
P
o
S
(
A
C
A
T
)
0
2
3

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Object Model to Construct the Mixed "Open
Inventor™" / ROOT 3D Scenes

Valeri Fine 1
Brookhaven National Laboratory

PO Box 5000, Upton, NY 11973, USA

E-mail: fine@bnl.gov

Jerome Lauret
Brookhaven National Laboratory

PO Box 5000, Upton, NY 11973, USA

E-mail: jlauret@bnl.gov

This paper presents an OO model and its implementation, allowing for the creation of OO
definitions of complex 3D scenes based on Open Inventor™[1] and ROOT 3D object models
simultaneously. Such approach allows us to create the unified visualization software layer to
fulfil the different, sometimes contradicting, requirements for Detector Simulation, Event
reconstruction and Online Monitoring that could not be otherwise satisfied with existing
packages.

The object built upon this model can be saved and retrieved using either ROOT (ROOT macro,
ROOT files) or Open Inventor™ ("iv" or "vrml" format files) I/O. They can be rendered with
the built-in ROOT TVirtualViewer3D plug-in and with the OpenInventor™-based
implementation. To reveal the OpenInventor™ components, a dedicated plug-in was developed.
The plug-in and working examples are available as a part of QtRoot project and available for
download from http://root.bnl.gov

1 Speaker

P
o
S
(
A
C
A
T
)
0
2
3

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research
Amsterdam, the Netherlands
23-27 April, 2007

P
o
S
(
A
C
A
T
)
0
2
3

The Object Model to Construct ROOT 3D Scenes Valeri Fine

 3

1. Introduction

Modern accelerators like the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven
National Laboratory and the coming Large Hadrons Collider (LHC) at CERN enable physicists
to study the fundamental constituents of matter more closely than ever before. They accelerate
beams of gold nuclei or protons to nearly the speed of light before smashing them together to
create hundreds of new particles.

Because of the sheer size, and complexity of the new detectors, as well as the huge

amounts of data the modern detector is expected to produce, 3D visualization is becoming a
major component of any High Energy Physics Frameworks. However it is still not the first
concern of the HENP frameworks. We worry whether we will be able to collect, preserve, and
re-distribute our hard-earned PBytes.

Nevertheless the final stages of the job are mainly interactive, involving the graphical data
representation. The very first steps of the data-taking in the "control rooms” are interactive
therefore requiring fast and rich interactive graphical tools.

On the other hand the 3D interactive software is still expansive to design and implement.

The man-power constrains have lead us to an introduction of the OO model and its
implementation, allowing the creation of OO definitions of complex 3D scenes based on Open
Inventor™ and ROOT 3D object models simultaneously. Such approach allowed us to create
the unified visualization layer to fulfill the different, sometimes contradicting, requirements for
Detector Simulation (Simulation), Event Reconstruction (Reconstruction) and Online
Monitoring (Monitoring) that could not be otherwise satisfied with existing packages.

2. 3D visual attributes: one size fits all?

Even though the various visualization tasks in HENP look very similar, from the
implementation stand point one still should distinguish:

Task: Requirement:
Online monitoring Real time
Detector simulation • Full-fledged geometry (hierarchy)

• navigation,
• Selection
• Comparison of the different versions

Event reconstruction Event (flat or simple hierarchy) Navigation and Selection on
the top of the simplified detector geometry

For example, the attributes “transparency" for one and the same object (detector
component) can be seen as transparent for the simulation, solid for the reconstruction and
invisible for the monitoring

P
o
S
(
A
C
A
T
)
0
2
3

The Object Model to Construct ROOT 3D Scenes Valeri Fine

 4

Another example of the interesting question to address is whether the attribute “invisible”
means “100 % transparent”?”

The “Shape” attributes for the object describing, for example, a calorimeter tower, can be
hardwired with the detector (GEANT) description for the "Simulation"; and it can be flexible
for "Monitoring" where the shape attributes like size and colour are required to reflect the
energy deposit.

