PROCEEDINGS

OF SCIENCE

Scheduling and Load Balancing in the Parallel
ROOQOT Facility (PROOF)

Gerardo Ganis
CERN

E-mail: Ger ar do. Gani s@ern. ch

Jan lwaszkiewicz*
CERN

Institute of Informatics, University of Warsaw
E-mail: Jan. | waszki ewi cz@ern. ch

Fons Rademakers
CERN

E-mail: Fons. Rademaker s@ern. ch

The Parallel ROOT Facility (PROOF) enables interactivelyais of distributed data sets in a
transparent way. PROOF, which represents an alternativattin-oriented distributed computing
systems, is being successfully used by the PHOBOS expersima®e a few years.

In view of the start-up of the LHC, PROOF underwent severakltjpments and improvements.
The main challenge was to adapt it to the large multi-uselyaissenvironments. The ALICE col-
laboration has pioneered stress-testing of the systeneihifC environment, using a dedicated
testbed, located in the CERN Computing Centre.

Among the developments for the LHC, load-balancing anduesoscheduling play a central
role. To optimize the work distribution, a new load-balargstrategy has been developed, with
an adaptive algorithm to predict and circumvent potentihdiccess bottlenecks.

Assignment of resources to users is addressed at two lesatdrally, by providing a scheduler
with an abstract interface and locally, by implementing a&hamism to enforce resource quotas
at worker level.

Xl International Workshop on Advanced Computing and Angljischniques in Physics Research April
23-27 2007
Amsterdam, the Netherlands

*Speaker.

(© Copyright owned by the author(s) under the terms of the Gre&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/

Scheduling and Load Balancing in PROOF Jan lwaszkiewicz

1. Introduction

The Parallel ROOT Facility (PROOF) [1] is an extension of R@@OT analysis framework [2]
aimed at interactive ROOT-like analysis on a distributestayn. PROOF represents an alternative
to batch systems; by dynamically optimizing the use of reseaiit addresses in particular the
case of short-and medium-duration jobs, for which the ozadhfrom job preparation, submission
and result merging may be substantial in batch systems.olddth PROOF provides a framework
to automatically parallelize any task consisting of a segaeof independent cycles (like Monte-
Carlo simulations), it is being mostly used for the paratiablysis of large collection of ROOT
files containing High-Energy Physics data stored in ROOE Toemat [2].

The system has already been described in detail [1]. For tingope of this paper we just
recall that PROOF realizes a multi-tier architecture, vetitbe clientis a ROOT session. It sends
a job description to the (possibly compositeasterwhich automatically parallelizes the job and
distributes it amonghe workergsee fig. 1). The PROOF system works usually in connectioh wit
an XROOTD data serving system [3] running on the farm.

PROOF enabled facility

sub workers
master

commangs,

|
I
scripts 1

‘master

O

list of output
ocbjects
{histograms, ...}

Figure 1: The PROOF multi-tier architecture. A ROOT session conntctie PROOF Master, which
distributes the jobs to the workers. The workers may be coedeo a Mass Storage System (MSS).

The PROOF system was originally developed as a joint effeiivben CERN and MIT and it
is being used in production by the PHOBOS experiment [4].s Hxiperience has shown that the
system is suited for large clusters [5]. However the numbersers in PHOBOS is small as com-
pared to the groups of users in the LHC experiments [6]. Orntbefmain challenges in preparing
PROOF for the LHC analysis is to have the system correcthdliragn the available resources in

Scheduling and Load Balancing in PROOF Jan lwaszkiewicz

order to provide the best possible service to a large numbesers performing different types of
analysis.

The resource management in PROOF is split in two pagsource schedulingaking care of
assigning the right share of resources to eachljmd-balancing optimizing the work distribution
within jobs.

In the next section we review load-balancing and its endine packetizer focusing on the
latest improvements. In section 3 we present the main idedgtee current status of resource
scheduling in the system. Finally, the paper is summarigesction 4.

2. Load-balancing using a Pull Architecture: the packetizer

The packetizer is responsible for load balancing a job betwle workers assigned to it. It
decides where each piece of work - calfgtket- should be processed.

