H(T)(k, t = 1/k)

∣∣∣
2
〉

= AT(kt0)
nT , (3.39)

one then obtains

C(T)
ℓ ≃ 2

π
(ℓ+2)!
(ℓ−2)!

AT

∫ ∞

0

dx
x

xnT
j2ℓ (x)
x4

=
(ℓ+2)!
(ℓ−2)!

AT
Γ(6−nT)Γ(ℓ−2+ nT

2 )

26−nT Γ2(7
2 −nT)Γ(ℓ+4− nT

2 )
. (3.40)

For a scale invariant spectrum (nT = 0) this results in

ℓ(ℓ+1)C(T)
ℓ ≃ 8

15π
ℓ(ℓ+1)

(ℓ+3)(ℓ−2)
AT . (3.41)

The singularity atℓ = 2 in this crude approximation is not real, but there is some enhancement of
ℓ(ℓ+1)C(T)

ℓ for ℓ<∼10 (see Fig. 2).
Since tensor perturbations decay on sub-horizon scales,ℓ>∼100, they are not very sensitive

to cosmological parameters. Again, inflationary models (and topological defects) predict a scale
invariant spectrum of tensor fluctuations (nT ∼ 0).

Comparing the tensor and scalar result for scale invariant perturbations we obtain for large
scales,ℓ < 50

C(T)
ℓ

C(S)
ℓ

≃ 72
15

AT

AS
≡ r . (3.42)
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Present CMB anisotropy data favor a roughly scale invariantspectrum with amplitude

ℓ(ℓ+1)Cℓ ≃ 6×10−10 for ℓ<∼50.

If the perturbations are purely scalar, this requiresAS ≃ 1.7×10−8, if they were purely tensorial
(which we know they are not), we would needAT ≃ 3.5×10−9. In general observations require

AS

9π
(1+ r) ≃ 6×10−10 . (3.43)

On small angular scales,ℓ>∼800, fluctuations are damped by collisional damping (Silk damp-
ing). This effect has to be discussed with the Boltzmann equation for photons which is presented
in the next section.
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Scalar Tensor

Figure 2: Adiabatic scalar and tensor CMB anisotropy spectra are plotted,ℓ(ℓ+1)Cℓ/(2π) in units of(µK)2

in log-scale (top panels), where the Sachs Wolfe plateau is clearly visible and in linear scale (bottom panels)
which shows the equal spacing of the acoustic peaks. The solid line shows the temperature spectrum, the
dashed line is the polarization and the dotted line shows thetemperature-polarization cross correlation (see
next section). The latter can become negative, the deep spikes in the dotted curves in the left hand panels are
actually sign changes. The left hand side shows scalar fluctuation spectra, while the right hand side shows
tensor spectra. The observational data are well fitted by a purely scalar spectrum. Comparison of data and a
model scalar spectrum are shown in Figs. 5 to 7.
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3.3 The Boltzmann equation

Photons (or any kind of “classical particle”) can be described by the distribution functionf
defined on the 7-dimensional phase space, the mass shell

Pm≡ {(x, p) ∈ TS | gµν(x)pµ pν = −m2} . (3.44)

HereS is the spacetime manifold andTS is the tangent space. For photonsm= 0. The energy
momentum tensor is given by integrals of the second moments over the ’fiber’

Pm(x) ≡ {p∈ TxS | gµν(x)pµ pν = −m2} . (3.45)

HereTxS is the tangent space ofS at the pointx∈ M .

f : Pm → R : (x, p) 7→ f (x, p) (3.46)

is the one particle distribution function and the energy momentum tensor of the particles is given
by

Tµν(x) =

∫

Pm(x)

√
|g(x)|

|p0(x,p)| pµ pν f (x,p)d3p . (3.47)

If the particles are not interacting (collisionless) they move along geodesics,

ẍµ + Γµ
να ẋν ẋα = 0 . (3.48)

The dot denotes the derivative with respect to proper timesdefined by the conditiongµν(x)ẋµ ẋν =

ẋ2 = −1. In the case of massless (lightlike) particles, the propertime is only defined up to a
multiplicative constant. For the distribution function this implies the Liouville equation,

d f
dt

=

[
pµ∂µ −Γi

µν pµ pν ∂
∂ pi

]
f = 0 . (3.49)

If there are collisions, the zero on the right hand side has tobe replaced by the Boltzmann collision
integral.

