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An event-by-event study, based on neural network method, of the mass identification in high
energy cosmic rays was carried out with simulated data. Extensive air showers were simulated
with the CONEX code, using the hadronic model QGSJET-II-3. The goodness of the method in
recognizing the mass of the primary was tested making use of the parameters extracted from the
simulated longitudinal profiles. We showed that the designed supervised neural network is able
to discriminate, with high identification efficiency and purity, between proton- and iron-induced
showers. We tested our method also in presence of a five components primary flux (proton,
helium, oxygen, silicon and iron nuclei). A step further was moved by estimating the effect
of the response of the fluorescence detector at the Pierre Auger Observatory over proton-iron
identification. Typical results for the classification matrix obtained are presented and discussed.
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1. Introduction

Mass composition analysis is a fundamental task to test any theoretical model concerning the
origin and the nature of the primary cosmic ray radiation at the highest energies. Different energy
spectra are predicted to be observed at ground by the present theories, according to the mass of the
primary particle, so the knowledge of the energy spectra for every mass component, or at least for
groups of components, is required in order to discriminate among the proposed models.
At lower energies (E < 1014 eV) the composition of cosmic rays can be measured using direct de-
tection techniques, such as spectrometers and calorimeters.
At higher energies, the measurement of the mass is generally performed by indirect techniques,
which make use of parameters sensitive to the primary mass, and determined by the shower de-
velopment in the atmosphere. Among such parameters, Xmax (the depth at which the longitudi-
nal shower has its maximum), Nmax (the number of shower particles at Xmax) and Nµ (the num-
ber of muons at a given distance from the shower axis) are widely used. In the knee region
(1015÷1017 eV) a recent analysis from KASCADE experiment, based on the deconvolution of a 5-
component mass spectra starting from the experimental Ne-Nµ scatter plots, shows that the knee is
due to a decrease of the light component with respect to the heavier one, and that the knee position
for higher masses shifts towards higher energy [1]. A clear increase of the mean logarithmic mass
as a function of the primary energy is found in other experiments, such as EASTOP-MACRO [2].
While the experimental results show a definite trend in this intermediate energy region, the situation
becomes controversial moving to the highest energies (> 1017 eV): the HiRes analysis [3], based on
the elongation rate method, the Yakutsk analysis [4], based on the comparison of experimental Xmax

distributions to QGSJET simulated ones, and the AGASA analysis [5], based on the comparison
of experimental muon number distributions with simulated ones, suggest a composition dominated
by the proton component. Recent re-analyzed data from Volcano Ranch [6] and Haverah Park [7]
experiments, based on the comparison of the steepness parameter distributions, extracted from the
lateral distribution function, with simulated ones, claim for a composition dominated by the iron
component.
Interesting attempts to compare these results are found in [8] and [9]. Measurements from differ-
ent experiments are difficult to compare, because the predictions are strongly dependent upon the
hadronic models used in the analysis. These controversial results suggest that the problem of mass
composition at the highest energies is still open and debated.
Two kinds of approaches can be used to perform a composition analysis: the event-by-event ap-
proach uses pattern recognition methods, working with a set of shower parameters sensitive to the
mass, in order to estimate the probability of identifying the mass of every observed event; meth-
ods of unfolding or deconvolution allow to infer the energy spectra for different mass components,
starting from a data set of shower parameters, without any care regarding the mass of the single
event.
It is clear that a mass identification study must be necessarily restricted to limited mass groups,
since the absence of features strongly correlated with the primary mass and the presence of stochas-
tic shower-to-shower fluctuations in the shower parameters, make a complete analysis very inef-
ficient. The first approach could become inadequate, even with a powerful pattern recognition
method, especially with a too large number of mass components. Keeping in mind these difficul-
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ties, an event-by-event reconstruction is anyway necessary if one wants to study possible correla-
tions with other analysis, e.g. if one wants to correlate the mass of an event with its astrophysical
arrival direction.
For these reasons we present in this paper the results of an event-by-event study using a neural
network as identification tool and discriminating parameters which could be measured by an air-
fluorescence telescope such as in the Pierre Auger Observatory or the Hi-Resolution Fly’s Eye. A
similar approach has been discussed by A.K.O. Tiba et al. [11] and by M. Ambrosio et al. [12].
The paper is organized as follows: section II gives a brief introduction of the Pierre Auger Obser-
vatory, section III describes the data set, built from CONEX simulations of extensive air showers,
and the parameters sensitive to the mass, used as network inputs. Section IV presents the designed
neural network and its application to simulated data. Section V, finally, shows the obtained results
and our conclusions.