An instance of the packetizer is created for each job seglgrah the master node. In case of a
multi-master configuration, there is one packetizer cibéte each of the sub-masters. Therefore,
while considering the packetizer, we can focus on the case sigle master without loosing
generality.

The performance of the workers can vary significantly as waelthe transfer rates to access
different files. In order to dynamically balance the worktdimition, the packetizer usespaill
architecture (see fig. 2when workers are ready for further processing they ask tuketizer for
next packets.

Master

Worker 1 Worker N
_ Process{"ana.C") Process{“ana.C") R
(HEIEEEOE gethextPacket() GetNextPacket() |\HHAIZaHon
. F—————— 1 L * =
0,100
Process ¥ 8 100,100
GetNextPacket() o] Process
e —— > i
GetMNextPacket
200,100 g * ! - —
Process 300 40
GetNextPacket() L GetNextPacket() Process
I o 2 I —
340,100 et
Process * v 440,50 Process
GetNextPacket() - GetNextPacket()

I > g & ~ 0 |
Process 490,100 o 590,60 Process
SendObjectthisto) ; : SendObject(histo)

Wait for next Add VWait for next
command histograms command
Return
results

Figure 2: Pull architecture. The workers contact the packetizerctviis located on the master node. The
packetizer distributes the work by assigning packets torbegssed

Scheduling and Load Balancing in PROOF Jan lwaszkiewicz

As PROOF is designed for interactive work, the job processime is a critical parameter of
the system. The packetizer has to distribute work in suchyathet the job is finished as soon as
possible, given the available resources. The optimal gaekestrategy is not unique but depends
on the type of job so the system must be able to load differackgtizers. In the rest of this section
we focus on the available packetizers for data-driven amalyData sets for the data-driven jobs
are sets of files with objects which are processed indepdigdeng. ROOT Trees).

One of the main optimization criteria in this case is the datality. In general, for a given
job, a part of the data set to be processed is located on tHewandes assigned to the job and the
rest of data - on other non-worker nodes. In particular,egiime of the parts can be empty.

2.1 The packetizer algorithms

The general algorithm of the data-driven packetizers sbrdi3 parts. First the locations of
all the files are checked. Then the files are validated. Thidatédn is done in parallel by the
workers and includes checking the number of entries in edeh Buring the processing phase
the packetizer keeps creating packets and assigning théme teorkers until the entire data set is
processed. Below we describe strategies of assigning fsickivo different packetizers.

Because having a large number of workers processing datadre physical hard drive may
be counterproductive, there is an upper limit defined on th&imal number of workers reading
from one server. It can be changed in order to adapt to thempeance of the available hardware.

2.1.1 The basic packetizer

The strategy of the basic packetizer is determined by thdtactit is more efficient to analyze
files at their location than to do it remotely. According tdsthtrategy, packets are assigned in such
a way that each worker first analyzes its local part of the datdif it has one) and then processes
remote files. The initialization includes calculating these packet size, which is then equal for all
the packets except for the last packets from each file. Thtegly, detailed in appendix A.1, works
very well if the file distribution is close to uniform.

2.1.2 The new adaptive packetizer

The main change with respect to the basic packetizer is thardic prediction of how much
time each worker needs to process its local part of the datd Be predictions are used to balance
the processing from the beginning of the job. Workers, wladh expected to process their local
data faster than the average, can be asked to process datéhizcother nodes also before their
local processing is finished. The idea is based on the assamtpat some of the nodes can become
bottlenecks at the end of a job. The adaptive packetizes taedentify the nodes and make sure
that the data located there is processed at maximal posgibkd in order to minimize a potential
bottleneck effect. The packet size is becoming smaller tdsvéhe end of processing in order to
avoid delay due to the long last packets. The algorithm isrileed in detail in appendix A.2.

2.2 Measuring the performance of the packetizers

To compare the performance of the two packetizer strategised above, a cluster consist-
ing of 34 dual processor machines (Intel Xeon 2.8 GHz) withBld& RAM has been used. Each

Scheduling and Load Balancing in PROOF Jan lwaszkiewicz

of the machines in the test has a single 250 GB hard drive ctexdy a SATA controller: The
tests were done using simulated Event Summary Data (ESDBedLtICE experiment [7]. All the
analyzed files were located on the available nodes.