In an unperturbed Friedmann universe the Liouville equation just implies that physical mo-
menta are redshifted,p =

√
gi j pi p j ∝ 1/a. Hence the comoving momenta scale aspi ∝ 1/a2.

Settingv= apand interpretingf as function oft andv only, the Liouville equation on a Friedmann
universe reduces to∂t f = 0. Hencef = f (v) is a function of the redshift corrected momenta only.

We now definef (v, t,n,x) = f̄ (v)+ δ f (v, t,n,x) and

M (t,n,x) ≡ π
ρ̄γa4

∫
v4δ f dv≡ 1

4

δργ(t,n,x)

ργ
≡ ∆T

T
(t,n,x) . (3.50)

After a lengthy derivation which is presented in [3], the Liouville equation for scalar perturbations
then becomes

∂tM
(S) +ni∂iM

(S) = −n j [Ψ, j + Φ, j ] . (3.51)

This equation can be solved formally for any given source term Φ+ Ψ. One easily checks that the
solution with initial conditionM (S)(tin,x,n) is

M
(S)(t,x,n) = M

(S) (tin,x−n(t − tin),n)

−
∫ t

tin
dt′ni∂i(Ψ+ Φ)(t ′,x−n(t − t ′)) . (3.52)
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Using

d
dt′

(Ψ+ Φ)(t ′,x−n(t − t ′)) = ∂t ′(Ψ+ Φ)(t ′,x−n(t − t ′))

+ni∂i(Ψ+ Φ)(t ′,x−n(t − t ′)) ,

we can replace the second term on the right hand side to obtain

M
(S)(t,x,n) = M

(S) (tin,x−n(t − tin),n)

+(Ψ+ Φ)(tin,x−n(t − tin))

+
∫

dt′∂t ′(Ψ+ Φ)(t ′,x−n(t − t ′))+monopole. (3.53)

By ’monopole’ we denote the uninterestingn-independent contribution−(Ψ+Φ)(t,x) which does
not affect the CMB anisotropy spectrum. The Bardeen potentialsΨ andΦ, however, are given via
Einstein’s equation in terms of the perturbations of the energy momentum tensor which contain
contributions from the photons which are in turn the momentum integrals ofM given below.
Therefore, even though it might look like it, this is not a solution of the Liouville equation. The
term on the right hand side also depends onM (S).

Let us compare Eq. (3.53) with the result from the integration of lightlike geodesics after de-
coupling in Eqs.(3.12) and (3.14). Here we have solved the Liouville equation which also does not
take into account the scattering of photons and is thereforeequivalent to our approach in the pre-
vious section. They both correspond to the ’sudden decoupling’ approximation, where we assume
that photons behaved like a perfect fluid before decoupling and were entirely free after decoupling.
This is a relatively good approximation for all scales whichare much larger than the duration of the
process of recombination which correspond to multipolesℓ>∼800. The comparison with Eqs.(3.12)
and (3.14) yields

M
(S) (tdec,x−n(t − tdec),n) =

(
1
4

Dg +n ·V(b)

)
(tdec,x−n(t − tdec)) , (3.54)

and

M
(S)(t,x,n) ≡ δT

T
(t,x,n) . (3.55)

In Fourier space equation (3.52) becomes

M (t,k,n) = e−ikµ(t−tin)
M (tin,k,n)+

∫ t

tin
dt′e−ikµ(t−t ′)ikµ(Φ+ Ψ)(k, t) , µ = n · k̂ . (3.56)

3.4 Polarization

A photon with momentumpn is an electromagnetic wave propagating in directionn. We
define the polarization basisεεε(1),εεε (2), such that(εεε (1),εεε (2),n) form a right handed orthonormal
system. Transversality of the electric field then requires that

E = E1εεε(1) +E2εεε (2) .

The polarization tensor is defined byEaE∗
b. This is a hermitian 2×2 matrix and can therefore be

written as
EaE∗

b =
1
2

[
Iσ (0)

ab +Uσ (1)
ab +Vσ (2)

ab +Qσ (3)
ab

]
=

1
2

Iσ (0)
ab +Pab , (3.57)
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whereσ (α) denote the Pauli matrices and the four real functions of the photon directionn, I , U , V
andQ are the Stokes parameters.