Those and the other similar questions are experiment specific. Neither ROOT, nor

OpenGL, nor any other generic software tool can address it alone.

2.1 Abstraction layers

The standard approach to satisfy the different requirements above alike is to design and
implement several abstraction layers. Fortunately, this task is a relatively simple one for the
ROOT-based frameworks [3]. As result the vast portion of our application needs can be met
with the quite tiny software layer providing the Coin3D-based (Coin3D is an "Open Source"
implementation of the "Open Inventor™" API) plug-in of the ROOT TVirtualViewer3d
interface.

The designed plug-in (
Figure 1) was powerful enough to make us free to think about our own applications rather

then about the technical details of the 3D object rendering. Since both software components
namely STAR framework as well as the Coin3D package use the Qt as its interactive GUI
library it was trivial to create the sophisticated interactive application with the advanced 3D
rendering engine.

Figure 1. OO Model of the ROOT 3D visualization layer

TVirtualViewer3D
(RROOOOTT >> 44..0011)

TQtRootViewer3D

TQtGLViewer

TPad

TObject

GL list

Coin

model controller view

TQtCoinWidget

QWidget

SoQtFullViewer

SoNode

ROOT plug-in

ROOT plug-in

TQtCoinViewer

P
o
S
(
A
C
A
T
)
0
2
3

The Object Model to Construct ROOT 3D Scenes Valeri Fine

 5

The model is built around of the TQtGLViewer class. This base class emits a few Qt
signals (Figure 2.) connected with internal default slots to provide the elaborated 3D object
interactive selection (Figure 3, Figure 4).

Figure 2. List of the Qt signals emitted by the TQtGLViewer interface

If needs arise the end-user can connect its own custom slots to the signals and this way
enhance the built-in functionality the way that best fits his/her application needs (Figure 5,
Figure 10)

Figure 3. The Default Selection Slot Response

signals:
void ObjectSelected(TObject *, const QPoint&);
void HandleSelected(ULong_t, const QPoint&);
void ImageSaved(QString &fileName, . . .);

To select object one has to

• Turn the Coin viewer “selection”
tool on

• Use the left mouse button to
point the image on the 3D view

The browser should :

• Highlight the selected shape

• Popup the label with the text
provided by the selected object
TObject::Info method

• Find the object in the left tree
pane of the Geometry Browser
and select the found object there

• The object selected in the “ tree”
list should be painted in the right
upper TCanvas widget

1

2

4
3

5

P
o
S
(
A
C
A
T
)
0
2
3

The Object Model to Construct ROOT 3D Scenes Valeri Fine

 6

Figure 4. The “Menu” Selection Slot Response

Figure 5. The Custom Selection Response

The Qt-based ROOT 3D plug-ins do allow creating as many OpenGL widgets as your
local video hardware can sustain and set the video attributes for each widget separately as the
short animation1 and picture (Figure 6.) demonstrate.

1 http://www.star.bnl.gov/STAR/comp/vis/animation/GeomBrowser3FilesDemo.wmv

The Browser provides another
“ selection ” slot.

The SLOT is activated via the drop-
down “ Options ” menu.

To select the object, the user should
follow the previous slide. The
only difference, instead of the
label the browser will pop the
ROOT “ Context menu ”

• The SLOT is activated via the
icon.

• To select the object, the user
should follow the previous
slides. The only difference, in
addition to the built-in action,
the application is to popup the
text edit window with the source
code of the selected volume
highlighted.

P
o
S
(
A
C
A
T
)
0
2
3

The Object Model to Construct ROOT 3D Scenes Valeri Fine

 7

Figure 6. Multiply 3D widgets / attributes

2.2 Coin3D implementation API

The implementation provides not only the advanced GUI interface. To create the custom
application one can use the multilevel API also.

• ROOT API. The browser uses the standard ROOT plug-in mechanism. This means to
use it from within ROOT env to render the ROOT 3D class objects no special API is
required. The TObject::Draw method will be served with the proper plug-in

selected via ROOT resource file.