The tool used to measure the performance of PROOF is an ahteemchmark package [5].
The monitoring part of the package allows saving informatidnout each packet and analyzing it
after the job is processed.

The job processing time, which is minimized by the packetidepends oni) the fraction of
workers actively working throughout the joly the average processing rate of the active workers,
expressed in the number of events processed per second.

The benchmark package has been used to study the evolutiomédrof: i) the file access
during the job, showing the number of workers having an ogdfile (active workers); ii) the
processing rate per packet, classified according to onereé tbategories: data on a local file
(local packet} data in a file on different active workeother-worker packejs data in a file on a
non-worker file node or on another remote senram-worker packejs

2.3 Results

Performance measurement results for the basic packetegoad in terms of efficiency and
scalability for uniformly distributed data sets [5]. Hovezyrandomly distributed data sets were
not processed so efficiently: when the data set distributiorthe cluster was non-uniform, long
tails appeared in the plots representing the instantangmeessing rate as well as the activity of
the workers.

To see this in more detail we show an example of such a job psecewith 16 workers
(almost half of the cluster). When load-balanced by thedopacketizer, this job had the last part
of processing (after about 900 s) done by only four workees (Big. 3a). This was due to the
limitation on the number of concurrent workers describedention 2.1: after about 900 s all the
remaining data was located on only one file server.

In Fig. 3b, we show the processing rates of all the packethefdb. One can notice that in
the tail there are mostly remote packets. Also the procgssite is lower, which is due to the fact
that four workers access files from the same physical have dri

In Fig. 4 we show the results obtained by processing the salmeith the adaptive packetizer.
In this case the processing of remote data starts earlieitaadione throughout the query; as
a consequence, the long tails have disappeared. In Fig.néacan notice that all the workers
are active until the end of the job which means that the ressuare not idle. For this job the
total processing time has been reduced by about 30% whemméram the basic to the adaptive
packetizer.

The prediction made by the adaptive packetizer allows vegctve adjustment to the condi-
tions in which the job is processed. Minimizing the long &fflects results in shorter processing
time and better resource utilization.

IThis cluster is intended to gradually become the plannedo&.Central Analysis Facility [7], consisting of about
500 CPUs and 200 TB of disk space.

Scheduling and Load Balancing in PROOF Jan lwaszkiewicz

Basic Packetizer

20

2 —
] -
< 18 a
o —
; —
(]
2
3
<
S
@
Qo
£
=}
z2
0 P S S I T T T N TR S SR IS SO SR AN S S S N S R SR SNNS NSRS
o 200 400 600 800 1000 1200 1400
Time [s]
7 120
E —=— local packets b
T 100 —=— non-worker packets
&
o
¢ 80
S
[
8
S 60
c
3
12}
[
S 40
o
20
0 L 1
o 200 400 600 800 1000 1200 1400
Time [s]

Figure 3: Time evolution analysis of an 1/O intensive job processingiaevenly distributed data set using
the basic packetizer; a) number of active workers; b) pekpgprocessing rates for data read from the local
file system lpcal packetyand for data read from a non-worker nod®(-worker packejs

3. Resource Scheduling

Resource scheduling is the task of assigning resourcesetiphlis in order to optimize the
overall response of the cluster. The best performance igesth by assigning the resources with
the right balance between the two major factors: locatiorthef data sets and the load of the
machines. Resource scheduling allows also to enforcereliffesage policies defining priorities
or quotas of different users and groups.

PROOF implements resource scheduling at two levels. Therfiechanism acts on every
worker node. It controls the fraction of resources, useddhgob, according to the user priority.
The second level is a central scheduler which determinesgéepriorities and assigns workers to
jobs.

Scheduling and Load Balancing in PROOF

Jan lwaszkiewicz

Adaptive Packetizer

o 20
v -
< 18 a
Q -
; =
(5]
2
3]
<
bS]
@
Qo
[
=}
P4
P P I R T N
1000 1200 1400
Time [s]
- 120
2 B —=— local packets b
2 10012 —o— other-worker packets
% - —A— non-worker packets
a -
¢ 8of—
‘.9 —
Q
8
> 60
c
D
1]
Q
S 40
& -
20—
P S Y R NS R
0 200 400 600 800 1000 1200 1400
Time [s]

Figure 4: Time evolution analysis of an 1/O intensive job processingiaevenly distributed data set using

the basic packetizer; a) number of active workers; b) pekpgprocessing rates for data read from the local

file system local packety for data read from another worker assigned to the mthdr-worker packejs

and for data read from a non-worker noa®fi-worker packejs

The mechanisms described in this section are still undezldpment and are being tested by
the ALICE experiment using the experimental testbed desdrin Sec. 2.2 .