σ (0) =

(
1 0
0 1

)

, σ (1) =

(
0 1
1 0

)

,

σ (2) =

(
0 −i
i 0

)

, σ (3) =

(
1 0
0 −1

)

. (3.58)

In terms of the electric field, the Stokes parameters are

I = |E1|2 + |E2|2 , Q = |E1|2−|E2|2 ,

U = (E∗
1E2+E∗

2E1) = 2Re(E∗
1E2) , V = 2Im(E∗

1E2) . (3.59)

I is simply the intensity of the electromagnetic wave.Q represents the amount of linear polarization
in directionsεεε(1) andεεε (2), i.e.,Q is the difference between the intensity of radiation polarized along
εεε(1) and the intensity polarized in directionεεε(2). The parametersQ andU describe the symmetric
traceless part of the polarization tensor whileV multiplies the anti-symmetric Pauli matrixσ (2).
This part describes a phase difference betweenE1 andE2 which results in circular polarization.
This is best seen by expressingPab in terms of the helicity basisεεε(±) = 1√

2

(
εεε (1)± iεεε(2)

)
, where

one finds thatV is the difference between the left and right handed circularpolarized intensities
(see e.g. [25]). Thomson scattering does not introduce circular polarization. We therefore expect
theV–Stokes parameter of the CMB radiation to vanish. We neglectit in the following. If V = 0,
we havePab = P∗

ab = Pba. HencePab is a real, symmetric, traceless matrix.
We define also

P ≡ P++ = 2Pabεεε (+)
a εεε(+)

b = Q+ iU and (3.60)

P̄ ≡ P−− = 2Pabε̄εε (+)
a ε̄εε(+)

b = 2Pabεεε (−)
a εεε (−)

b = Q− iU . (3.61)

Rotating the basis (εεε (1),εεε (2)) by an angleφ around the directionn, the polarization turns like

P±± → e±2iφ P±± . (3.62)

Pab is a spin 2 tensor field on the sphere andP±± are its helicity±2 components. Such a tensor
field can be expanded in terms of spin weighted spherical harmonics,sYℓm. Fors= 0 these are the
usual spherical harmonics and fors 6= 0 they depend not only onn but also on the basis(εεε(1),εεε (2))

on the sphere which is traditionally taken to be(eϑ ,eϕ), whereeϑ = ∂ϑ andeϕ = 1
sinϑ ∂ϕ . The

spin weighted spherical harmonics are eigenfunctions of the Laplace operator on the sphere with
eigenvalue−ℓ(ℓ+ 1) and they transform with helicitys under rotations aroundn. For ℓ < s they
vanish,sYℓm = 0. More properties of the spin weighted spherical harmonicsand especially their
relation to the matrix elements of the irreducible representations of the rotation group can be found
in [3].

The perturbationsM is nothing else than the relative perturbation of the intensity, M = 1
4δ I/I .

Correspondingly we define the dimensionless perturbation variables

Q =
Q
4I

and U =
U
4I

, P++ =
P++

4I
= Q + iU , P−− =

P−−
4I

= Q− iU .
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Since the polarization of the background vanishes, these are both gauge-invariant. We can now
expand the polarization in spin weighted spherical harmonics,

P±,± = (Q± iU )(n) =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

a(±2)
ℓm ±2Yℓm(n) , (3.63)

=
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

(eℓm± ibℓm) ±2Yℓm(n) . (3.64)

Hence
eℓm =

1
2

(
a(2)

ℓm +a(−2)
ℓm

)
, bℓm =

−i
2

(
a(2)

ℓm −a(−2)
ℓm

)
. (3.65)

Under a ’parity’ transformation,n → −n the basis vectorse(±) transform ase(±) → e(∓).
Hence the coefficienta(2)

ℓm turns intoa(−2)
ℓm anda(−2)

ℓm → a(2)
ℓm so thateℓm remains invariant whilebℓm

changes sign.
The expansion ina(±2)

ℓm is a decomposition into positive and negative helicity, while (eℓm,bℓm)

is a decomposition into theQ andU Stokes parameter with respect to the canonical basis on the
sphere which requires the choice of az–axis.

