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The CMS experiment at the LHC at CERN will start taking physics data towards the middle of
2008. To control and monitor the experiment during data-taking the Run Control and Monitoring
System (RCMS) was developed. This paper describes the architecture and the technologies used
to implement the RCMS, as well as the deployment and commissioning strategy. The RCMS
framework is based on a set of web-applications implemented with Web Service and Java Servlet
technologies. AJAX and JSP are used for the user interfaces, and MySQL and Oracle are sup-
ported as the DB backend. A hierarchical control structure organizes the Run Control into sub-
systems. The RCMS was successfully used in the “Magnet Test & Cosmic Challenge of CMS” in
2006. The goal of this exercise was to integrate and operate a sub-set of the components of CMS

in order to record cosmic rays.
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Figure 1: The CMS data acquisition architecture.

1. Introduction

The Compact Muon Solenoid (CMS) [1] is a general purpose particletdeteurrently under
construction at CERN in Geneva, Switzerland. It is scheduled to stargtdkita from the proton-
proton collisions produced at the Large Hadron Collider (LHC) [2]/a£14 TeV in 2008. The
CMS Data Acquisition System (DAQ) [3] (Fig. 1) is responsible to build andrfiteents from
about 600 data sources at a maximum trigger rate of 100 KHz. The RunoCand Monitor Sys-
tem (RCMS) has to provide the interfaces to configure, control and mahé&system. The RCMS
architecture is designed to hide the diversity of the involved hardware¢cabe highly scalable,
as the CMS DAQ system is foreseen to be extended by almost an order pitmaggduring the
lifetime of the experiment.

Current Internet applications have requirements similar to those of the R@M®y distributed
clients must interoperate with a set of servers and databases; scalabilitysnaedatabase trans-
actions per second and connectivity to the services; and providingesacoess. Most Internet
applications have adopted Web technologies and in particular Web Sefdjcekhe Extensible
Markup Language (XML) data format [5] is commonly used for data erghand the Simple Ob-
ject Access Protocol (SOAP) [6], for communication. Since the main requénts of the RCMS
are similar to those of Internet applications, CMS has therefore chosetop eommonly used
technologies in order to profit from existing Information Technology (&yelopments.

The RCMS software is developed in collaboration with the Grid enabled Remsti@iinentation
with Distributed Control and Computation (GRIDCC) [7] project. The GRIDEE& project funded
by the European Community, aimed to provide access to and control of disttibomplex instru-
mentation. One of the main applications of the GRIDCC is the RCMS of CMS.

The next section presents requirements and architecture and giveeralgeverview of the soft-
ware technologies and design of the RCMS. The RCMS experience atafgrdtiTest & Cosmic
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Figure 2. The RCMS integration with the CMS On-line system.

Challenge (MTCC) of CMS is presented, followed by a summary.

2. Run Control and Monitor System (RCMYS)

As a component of the CMS online software, the RCMS is designed to intatepeith the
other online software components, like the Detector Control System (R@8)he XDAQ cross-
platform DAQ framework [8, 9] (see Fig. 2).

The RCMS views the experiment as a collection of setups, where a setuptidigucable group
of resources. Multiple setups can be active concurrently, shariogness if necessary, allowing
several sections of the experiment to run independently.

Users have to be authorized and authenticated to get access to the R@& s Multiple users
can access the experiment concurrently, performing subsets of lgdgsibtions exported by the
system. Hierarchies of distributed control applications will be used to dahecO(1¢) objects
of the CMS DAQ system.

2.1 Requirements

The RCMS is the master controller of the CMS DAQ when the experiment is takitag @he
three main requirements are:

e to ensure the correct and proper operation of the CMS experiment.
e to control and monitor of the data acquisition system.
e to provide user interfaces.