3.1 Worker level resource control

Each worker node gets the group priorities from a file or frdva tnaster node. The active

sessions are ranged according to their normalized pri§;it§efined as

— P 1
T 1 adivep " Nactive
NS%B’S Z| 1 user,j

Scheduling and Load Balancing in PROOF Jan lwaszkiewicz

with j the index of the group to which the session beloiyshe group priority,Ngar"g{}’gthe number
of groups with active_ - i.e. processing - sessions, Nﬁ@;’f the number of active users ipth

group?. The list of P; values is further normalized in the range [1,40], in agreenweth the
values available in UNIX systems; each session is thamicedusing anicevalue defined as

20 — pit40
]

First tests done by ALICE have shown that this method workd$ see Sec. 3.3); however, if the
number of required priority levels is larger than 40, whiclayrhappen in the case of too many
users in a low priority group, the groups with lower priorignd to get more resources than those
targeted. To solve this problem, a mechanism of local rawtdh job processing for users in the
low priority groups is being prepared.

3.2 The central scheduler

The role of the central scheduler at job start-up is sketéhédg. 5.

Dataset
Lookup

2: dataset 3: file locations

4: Job info

1: Job PROOF

. : Load, history;
Client {dataset, ...} | master

5: workers

6: workers
h

Start
workers

Figure 5: Starting a job with the central scheduler

The scheduler takes decisions according to the curretstéite cluster and the usage history
as well as the user and group priorities defined by the schreppblicy. Depending on the amount
of active users, the scheduler assigns an appropriate muwhkerker nodes to each job in order
to maintain the efficient processing and avoid overloadingomgestion of any of the nodes.

For the case of fair-share or quota-based policies, thealestheduler may the place where
the effective group and user priorities based on the clustage history are calculated.

The PROOF system interacts with the scheduler through amaabsnterface; this allows
different kinds of schedulers to be implemented, providimg required flexibility in the choice of
the scheduler.

To allow fine-grained access to the information on usage efsuand groups, PROOF can
be configured to post the exact information about the regousage of a given job through an

2An option to take into account the number of sessions of angixger is foreseen for the near future

Scheduling and Load Balancing in PROOF Jan lwaszkiewicz

abstract monitoring interface; concrete implementatifmrsMySQL [8] and MonALISA [9] are
already available.

The PROOF basic scheduler implementation provides theiljlitysto assign the worker
nodes based on the load and the group priority accordingetsithple formula:

f _
Nworkers = NcLeS' f- I:’j + Nmin

where Né,rfj is the number of free CPUs on the cluster nodesind Nnin are, respectively, the

fraction of free units and the minimal number of units to gsdo a job, andP; is the normalized
priority previously defined.

3.3 Scheduling tests in ALICE: first results

The mechanism for worker level resource control descriliema has been tested in the AL-
ICE setup described in Sec. 2.2. For this purpose the joluresanformation was posted to the
ALICE MonALISA repository and a dedicated daemon, provitdgdALICE, was used to calculate
the effective group priorities based on the required politige resulting priorities were then feed
in the basic central scheduler and communicated to theeas#igsions.

—{groupot |
10.0% / 10%
[group04 |— Py
Lgroup0 -{group0z|
38.0% / 40% 21.0% / 20%

31.0% /30%

cputime

Figure 6: Results of CPU quota control test run by the ALICE experinmmr one day. For each of the
four groups the target (right) and achieved (left) CPU gsatie shown.

The results of a CPU quota control test run by the ALICE experit over one day is shown in
fig. 6. For this test, four groups were defined and assignethguanging from 10 to 40%. Users
in the groups were continously running typical ALICE anayjsbs. As it can be seen in the plot,
the target quotas are reached within few percentage units.