One can also define differential operators which are spin raising and lowering operators/∂
and /∂ ∗ (see [3]), similar to the quantum mechanical angular momentum operatorsL+ and L−
which raise and lower the magnetic quantum numberm. The operators/∂ (∗) have the properties
/∂ sYℓm ∝ s+1Yℓm and/∂ ∗

sYℓm ∝ s−1Yℓm. Actually one obtains

/∂ 2(−2Yℓm) =

√
(ℓ+2)!
(ℓ−2)!

Yℓm (3.66)

(/∂ ∗)2 ( 2Yℓm) =

√
(ℓ+2)!
(ℓ−2)!

Yℓm . (3.67)

Applying this toQ± iU we find

(/∂ ∗)2(Q + iU )(n) = Ẽ (n)+ iB̃(n) =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

a(2)
ℓm

√
(ℓ+2)!
(ℓ−2)!

Yℓm(n) , (3.68)

/∂ 2(Q− iU )(n) = Ẽ (n)− iB̃(n) =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

a(−2)
ℓm

√
(ℓ+2)!
(ℓ−2)!

Yℓm(n) , (3.69)

where Ẽ (n) =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

eℓm

√
(ℓ+2)!
(ℓ−2)!

Yℓm(n) , (3.70)

B̃(n) =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

bℓm

√
(ℓ+2)!
(ℓ−2)!

Yℓm(n) . (3.71)

We also define the (non-local) scalar quantities

E (n) =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

eℓmYℓm(n) , (3.72)

B(n) =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

bℓmYℓm(n) . (3.73)
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Like temperature fluctuations,E andB are invariant under rotation. Since the sign ofbℓm changes
under parity,B has negative parity whileE andM have positive parity. Actually one can show [3]
that(/∂ ∗)2 = 2(∇−)2 and(/∂ )2 = 2(∇+)2, so that

Ẽ = ∇−∇−P++ + ∇+∇+P−− = 2∇i∇ jPi j = 2divdivP ,

B̃ = ∇−∇−P++−∇+∇+P−− = 2εlmεi j ∇l ∇iP jm = 2rot rotP . (3.74)

HenceE measures gradient contributions whileB measures curl contributions to the electric field
considered as a function on the sphere as shown in Fig. 3. (Theelectric field is transverse and hence
tangent to the sphere of photon directions.)

Figure 3: E–polarization (left) andB–polarization (right) patterns are shown around the photondirection
indicated as the central asterisk.E polarization can be either radial or tangential, whileB polarization is
clearly of curl type.

3.5 The collision term

So far, we have not discussed Thomson scattering which is therelevant scattering process right
before recombination. To study it we consider an incoming photon from directionn′ which is then
scattered into directionn with n · n′ = cosβ . For photons which are polarized in the scattering
plane, the scattered field amplitude is suppressed by a factor |cosβ |, while normal to the plane it is
not suppressed. In the rest frame of the electron one finds, see [25]

E(c)
‖ =

nee2

me
cosβE‖ =

√
3

8π
neσT cosβE‖ (3.75)

E(c)
⊥ =

nee2

me
E⊥ =

√
3

8π
neσTE⊥ . (3.76)
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Defining the vector

V =




M

Q + iU
Q− iU



 , (3.77)

we can derive the following form of the collision term in the background frame [3] (see Chan-
drasekhar for the original derivation [26])

C[V ] = aneσT

[
1
10

∫
Ωn′

2

∑
m=−2

Pm(n,n′)V (n′)−V (n)

+

[
1

4π

∫
Ωn′M (n′)+n ·V(b)

]



1
0
0







 , (3.78)

wherePm(n,n′) is given in terms of spin weighted spherical harmonics andm= 0 couples to scalar
perturbations,m= ±1 to vector perturbations andm= ±2 to tensor perturbations

Pm(n,n′) =




Y2m(n)Y∗

2m(n′) −
√

3
2Y2m(n) 2Y∗

2m(n′) −
√

3
2Y2m(n) −2Y∗

2m(n′)

−
√

6 2Y2m(n)Y∗
2m(n′) 3 2Y2m(n) 2Y∗

2m(n′) 3 2Y2m(n) −2Y∗
2m(n′)

