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1. Introduction

The idea that has been intensively studied recently is that the Standard Model fields are con-
fined on a brane in a higher-dimensional space-time. This concept has become quite popular since
Hor̆ava & Witten presented [1] their 11d model with 10d branes, motivated by M-Theory. Many
5d models with 4d branes, eg. effective models derived from the Hor̆ava-Witten model, have been
discussed since then. However, for any such model to be physically sensible, the distance between
the branes should be stabilized. In other words the squared mass of the radion - a scalar field related
to that distance - has to be positive.

Thus the first problem arises, namely what definition of the radion should be adopted. Various
definitions for the radion have been proposed in the literature. As pointed out in [2], a sensible
minimal requirement for the radion is to satisfy linearized Einstein equations.

One of the possible extensions of the standard gravity is to add to the action theinteractions
of higher order in the curvature tensor. According to theα ′ expansion in the string theory [3] the
lowest order correction is given by the Gauss-Bonnet (GB) term

R2
GB = R2−4RµνRµν +Rµνρσ Rµνρσ . (1.1)

Following the idea presented by Goldberger & Wise [4], stabilization of the branes can be
achieved by introducing an additional bulk scalar fieldΦ. Thus, the considered 5d model is de-
scribed on theM4×S1/Z2 orbifold by the action

S=
∫

d4x dy
√−g

{

1
2κ2

[

R+αR2
GB

]

− 1
2
(∇Φ)2−V(Φ)−

2

∑
i=1

δ (y−yi)Ui(Φ)

}

, (1.2)

where the branes are localized aty1 andy2, V(Φ) andUi(Φ) are the scalar field potentials in the
bulk and on the branes, respectively.

2. Background equations of motion and boundary conditions

Describing 5d space-time with 4d inflating de Sitter sections and two branes, thefollowing
ansatz is assumed for the metric and the scalar field

ds2 = a(y)2{−dt2 +e2Htδi j dxidx j +dy2} , Φ = φ(y) , (2.1)

wherea(y) is the warp factor andH is the 4d Hubble constant. For the given ansatz the scalar and
tensor background equations of motion yield (in unitsκ = 1)

φ ′′ +3
a′

a
φ ′−a2V ′ = 0,

{

a′′

a
−2

(

a′

a

)2

+H2

}

ξ
a2 +

1
3

φ ′2 = 0, (2.2)

3

{

(

a′

a

)2

−H2

}

[

1+
ξ
a2

]

− 1
2

φ ′2 +a2V = 0, (2.3)

where a useful notation has been introduced, namelyξ = a2 − 4α
{

(a′/a)2−H2
}

, and primes
denote differentiation with respect to the appropriate arguments (eithery for a andφ , or Φ for V).
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Integrating the equations of motion over the infinitesimal intervals around the branes yields
the boundary conditions

lim
y→y+

1 (y−2 )

φ ′

a
= ±1

2
U ′

i , lim
y→y+

1 (y−2 )

{

a′

a4

[

a2−4α

(

1
3

(

a′

a

)2

−H2

)]}

= ∓1
6

Ui , (2.4)

which describe the jumps of theZ2 odd functionsa′(y) andφ ′(y) at theZ2 fixed pointsy1 andy2.

3. Scalar perturbations

The next step is to derive the equations of motion for scalar perturbations inan inflating back-
ground in the presence of the Gauss-Bonnet interactions. Scalar perturbations around the back-
ground metric (2.1) can be introduced in the generalized longitudinal gaugeas

ds2 = a2{(1+2F1)
[

−dt2 +e2Htδi j dxidx j]+(1+2F2)dy2} , Φ = φ +F3 , (3.1)

where the small perturbationsFi depend on all of the coordinates.
Consequently, the linearized Einstein equations yield

ξ ′

ξ
F1 +

a′

a
F2 = 0, (ξF1)

′ +
1
3

a2φ ′F3 = 0, (3.2)

ξ
a2

{

(�+4H2)F1 +4
a′

a
F ′

1−4

(

a′

a

)2

F2

}

+
1
3

φ ′2F2 +

{

1
3

φ ′′ +
a′

a
φ ′
}

F3−
1
3

φ ′F ′
3 = 0,

(3.3)

and the boundary conditions read

lim
y→y+

1 (y−2 )

{

F ′
3−F2φ ′}= ±1

2
aF3U

′′
i . (3.4)

According to eq. (3.2), the three scalar perturbations are not independent. Thus, employing
these equations,F2 andF3 can be eliminated. Separating the variables as

F1(t,~x,y) = ∑
m2

Fm2(y)