A number of Sub-Detectors is involved in data-taking. The DCS sub-sydtem,the point of
view of the RCMS, is an external system with its own independent partition.
2.2 Architecture

The logical structure of the RCMS is shown in Fig. 3. The system is orgaimtea tree struc-
ture of controllers and a Graphical User Interface (GUI). The Topt@ter (TC) is the unique
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Figure 3: The RCMS logical structure.

entry point for the CMS system and drives the Sub-Detector ControlRid€§). Sub-Detector
DAQ Resources are managed by the respective SDC. Every Contradler$et of services that are
needed to support specific functions like security, logging and resamnanagement.

During data taking, the RCMS deals with the DCS to set up and monitor the parttorespond-
ing to the detector setups involved in the acquisition.

Each setup is associated with a TC that coordinates user access to tharsbprppagates com-
mands from the users to the SDCs. High-level commands are interpretexkpauded into se-
guences of commands for the DAQ Sub-Detector resources.

2.3 Software Technologies

Web technologies and related developments play a fundamental role in the impdé&oreof
the RCMS design. The XML data format and the SOAP communication prot@s@ hlready
been mentioned in the introduction. The Web Services Description Langu&geL) [10] is used
to export service interfaces to clients.

A rich choice of tools and solutions based on the previously mentioned Wehdiegjies is avail-

able. Apache Axis [11] is widely used to implement Web Services. The GEgddmmunity use

the same technologies.

Relational database management systems provide the required levelistineds and scalability.
For security issues the RCMS is going to adopt one of the existing solutiailalzle in the scope
of large distributed systems.

2.4 Design

The RCMS has been developed using the Java programming languagk fd&fes use of the
Apache Axis software tools. All the services are developed as Welc8srthat run in a Tomcat
servlet container [14].

The RCMS is currently used in some application scenarios of the CMS experirRermanent
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Figure 4: The block diagram of the Run Control and Monitor System.

installations are used for the test and validation of the CMS muon chambéesd for the tracker
system test [16]. Other installations are used for testbeam DAQs, bothafiker, ECAL [17]
and muon detectors, and for DAQ global and local tests. Figure 4 shdveck diagram of
the controller, which consists of components of six different types: ftamdlanagers (FMs),
Resource Service (RS), Information and Monitor Service (IMS), Gicagb User Interfaces, Job
Control (JC) and Access Control Manager (ACM).

2.4.1 Function Manager

The FM is responsible for performing the communications with the controlleaf sesources.
It acts as a protocol adapter that implements the resource-specific gisofocr accessing their
functions and reading their status. FMs can be organized into a hierrcbiatrol structure in
order to break down the complexity and scalability of the system.

The FM comprises the following components (see Fig. 5):

e “Input Handler”: this module handles all the inputs to the FM, including commands from
external entities (e.g. GUI) and error messages or states from thegesolMessages are
then passed to the Event Processor.

e “Event Processor? this module handles the messages coming from the Input Handler. Ac-
cording to a user defined behaviour, such messages can trigger aastatedn in the FSM
module and/or act on the Resource Proxy to directly control the assooistearces.



Run Control and Monitoring System A. Petrucci

Function Manager Monitor Flow
________ , rm—mm—m
r— I FSM ! ——— Control Flow
: Processor 1| Engine ]
1
(I ] l___I__, — , StateFlow
1 1
L Input I Resource 1 Error Flow
Handler | Proxy 1 ——

r
___ Leepooot 1 | Customizable
1

: Resources :
Figure5: The Function Manager architecture.

¢ “Finite State Machine (FSM) Engine"this module is a user customizable state machine. It
performs state transitions and executes the actions allowed by the cuatenthsough the
Resource Proxy.

e “Resource Proxy”? this module deals directly with the resources, having the knowledge on
how to communicate with them (i.e. which protocol is used), where and how ey
are. The module is a plug-in module that can be easily replaced according tgpth of
Resources that should be controlled.

The typical use case is to receive inputs from the users who are gipgrthe resources.
Since this component also receives inputs like states or errors that comméhie set of resources
it can react to the behaviour of the controlled resources, allowing autoreatieery procedures to
be started. One or more Function Managers are commoonly used forazobiler.