−
√

6 −2Y2m(n)Y∗
2m(n′) 3 −2Y2m(n) 2Y∗

2m(n′) 3 −2Y2m(n) −2Y∗
2m(n′)



 . (3.79)

The Boltzmann equation can then be written for the Fourier modes. This is best done using
the total angular momentum method (see [27, 3]) from which finally the CMB power spectra can
be determined as integrals over wave numbers,

C(M )
ℓ = 〈|aℓm|2〉 where (3.80)

M (x,n) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

aℓm(x)Yℓm(n) , (3.81)

C(E )
ℓ = 〈|eℓm|2〉 (3.82)

C(B)
ℓ = 〈|bℓm|2〉 (3.83)

C(M E )
ℓ = 〈a∗ℓmeℓm〉 . (3.84)

These spectra can be calculated very rapidly using one of thepublicly available codes, CMB-
fast [28], the original or CAMBCODE [29] the presently most powerful code or CMBEASY [30],
the most user friendly code. More details can be found in [3].

4. Observations and parameter estimation

Since the perturbation equations are linear, the CMB anisotropy and polarization amplitudes
depend linearly on the initial conditions. Let us, for simplicity (and also since this is the situation
for most inflationary models), assume that the initial conditions are given by two power spectra,

(2π)3PΨ(k)δ (k −k ′) = 〈Ψ(k, tin)Ψ∗(k ′, tin)〉 and

(2π)3Ph(k)δ (k −k ′) = 〈H+2(k, tin)H
∗
+2(k

′, tin)〉 = 〈H−2(k, tin)H
∗
−2(k

′, tin)〉 .
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Figure 4: The scalar CMB anisotropy transfer functionT(T)
ℓ (k,0) is shown. The first two acoustic peaks

and the SW plateau are clearly visible. In the presentation on the left hand panel all points with amplitude
smaller that 1

40 of the maximum are set to dark blue while on the right hand panel they are set to white.
It is interesting to see how narrow the(k, ℓ) correlation is. In the right hand panel the ’ringing’ due to
secondary maxima of the Bessel functions is better visible.The cosmological parameters chosen for this
plot areΩΛ = 0.73,Ωmh2 = 0.13,Ωbh2 = 0.022 andK = 0.

As the final perturbations depend linearly on the initial conditions, we can express the amplitudes
aℓm, eℓm andbℓm in the form

aℓm =

∫
d3kT(T)

ℓm (k,0)Ψ(k, tin)+T(T)
ℓm (k,+2)H+2(k, tin)+T(T)

ℓm (k,−2)H−2(k, tin) ,

eℓm =
∫

d3kT(E)
ℓm (k,0)Ψ(k, tin)+T(E)

ℓm (k,+2)H+2(k, tin)+T(E)
ℓm (k,−2)H−2(k, tin) ,

bℓm =
∫

d3kT(B)
ℓm (k,+2)H+2(k, tin)+T(B)

ℓm (k,−2)H−2(k, tin) ,

for some ’transfer functions’T(X)
ℓm . For the power spectra we then obtain

C(T)
ℓ = 4π

∫
dk
k

[
|T(T)

ℓ (k,0)|2k3PΨ(k)+2|T(T)
ℓ (k,2)|2k3Ph(k)

]
, (4.1)

C(TE)
ℓ = 4π

∫
dk
k

[
T(TE)
ℓ (k,0)k3PΨ(k)+2T(TE)

ℓ (k,2)k3Ph(k)
]

, (4.2)

C(E)
ℓ = 4π

∫
dk
k

[
|T(E)

ℓ (k,0)|2k3PΨ(k)+2|T(E)
ℓ (k,2)|2k3Ph(k)

]
, (4.3)

C(B)
ℓ = 8π

∫
dk
k
|T(T)

ℓ (k,2)|2k3Ph(k) , (4.4)

where we have defined the direction integrated transfer functions,

|T(X)
ℓ (k,s)|2 =

1
4π

∫
dΩk̂ |T

(X)
ℓm (k,s)|2 , (4.5)

T(TE)
ℓ (k,s) =

1
4π

∫
dΩk̂T(T)

ℓm (k,s)T(E)∗
ℓm (k,s) . (4.6)

