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1. Introduction

The idea that has been intensively studied recently is that the Standael fiéddis are con-
fined on a brane in a higher-dimensional space-time. This concept basbeuite popular since
Horava & Witten presented][1] their 11d model with 10d branes, motivated Bihisbry. Many
5d models with 4d branes, eg. effective models derived from ttfatdeWitten model, have been
discussed since then. However, for any such model to be physicallibferthe distance between
the branes should be stabilized. In other words the squared mass dlithrera scalar field related
to that distance - has to be positive.

Thus the first problem arises, namely what definition of the radion sheudibpted. Various
definitions for the radion have been proposed in the literature. As pointeth ¢f], a sensible
minimal requirement for the radion is to satisfy linearized Einstein equations.

One of the possible extensions of the standard gravity is to add to the actioridtractions
of higher order in the curvature tensor. According to tHexpansion in the string theorf] [3] the
lowest order correction is given by the Gauss-Bonnet (GB) term

R&g = RZ — 4R,y R + RyypoRHVPO . (1.1)

Following the idea presented by Goldberger & Wifle [4], stabilization of tl@és can be
achieved by introducing an additional bulk scalar fi#ld Thus, the considered 5d model is de-
scribed on thév* x S'/Z, orbifold by the action

2
S= / ol“xoly\/——g{z—,l<2 [R+aR&g] - %<D¢>2—V<¢>—Zlfxy—yi)ui(@)} , @12

where the branes are localizedyatandy,, V (®) andU;(®) are the scalar field potentials in the
bulk and on the branes, respectively.

2. Background equations of motion and boundary conditions

Describing 5d space-time with 4d inflating de Sitter sections and two branefllidhweing
ansatz is assumed for the metric and the scalar field

ds? = a(y)? {—dt? + g ok ax! + dy?}, D= q(y), (2.1)

wherea(y) is the warp factor an#ll is the 4d Hubble constant. For the given ansatz the scalar and
tensor background equations of motion yield (in urits 1)

a a’ a 2 & 1

// g 2\ — - hal 2V 5 4?2 =

¢ +3aqo’ a’V' =0, {a 2<a) +H }a2+3<p’ 0, (2.2)
I\ 2

3{(%) _Hz} [H%—%yueﬁv:o, (2.3)

where a useful notation has been introduced, narjely a® — 4a {(a'/a)>—H2}, and primes
denote differentiation with respect to the appropriate arguments (gitbea and¢, or ® for V).
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Integrating the equations of motion over the infinitesimal intervals around #reebryields
the boundary conditions

! s\ 2
im ¢ -1ty im {2 |@2aa (2(2) —h2) |V o2iu, @a
y—yi(y;) @ 2 y—yi () | & 3\a 6

which describe the jumps of tt#% odd functionsd' (y) and ¢/ (y) at theZ, fixed pointsy; andys.

3. Scalar perturbations

The next step is to derive the equations of motion for scalar perturbati@msiirilating back-
ground in the presence of the Gauss-Bonnet interactions. Scalarbatidns around the back-
ground metric[(2]1) can be introduced in the generalized longitudinal gaige

ds® = a? {(1+2Fy) [—dt? + e §jdx x| + (1+2FR)dy?} , P=0p+F, (3.1)

where the small perturbatiofs depend on all of the coordinates.
Consequently, the linearized Einstein equations yield

! 1
%Fl +—-FR=0, (§R)'+ §a2<p'|:3 =0, (3.2)
E 2 a// a/2 1/2 l/a/ 1//_
(3.3)
and the boundary conditions read
lim {F3—Fg} =+ aF3U” (3.4)

Y=Y (¥5)

According to eq.[(3]2), the three scalar perturbations are not indepen@hus, employing
these equation$, andF; can be eliminated. Separating the variables as

R 1Y) = 3 ) { [ s 0} ©5)

a dynamical equation of motion can be derived, namely

¢ o, 4”} {f_”_ﬁ_ o' ¢ } _
Fl, {25 a 2g Fro+ £ fa foﬂ e S(@)*+mP+4H? LR =0,

(3.6)

where the separation constant turns out to be the scalars mass squared in the effective 4d de-
scription. After the elimination of, andF; (andF,’), the boundary conditions become

/
y=yi(¥2) & y—=Yi (¥2)
where  byp = lim {1aU” +2 ﬂF (p”} (3.8)
e @ '
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4. Radion mass and stability conditions

Defining a new variabl®., = éF.» (we henceforth omit the subscript), the dynamical
eqguation of motion simplifies considerably, as

—(pQ) +aQ=2pQ, (4.1)

wherep = 3/(2a¢/?), q = (a?€’")/(2a&?), A = m? +4H?. Although this equation is exactly of
the form of a Sturm-Liouville differential equation, its boundary conditiorss Bon-standard -

eigenvaluel dependent:
0Q A
%(yl) - HQ(yI)
so the differential equation’s usual analygis [5] requires certain meddits (details in[]6]).
The lowest eigenvalue of the equivalent variational problem is

. o2 [pQ?+qQ¥]
Ap = min 7 — — )
Q | Jy [PQP]+ by “(pQP)ly, +b; " (PQP)ly,
whereQ denotes all smooth functions defined on the extra dimension intgrvss)|.

Hence, usind) = const, the expression for the mass of the lightest perturbation, which shall
be identified as the radion, yields

0, (4.2)

(4.3)

Jdy(a?§")/(a&?)
3{/dy(ag@?)~*+ 3 [bia(yi) (i)}

and can be considered as the radion mass bound in an inflatfhg Q) background. Thus the
stability of the inter-brane distance is attaineddf> 4H2.

For the non-inflating branes (i.e. wheh=0) A = n? and the brane system is stabldgf> 0.
The sufficient and necessary stability conditions (to be fulfilled foy)dire found to be (c.f.[[6]
for details)

(4.4)

Mg < —4H? +

>0, b >0. (4.5)

5. Role of Gauss-Bonnet inter actions

Two main issues concerning the introduction of the Gauss-Bonnet interactmuld be dis-
cussed. First of all two classes of solutions can be distingulshiBe difference between them
is fundamental and obvious when considering their GB coefficient goizgro limit. More ex-
plicitly, solutions from one class converge to the solutions in the Einstein-Hilbeory, whereas
solutions from the other class diverge. However, it can be shown vianhlgsis of the inter-brane
distance stability that these “new” solutions are disfavored.

The final question to answer is whether the assumed existence of the-B@ausst interac-
tions has any influence on the inter-brane distance stability. According tputnditative analysis

et eq. ), which is linear in the combinatiff@ /a)2 — H?] for a = 0, but quadratic in this combination for
anya #0.



Gauss-Bonnet interactions influence on the radion statibs Dominika KONIKOWSKA

that was performed in]6], the presence of the Gauss-Bonnet interadtiith a negative coeffi-
cient (@ < 0) have a model dependent influence and, in general, yields worskstdtowever,
the Gauss-Bonnet interactions introduced with a positive coefficent Q, as predicted by the
string theory) improve the stability of the brane positions, as the radion maaseshincreases.
Furthermore, the inter-brane distance decreases (fig. 1). Detailgitsres further quantitative
(numerical) analysis for the specific models (parameter ranges) caui ifo [6].

Figurel: Ratio &’/a (where
&’'/d > 0 is one of the stability
conditions given in (4.5)), as a
function of the physical distancé
for different values ofx: 0.01 (a);
0.005 (b); —0.005 (c); —0.01 (d).
Y The curve without a label corre-
sponds to a model without the GB
term (@ = 0).
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