2.4.2 Resource Service

The Resource Service (RS) is responsible for the organization andyeraeat of resources
available in the system and about configurations which reference theset of controllable re-
sources and FMs, organized in a hierarchical tree structure, corsat@enfiguration. A resource
can be any hardware or software component involved in a setup. RResatan be allocated and
queried and setups can only use available resources.

The main requirements for the RS are listed below:

¢ RS ahould be able to extract information on available configurations fromaggto

e RS should store the information about new or modified configurations.
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e A Configuration must contain all the details to ensure that Resourcesauerfyrinitialized
and working correctly.

It is the responsibility of the RS to check resource availability and contentitmather active
partitions when a resource is allocated for use in a setup.

The solution designed for the Resource Service uses a Web Servidadatirat guarantees a high
interoperability and a standardized access to the Resource Service arhpoorder to “read”
any resources configuration from or to the resource catalog.

The persistent storage is based on a DBMS (Database Managememh)Ssisté as MySQL [18]
or Oracle [19]. The connection between the repository database aR&#oeirce Service backend
relies on Java Database Connectivity (JDBC) technology [20].

2.4.3 Information and M onitor Service

Information concerning the internal status of DAQ resources and RGM$onents are sent

to the IMS as messages, which are reported to the operator or storedtabasia
The messages are catalogued according to their type, severity level agthtiipe The IMS col-
lects and organizes the incoming information in a database and publishes litstribars. Sub-
scribers can register for specific messages categorized by a numéslection criteria, such as
timestamp, information source and severity level.

This service uses a publish/subscribe system to disseminate monitoring dagaittetiested
partners (see Fig. 6). The IMS system manages the received infornratdferent ways:

e It publishes data via a Java Message Service (JMS) [21] systengad-amtopics.

e Subscribers can register themselves for specific messages that cgledtedson the basis
of the information source, the error severity level, the type of messagesanbination of
these tags.

e |t stores data in a persistent repository (database). In this casedatardre permanently
recorded and interesting information can be retrieved by a client via simptg guocedures
to the database.
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e It can distribute data via SocketAppender (a simple TCP/IP communication).

Clients can publish messages to IMS using Log4C [22] and Log4J [23].

2.4.4 Graphical User Interfaces

A number of web applications are employed to operate the system. GUIsrgriengmrtant

to provide a set of intuitive functions to control and monitor the experimere.Résource Service
has to provide GUIs for storing new resources, defining and brovwsrngions. The Information
and Monitor Service provides displays for alarm messages, error sitistatem status and mon-
itoring.
The Controller GUI is based on JSP [24] and Ajax [25] technologies,ritraa in current web
browsers. It is composed of a generic framework, released togettieth® services, containing
the basic functionalities common to any CMS DAQ. These include the interface tedbource
Service for browsing configurations and the ability to command DAQ application fit the spe-
cific requirements of each Sub-Detector, the GUI can be extended by3Rwages.

2.4.5 Job Control

The Job Control (JC) is a utility that allows the remote execution and superdgany soft-
ware process involved in data-taking. RCMS needs a way to get aroarattess/authentication
mechanisms of the infrastructure of our cluster, in order to be able totepiyea whole cluster
remotely. JC is a daemon process which needs to be up and running oaféaemodes to al-
low RCMS to start/stop arbitrary processes without the need to authentidaite cdmponent is
provided by XDAQ.

2.4.6 Access Control Manager

The Security Service provides facilities for user authentication and aedtion, including
data encryption if necessary. The ACM uses the Apache Tomcat Re@lmlfds a simple au-
thentication service like the Unix operating system based on usernamssppads and roles. One
or more roles can be associated to an username, the access to a weliapicdiowed to all
users possessing a particular role. It uses a relational databasestthsetdata associated with user
profiles and access privileges.