Because of statistical isotropy, these integrals do not depend onm. Note thatT(TE)
ℓ (k,s) can be

negative since bothT(T)
ℓm (k,s) and T(E)∗

ℓm (k,s) are in general complex Fourier transforms of real
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functions, so that(T(T)
ℓm (k,s)T(E)∗

ℓm (k,s))∗ = T(T)
ℓm (−k,s)T(E)∗

ℓm (−k,s). Therefore the integral (4.6)
is real but not necessarily positive. We have also used that scalar and tensor perturbations are
uncorrelated. These transfer functions only depend on the background cosmology, hence on cos-
mological parameters. However, as is clear from Eqs. (4.1) to (4.4), we need to know the initial
power spectraPΨ and Ph to infer the transfer functions and hence the cosmological parameters
from the observed power spectra. Usually this is done by parameterizing the initial conditions with
a few parameters,e.g.,PΨ(k)k3 = AS(kt0)nS−1 andPh(k)k3 = AT(kt0)nT . One then fits jointly the
parameters describing the initial conditions and the cosmological parameters which determine the
transfer functions.

The presently available data on temperature anisotropy andon polarization are shown in
Figs. 5, 6 and 7

Figure 5: The observed CMB anisotropy spectrum from WMAP [31] extended by Boomerang [32] and
Acbar [33] in linear (left) and log (right) scale. The line draws the best fitΛCDM model.

Also shown in these figures is a line which is the best fitΛCDM model. Obtained by a Markov
Chain Monte Carlo (MCMC) method [35] parameter fit to the data. More details about parameter
fitting can be found in [3]. Here we just want to present the best presently available cosmological
parameters from different data sets and obtained making different assumptions.

4.1 Degeneracies

When estimating cosmological parameters with an MCMC method, the resulting best fit pa-
rameters and the error bars depend on the model assumptions.Therefore, we must be very careful
when interpreting the results. Clearly, when allowing for more model parameters, the errors do in
general increase. But there is a much more serious problem: degeneracies. The transfer functions
depend strongly on certain combinations of cosmological parameters like the angular diameter dis-
tance to the last scattering surface, which determines the positions of the acoustic peaks andΩmh2

which determines the amplitude of the gravitational potential at the last scattering surface, as well

35



P
o
S
(
c
a
r
g
e
s
e
)
0
0
6

The Cosmic Microwave Background Ruth Durrer

Multipole moment (l)

10 100 500 1000

Angular Scale

0

2

1

0

–1

1000

2000

3000

4000

5000

6000
90° 2° 0.5° 0.2°

TT

TE

TE

Figure 6: The CMB anisotropy spectrum and the temperature-polarization cross-correlation obtained from
the WMAP 3 year data (figure from [31]).

asΩbh2 which determines the asymmetry of even and odd peaks and the damping scale. However,
when keeping(dA,Ωmh2,Ωbh2) fixed and varyinge.g.,curvature and the Hubble parameter, the
CMB anisotropy and polarization spectra remain virtually unchanged, see Fig. 8.

To lift such degeneracies we usually need to resort to complementary data, like the Hubble
key project measurement of the Hubble parameter,h = 0.72± 0.08 or galaxy surveys which are
sensitive to the combinationΩmh etc. The most important lesson is of course that we do need
as much complementary data as possible, since first of all we need to lift the degeneracies in the
parameter dependence of the CMB and secondly the values of cosmological parameters determined
by MCMC methods are always more or less model dependent.
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Figure 7: The measured EE polarization spectrum from Wmap 3 year, Boomerang and others. For more
details see [34] from where this figure is taken.