Scheduling and Load Balancing in PROOF Jan lwaszkiewicz

4. Summary

In this paper we discussed the techniques to manage resaunieh are being made available
in PROOF in view of the LHC analysis.

Two different strategies to load-balance the work withimla have been described, including
the recent improvements addressing the case of non-unifatistributed data sets.

Resource assignment is controlled by a central scheduteéchvis also determining the prior-
ities of a given group or user, based on the policy defined byekperiment and the usage history;
the priorities are enforced by a dedicated mechanism tireatthe worker nodes.

These techniques for resource management are being tgstieel ALICE collaboration using
a dedicated cluster located at CERN. The first results areuzaging.

References

[1] M. Ballintijn et al., Parallel Interactive Data Analysis with PROQ proceedings of ACAT 05,
DESY, Zeuthen, Germany, Nucl.Instrum.Meth. A559 13-180@0

[2] R. Brun and F. RademakeROOT - An Object Oriented Data Analysis Framewadnkproceedings of
AIHENP’96 Workshop, Lausanne, Nucl.Instrum.Meth. A389&3(1997).

[3] A. Dorigo, P. Elmer, F. Furano, A. HanushevskiROOTD-A Highly scalable architecture for data
acces3WSEAS Transactions on Computers, 2005.

[4] M. Ballintijn, presentation at the CERN Application Axeneeting, May 24, 2006; slides from
http://indico.cern.ch/conferenceDisplay.py?confldé2074 .

[5] M. Ballintijn, et al, Super scaling PROOF to very large clustersproceedings of CHEP04,
Interlaken, Switzerland.

[6] C. Eck,etal, LHC computing Grid : Technical Design Repo@ERN. Geneva. LHC Experiments
Committee.

[7] F. Carminati, C.W. Fabjan, L. Riccati, H. de Groéi,ICE computing : Technical Design Report,
ALICE-TDR-12 CERN-LHCC-2005-018.

[8] http://www.mysqgl.com

[9] http://monalisa.cacr.caltech.edu/monalisa.htm

10

Scheduling and Load Balancing in PROOF Jan lwaszkiewicz

Appendix
A. Details of the packetizer algorithms

In this appendix we give more details on the algorithms oldhiven packetizers. The pack-
etizers for data analysis use the same framework. The m#eratice is in the strategy of the
GetNextPacket function. This function is called in resgptsthe request from a worker for fur-
ther processing. It assigns a part of file to the worker.

The general algorithm for a data-driven packetizer coagithe following three steps:

1. Check the exact locations of all the files.

2. Ifthe data set is not validated, do validate it by openinghellfiles and checking the number
of entries to be processed in each file (this step is done bkas®in parallel).

3. Keep creating packets and assigning them to the workerkthatentire data set is pro-
cessed. The GetNextPacket function is assigning the packet

A.1 Basic packetizer

A flow diagram of the GetNextPacket function in the basic péclkr is presented in fig. 7.

A.2 Adaptive packetizer

Fig. 8 represents the flow diagram of the GetNextPacket iomdéh the adaptive packetizer.
The decision whether to assign a local or remote file is taleseth on dynamic prediction of the
time that each worker needs to process its local part of thee .

11

Scheduling and Load Balancing in PROOF Jan lwaszkiewicz

Get Next Packet

Does the free worker have a file assigned?

Are there any local files left to process for this node?

Yes

Assign a local file
(Asmgn a remote f11e FLmsh the processing for this workerj

Create a new packet

(the size is constant for all the packets)

Figure 7: Flow diagram describing a simplified version of the GetNextket function algorithm in the basic
packetizer.

12

Scheduling and Load Balancing in PROOF Jan lwaszkiewicz

EThe Get Next Packet ﬁmctimj
Is there any more data to process?

8]

Does the free worker have a file assigned? L}"inish the processing for this wcxrkerj
Is there any local data left to process for this worker?

(=]

Is there aremote file that can be processed?

[~

Calculate the estimated time to process local data and
the time needed for the whole job to finish

Is the worker going to finish the local processing
before the expected end of the job?

No =

Assign a local file Assign a remote file

Calculate the packet size based on the performance
of the of the worker and the time until the end of the job

Create a new packet

Figure 8: Flow diagram describing a simplified version of the GetNextket function algorithm in the
adaptive packetizer.

13