3. RCMSat the Magnet Test & Cosmic Challenge (MTCC)

During summer and autumn 2006 a subset of the CMS detector including the 4ietita
field was operated to detect cosmic muons. The MTCC was a milestone of thexjpdBment as
it completed the commissioning of the magnet system (coil and yoke) beforevizsithg into the
cavern and demonstrated the working of the full read-out and coritaih ¢
The main goals of the Cosmic Challenge were: Commissioning of severaksettars (Muon De-
tectors, Hadron and Electromagnetic Calorimeters, Tracker) and pdhs ®figger system; Test
Muon alignment systems; Readout all available detectors, demonstrate cagmeconstruction
across CMS.
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Figure 7: The CMS DAQ system layout.

3.1 DAQ Setup

The DAQ group of CMS has built a MTCC prototype of the final DAQ systeimicivincludes

RCMS, DAQ and DCS components.

The Event Builder is implemented in two-stages, the FED Builder and the ReBdider stage.
An overview of the data flow is illustrated in Figure 7 proceeding from top ttoba At the top
are the Front-End Drivers (FEDs) which are the sub-detector spdaificsources. The FEDs feed
the Front-End Readout Links (FRLs) which merge the data of up to two kiE®sne stream. The
outputs of the FRLs are merged into Readout Units (RUs). The RUs reaadtadrom FEDs and
perform a first concatenation of the event data fragments into largebltetes.

The Readout Builders consist of three types of software componebtsBilder Unit (BU) and

Filter Unit (FU). The RUs receive the event fragments and distributes tbghe BUs which as-
semble full events and pass them to the FUs. The BUs constitute the lastfstiagewent building
process and hold complete events in their memory. The event data arechagdiee FUs for
processing, and dispatching to the Storage Manager (see Fig 1).

Figure 7 shows the layout of all the components highlighting the ones patiigpa the MTCC
system. The prototype consisted of 20 FEDs and 20 FRLs, the ensembleRifs8and 8 RUs is
called the FED builder. In the final system 64 FED Builders with a total of SRRs=and about
600 FEDs will be operating, whereas in the MTCC only 2 FED Builders wpezaiional.

The second stage of the DAQ system comprised 48 RUs and 48 BUs, ahMapager (EVM)
and a Trigger system. In the final system 576 RUs, about 1600 BUstdU& BVMs are foreseen.

Eight of the BUs were connected to 16 FUs and delivered their evenbdatasigabit Ethernet.
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3.2 RCM S Deployment

At the root of the controller tree, a dedicated master controller is used toottime SDCs.
Each SDC has a RS, one or more FMs and a Log Collector, the basic implemenfdtie IMS.
The tree structure of the control flow system is highlighted in figure 8, tipeiSthe entry point
for control: user commands to the system are issued to the Top. The deeehaf the tree gives
access to the sub-systems, namely to all the sub-detectors, to the triggtaadquisition system
(DAQ), and to the Detector Control System (DCS).

The sub-detectors configure and control the related FEDs to prodeidath related to that part of
the detector.

The DAQ, in the center part of the Figure 8, supervises 3 children: th@E& Builder) controls
the FRLs and RUIs, the RB (Ru Builder) controls the RU, BU, EVM and TA Hre FF (Filter
Farm) controls the FU components.

The Top and the DAQ run on a single machine, all the sub-detectors rumotinest machine. For
each subsystem and the Top there is a Tomcat application server, togithttre JSP servlet for
the Run Control web interface generation and a logging service. Sebsysgging services de-
liver log messages to a central logging collector service that stores themCreale database and
allows for on-line log visualization on a GUI (Chainsaw [27]).

Each node hosts a Job Control service to start and stop DAQ compoesrutety. Another com-
ponent of the control system is the Resource Service which uses ale @edabase to store con-
figuration data of the control system and of the application nodes runninBAKQ applications.
All nodes run under Scientific Linux CERN 3 (a CERN customized versidRexfHat Enterprise
Linux 3).

10
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4. Summary

In this paper, the architecture and the design of the Run Control and M&yisbem for the
CMS experiment have been described. Facing similar requirements aselrapplications, Web
Service technologies have been adopted.

The final system is currently under development. Current and prexétesses have been success-
fully used in test beam DAQ systems, in the central DAQ of CMS, and in the MTC
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