WMAP WMAP WMAP+ACBAR WMAP +
Only +CBI+VSA +BOOMERanG 2dFGRS

Parameter

100Ωbh2 2.233+0.072
−0.091 2.212+0.066

−0.084 2.231+0.070
−0.088 2.223+0.066

−0.083

Ωmh2 0.1268+0.0072
−0.0095 0.1233+0.0070

−0.0086 0.1259+0.0077
−0.0095 0.1262+0.0045

−0.0062

h 0.734+0.028
−0.038 0.743+0.027

−0.037 0.739+0.028
−0.038 0.732+0.018

−0.025

A 0.801+0.043
−0.054 0.796+0.042

−0.052 0.798+0.046
−0.054 0.799+0.042

−0.051

τ 0.088+0.028
−0.034 0.088+0.027

−0.033 0.088+0.030
−0.033 0.083+0.027

−0.031

ns 0.951+0.015
−0.019 0.947+0.014

−0.017 0.951+0.015
−0.020 0.948+0.014

−0.018

σ8 0.744+0.050
−0.060 0.722+0.043

−0.053 0.739+0.047
−0.059 0.737+0.033

−0.045

Ωm 0.238+0.030
−0.041 0.226+0.026

−0.036 0.233+0.029
−0.041 0.236+0.016

−0.024

Table 1: Joint Likelihoods for a flatΛCDM model with purely scalar perturbations. The WMAP three year
data are combined with small scale CMB experiments (CBI+VSA, BOOMERanG) or galaxy survey data
(2dFGRS).A is the amplitude of density fluctuations atk = 0.002/Mpc andτ is the optical depth to the last
scattering surface. The parametersσ8 andΩm are derived. Table from [36].

5. Conclusions

In these lectures we have explained to you that one of the mainimportance of the CMB is that
it can nearly fully be calculated within linear perturbation theory and therefore these calculations
can be performed relatively easily to high accuracy. In cosmology high accuracy means 0.5 to
1 %. Doing better than this is difficult and is a subject of present research. We have given an
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WMAP+ WMAP+ WMAP + WMAP+
SDSS SNLS SN Gold CFHTLS

Parameter

100Ωbh2 2.233+0.062
−0.086 2.233+0.069

−0.088 2.227+0.065
−0.082 2.255+0.062

−0.083

Ωmh2 0.1329+0.0056
−0.0075 0.1295+0.0056

−0.0072 0.1349+0.0056
−0.0071 0.1408+0.0034

−0.0050

h 0.709+0.024
−0.032 0.723+0.021

−0.030 0.701+0.020
−0.026 0.687+0.016

−0.024

A 0.813+0.042
−0.052 0.808+0.044

−0.051 0.827+0.045
−0.053 0.846+0.037

−0.047

τ 0.079+0.029
−0.032 0.085+0.028

−0.032 0.079+0.028
−0.034 0.088+0.026

−0.032

ns 0.948+0.015
−0.018 0.950+0.015

−0.019 0.946+0.015
−0.019 0.953+0.015

−0.019

σ8 0.772+0.036
−0.048 0.758+0.038

−0.052 0.784+0.035
−0.049 0.826+0.022

−0.035

Ωm 0.266+0.026
−0.036 0.249+0.024

−0.031 0.276+0.023
−0.031 0.299+0.019

−0.025

Table 2: As in Table 1 but including other data sets: galaxy surveys (SDSS), supernovae (SNLS and SN
Gold) and weak lensing (CFHTLS). Table from [36].

overview of how CMB anisotropies and polarization are calculated and briefly discussed the main
physical effects which enter. Then you have learned how, under simple assumptions for the initial
conditions, these results can be used to estimate cosmological parameters.

Other interesting aspects of CMB anisotropies and polarizations which we have not touched
upon in these lectures are,e.g.,nonlinearities like CMB lensing [3] or non-Gaussianities.Non-
Gaussianities are a very active field of research which contains a lot of additional information about
inflation and about the non-linearities in the CMB. The problem is that most theories of inflation
predict very small non-Gaussianities while most experimental setups will lead to non-Gaussian
errors at some level. Therefore, the measurement of primordial non-Gaussianities so far remains a
challenge for the future. A theoretical overview can be found e.g.,in Ref. [37].
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Figure 8: On the top panel lines of equal angular diameter distance areindicated. The numberR is the ratio
of the angular diameter distance of the model to the one of a concordance model withΩΛ = 0.7, Ωm = 0.3,
h = 0.7 . The lines of constant curvature are parallel to the diagonal which is also drawn. In the lower left
panel we show CMB anisotropy spectra withΩK > 0 (dashed),ΩK < 0 (dotted) andΩK = 0 (solid), which
have identical angular diameter distance, matter density and baryon density. They correspond to the bullets
indicated in the top panel. The spectra overlay so preciselythat we cannot distinguish them by eye. On the
lower right panel we show three spectra with curvature zero,identical matter density and baryon density, but
different angular diameter distances (the squares indicated in the top panel on theK = 0 line). The spectra
are significantly different.
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