{

∫

d3k f(m2,k)(t)e
i~k~x
}

, (3.5)

a dynamical equation of motion can be derived, namely

F ′′
m2 +

{

2
ξ ′

ξ
− a′

a
−2

φ ′′

φ ′

}

F ′
m2 +

{

ξ ′′

ξ
− ξ ′a′

ξa
−2

ξ ′φ ′′

ξ φ ′ − a3ξ ′

3a′ξ 2(φ ′)2 +m2 +4H2
}

Fm2 = 0,

(3.6)

where the separation constantm2 turns out to be the scalars mass squared in the effective 4d de-
scription. After the elimination ofF2 andF3 (andF ′′

1 ), the boundary conditions become

±b1(2) lim
y→y+

1 (y−2 )

{

F ′
m2 +

ξ ′

ξ
Fm2

}

+
[

m2 +4H2] lim
y→y+

1 (y−2 )
Fm2 = 0, (3.7)

where b1(2) = lim
y→y+

1 (y−2 )

{

1
2

aU′′
1(2)±

a′

a
∓ φ ′′

φ ′

}

. (3.8)
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4. Radion mass and stability conditions

Defining a new variableQm2 = ξFm2 (we henceforth omit the subscriptm2), the dynamical
equation of motion simplifies considerably, as

−(pQ′)′ +qQ= λ pQ, (4.1)

wherep = 3/(2aφ ′2), q = (a2ξ ′)/(2a′ξ 2), λ = m2 + 4H2. Although this equation is exactly of
the form of a Sturm-Liouville differential equation, its boundary conditions are non-standard -
eigenvalueλ dependent:

∂Q
∂n

(yi)−
λ
bi

Q(yi) = 0, (4.2)

so the differential equation’s usual analysis [5] requires certain modifications (details in [6]).
The lowest eigenvalue of the equivalent variational problem is

λ0 = min
Q

{

∫ y2
y1

[

pQ′2 +qQ2
]

∫ y2
y1

[pQ2]+b−1
1 (pQ2)|y1 +b−1

2 (pQ2)|y2

}

, (4.3)

whereQ denotes all smooth functions defined on the extra dimension interval[y1,y2].
Hence, usingQ = const, the expression for the mass of the lightest perturbation, which shall

be identified as the radion, yields

m2
0 ≤−4H2 +

∫

dy(a2ξ ′)/(a′ξ 2)

3{∫ dy(aφ ′2)−1 +∑[bia(yi)φ ′2(yi)]−1} , (4.4)

and can be considered as the radion mass bound in an inflating (H2 > 0) background. Thus the
stability of the inter-brane distance is attained ifλ0 > 4H2.

For the non-inflating branes (i.e. whenH = 0) λ = m2 and the brane system is stable ifλ0 > 0.
The sufficient and necessary stability conditions (to be fulfilled for ally) are found to be (c.f. [6]
for details)

φ ′(y) 6= 0,
ξ ′(y)
a′(y)

> 0, bi > 0. (4.5)

5. Role of Gauss-Bonnet interactions

Two main issues concerning the introduction of the Gauss-Bonnet interactions should be dis-
cussed. First of all two classes of solutions can be distinguished1. The difference between them
is fundamental and obvious when considering their GB coefficient going tozero limit. More ex-
plicitly, solutions from one class converge to the solutions in the Einstein-Hilbert theory, whereas
solutions from the other class diverge. However, it can be shown via theanalysis of the inter-brane
distance stability that these “new” solutions are disfavored.

The final question to answer is whether the assumed existence of the Gauss-Bonnet interac-
tions has any influence on the inter-brane distance stability. According to thequantitative analysis

1c.f. eq. (2.3), which is linear in the combination[(a′/a)2−H2] for α = 0, but quadratic in this combination for
anyα 6= 0.
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that was performed in [6], the presence of the Gauss-Bonnet interactions with a negative coeffi-
cient (α < 0) have a model dependent influence and, in general, yields worse stability. However,
the Gauss-Bonnet interactions introduced with a positive coefficient (α > 0, as predicted by the
string theory) improve the stability of the brane positions, as the radion mass squared increases.
Furthermore, the inter-brane distance decreases (fig. 1). Detailed results of further quantitative
(numerical) analysis for the specific models (parameter ranges) can be found in [6].
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Figure 1: Ratio ξ ′/a′ (where
ξ ′/a′ > 0 is one of the stability
conditions given in (4.5)), as a
function of the physical distanceY
for different values ofα: 0.01 (a);
0.005 (b);−0.005 (c);−0.01 (d).
The curve without a label corre-
sponds to a model without the GB
term (α = 0).
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