• Open Inventor API: To control things programmatically and to render the non-ROOT
class objects one can use “Open Inventor™” API [1] (See:
http://doc.coin3d.org/Coin/classes.html for details also). The ROOT and non-ROOT
objects (including Coin3D animated objects) can be mixed within one 3D scene.

• Qt API: Thanks QtRoot and SoQt Coin3D-based widget classes do provide the Qt
signal/slot API. This allows using them to create the custom Qt-based GUI, for example

P
o
S
(
A
C
A
T
)
0
2
3

The Object Model to Construct ROOT 3D Scenes Valeri Fine

 8

for the "Control Room" and to create the animated interactive computer models of the
STAR detector useful for students, teaching and public presentations. The widget emits
(Figure 3,Figure 4) the Qt signals as soon as the user "picks" some object. The signal
provides a C++ pointer to the original ROOT object.

2.3 Input /Output 3D geometry formats

The combination of Qt and Coin3D classes automatically provides the rich set of the input
and output data formats:

Table 1. Input / output formats

File format File name extension
ZEBRA *.fz

ROOT macro *.C

ROOT binary file *.root

Open Inventor™ *.iv

VRML *.wrl

File format File name extension
All common pixmap formats gif, png, jpg etc

Postscript and Encapsulated PostScript *.ps, *.eps

VRML *wrl

"iv" - "Open Inventor2 *.iv

Movie *.mpeg

2.4 ROOT “Transparency” attributes

ROOT describes the translucent property of its graphical objects via TAttFill class as

follows:

 4000 the object is transparent
 4001 – 4100 the object is for 100% transparent to 100% opaque.

In addition, the ROOT 3D classes provide an extra “visible” attribute.

There are several ways to see the transparency attributes for ROOT object. For our model

we decided to treat:

• Full 100 % transparent object – wired and “unpickable” image
• 99% transparent object – wired and “pickable” image
• > 99% – translucent solid image.
• Invisible – “invisible” means no image at all.

P
o
S
(
A
C
A
T
)
0
2
3

The Object Model to Construct ROOT 3D Scenes Valeri Fine

 9

This approach helps us to accommodate the various needs to interact with the 3D object
without any change of the original ROOT object model (Figure 7, Figure 8).

Figure 7. ROOT FillStyle 4001 makes the object wired and availabe for the pick operation.

Figure 8. FillStyle 4000 makes the object invisible

The next picture (Figure 9) shows the usage of this attribute for the STAR Online Event
Display.

tube->SetLineColor(6);
tube->SetFillStyle(4000);

trap->SetLineColor(4);
trap->SetFillStyle(4001);

P
o
S
(
A
C
A
T
)
0
2
3

The Object Model to Construct ROOT 3D Scenes Valeri Fine

 10

Figure 9. STAR Online Monitor using non-clickable 4001 style to outline TPC

3. Object Model to Construct the Mixed 3D scenes

The introduction of the Coin3D-based ROOT-plugin opened the access to the
OpenInvetor 3D manipulation facilites. The ROOT class library lacks of. On the other hands the
ROOT portion provides the advanced OO I/O system to save and restore the combined ROOT/
Coin3d complex objects. The model is designed the way that one

• Needs change neither ROOT 3D object model, nor the 3D virtual viewer model but the
“attributes visual implementation” only

• needs no change of ROOT object model, to mix the ROOT and Coin objects at the
rendering time

• can enhance the ROOT object model to provide the new attributes to be treated by the
dedicated viewer (but preserve the backward / forward compatibility) (Table 2)

trap->SetLineColor(4);
trap->SetFillStyle(4001);

tpc->SetLineColor(kRed);

tpc->SetFillStyle(4000)

P
o
S
(
A
C
A
T
)
0
2
3

The Object Model to Construct ROOT 3D Scenes Valeri Fine

 11

Table 2. Mixing ROOT and OpenIventor™ objects at the rendering time

To provide this the simple OO model was introduced and implemanted:

Coin3D-based viewer

ROOT 3D objects Coin3d SoNode’s

Mix the ROOT and
Coin3D objects at the
rendering time within
Coin3d viewer

TGeoTranslationC

 TQtCoin3DNode
TString
fNodeDescriptor;
TString fNodeName;

TQtCoin3DDefInterface
(abstract interface)

TGeoTranslation

P
o
S
(
A
C
A
T
)
0
2
3

The Object Model to Construct ROOT 3D Scenes Valeri Fine

 12

The switching from the regular ROOT OO model to the mixed one is as simple as
replacing the the class name TGeoTranslation with TGeoTranslationC. The

figures below show the small corrections to the standard ROOT

test rootgeom.C and the OpenInvetor file animating the original

ROOT picture:

Figure 10. Use 3D graphics to debug the simulation code

TGeoTranslation *replica1=new TGeoTranslation(-150, -150, 0);

TGeoTranslationC *replica1 =new TGeoTranslationC(-150,-150,0);
replica1->SetFileName("replica1.iv");

replica1.iv:
#Inventor V2.1 ascii
Rotor {
 rotation 0 1 0 0.1
 speed 0.1
 on TRUE
}

P
o
S
(
A
C
A
T
)
0
2
3

The Object Model to Construct ROOT 3D Scenes Valeri Fine

 13

4. STAR applications

The present OO model and it implementation became the foundation for several STAR
applications. The Figure 10 shows the screen shot of the detector geometry editor that allows
not only getting high quality OpenGL pictures of any piece of the detector but comparing
several versions of the GEANT3 geometry layouts side by side.

The online monitor (Figure 11) have been in use for 3 last STAR runs and it was fast
enough to visualize the internal detector state in online and feed the STAR Web page with
current collision view in near real-time.

STAR offline event display (Figure 12) has become a tool fo choise to debug the complex

event recostruction algoritms.

Figure 11. Screenshot of the STAR Online Event
Display

P
o
S
(
A
C
A
T
)
0
2
3

The Object Model to Construct ROOT 3D Scenes Valeri Fine

 14

Figure 12. Use the OprnInventor-based viewer for offline event reconstruction

5. Conclusions

• The object built upon this model can be saved and retrieved using either ROOT (ROOT
macro, ROOT files) or Open Inventor (“iv” or wrl” format files) I/O. They can be
rendered with the built-in ROOT TVirtualViewer3D plug-in and with the Open Inventor-
based implementation also. To reveal the “Open Inventor” components, a dedicated
plug-in was developed.

• The model and its implementation do allow STAR to effectively combine the ROOT OO
detector description and Coin3D sophisticated 3D scene visualization features.

• The plug-in is a part of the QtRoot project and it is available to download from QtRoot
project Web size and CVS repository (see: http://root.bnl.gov) (Windows binary do
include Coin3D plug-in)

References

[1] Josie Wernecke, The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open
Inventor™, Release 2, Addison-Wesley Publishing Company, ISBN 0-201-62495-8

[2] S. Siemen, Interactive 3D Worlds with Coin, in http://www.linux-
magazine.com/issue/28/Coin3D_Part1.pdf, March, 2003

[3] V. Fine, STAR Framework and Visualization, in proceedings of ROOT 2000 International
Workshop, CERN, Geneva, February, 2000

[4] P. Nevski, STAR Simulation, in proceedings of ROOT 2000 International Workshop, CERN,
Geneva, February, 2000

P
o
S
(
A
C
A
T
)
0
2
3

The Object Model to Construct ROOT 3D Scenes Valeri Fine

 15

[5] R. Brun et all, ROOT OO model to render multi-level 3-D geometric objects via an OpenGL, in
proceedings of the VII International Workshop on Advanced Computing and Analysis Techniques
in Physics Research, Chicago, October 16-20, 2000

[6] V. Fine, Visualization of the ROOT 3D class objects with Open Inventor-like viewers, in
proceedings of IX International Workshop on Advanced Computing and Analysis Techniques in
Physics Research, December 1-5, 2003