2. The Pierre Auger Observatory

The Pierre Auger Observatory has been designed to study the ultra-high energy cosmic rays
(UHECR) in the GZK cutoff region with an unprecedent statistics and precision.
The observatory will consist of two sites, one in each hemisphere. The Southern Observatory,
currently under construction close to the city of Malargue in Argentina, is expected to be completed
at the end of this year and is taking data as the deployment goes on. The Northern site will be

Figure 1: The Southern Observatory in May 2007, showing the positions of the four FD stations and the
approximately 1200 deployed SD tanks (shaded region).

located in Southeast Colorado and is actually in project phase.
The Southern Observatory is made up of two systems of detectors: a surface detector (SD), which
is a grid of 1600 equally spaced Cherenkov water tanks, extending over an area of 3000 km2, with
1500 m spacing between detectors. Each tank contains 12 tonnes of water (10 m2 area), and each
is equipped with three 9′ PMTs, local digitizing electronics (400 MHz sampling rate), solar power,
GPS receiver and a radio communication system.
The fluorescence detector (FD) is made up of 4 fluorescence eyes, equipped with 6 telescope each,
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located at the array vertex. Each telescope is built with a Schmidt optics allowing the elimination
of the coma aberration: a circular diaphragm of radius 1.10 m is located at the center of curvature
of the spherical mirror. An UV transmitting filter placed in the entrance aperture reduces the
background light and provides protection from outside dust. A series of Schmidt corrector elements
are located just inside the UV filter. The light is focused by a large 3.5× 3.5 m spherical mirror,
with curvature radius of 3.4 m, onto a spherical camera, which hosts an array of 440 hexagonal
pixels of 1.5◦ diameter. Pixel signals are digitized with 100 MHz sampling.
Figure 1 shows the actual status of the deployment: the array will be completed at the end of the
year, while the FD has been completed, as soon as the Loma Amarilla eye has started operation in
February 2007.
The SD observes the shower front, by measuring the particle density at ground level: this detector
can operate all the time with a duty cycle of 100%. The FD measures the fluorescence light emitted
by the shower particles traversing the atmosphere: the duty cycle in this case is reduced to about
10%, since the telescopes can operate only in the clear moonless nights.
The unique hybrid combination of fluorescence and surface detectors has enormous advantages
in all objectives of the Observatory. For example, in the study of the ultra-high energy cosmic
ray energy spectrum the SD provides the energy parameter S(1000), a huge collecting area, 24 hr
operation and an easily calculable aperture. The FD provides the conversion between S(1000) and
the cosmic ray primary energy, since the FD uses a near-calorimetric technique for determining
energy. This avoids calibrating S(1000) via shower simulations, which have uncertainties related
to hadronic interaction models.
In anisotropy studies, hybrid data provide high-precision shower arrival directions which are used
to cross-check SD-derived directions and to directly measure the SD angular resolution.
In mass composition studies, the FD measures the longitudinal shower profile, which could be
used, as we would like to show, as promising mass sensitive observable, in combination with SD
parameters.

3. The simulated data

This study is based on a sample of simulated showers, which were generated with CONEX
1.4 [13] [14], using QGSJET II-03 as hadronic interaction model.
At the present state, CONEX allow only a one-dimensional simulation of the cascade, with smaller
CPU times with respect to the ones needed by typical three-dimensional code, such as CORSIKA
or AIRES. This feature makes CONEX very suitable for FD applications, in particular, for the
analysis of the shower longitudinal profiles.
The simulated data set is made of:

• 36000 protons

• 34000 helium nuclei

• 29000 oxygen nuclei

• 32000 silicon nuclei
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• 29000 iron nuclei

with uniform energy and zenith angle distributions in the range 1018−1019 eV and 0◦−60◦, respec-
tively. We made use of the amount of information contained in the simulated longitudinal curves,
sampled in 10 g/cm2 bins by CONEX, with the profiles limited to the range 200-870 g/cm2. These
limits approximate the best viewing conditions of existing FD devices such as in the Auger Obser-
vatory or the HiRes.
In order to perform a composition study, we need a set of parameters sensitive to the primary mass:
the discrimination among the different components is done using the well known fact that heavy
primary induced showers develop faster in the atmosphere with respect to light induced ones (e.g.
they reach the cascade maximum at smaller atmospheric depths), because of the higher nucleus-air
cross section for showers of the same primary energy and zenith angles.
We extracted the following set of parameters from the longitudinal curves to show this behavior:

• Xmax, Nmax: atmospheric depth of shower maximum and number of charged particles at
shower maximum;

• p10, p50, p90: atmospheric depths at which the 10%, 50%, 90% of the whole integral profile
are reached. These are sort of indicators about the “rise-and-fall time” of the longitudinal
profiles;

• E, θ : primary energy and zenith angle (these are not directly correlated with the mass).

The numerical values of the first two parameters (Xmax and Nmax) were evaluated by fitting the
simulated profiles Nch(X) for charged particles in the range 200-870 g/cm2 with a standard 6-
parameters Gaisser-Hillas function:

Nch(X) = Nmax
X −X0

Xmax−X0

Xmax−X0
a+bX+cX2

exp
(

Xmax−X
a+bX + cX2

)
(3.1)

The integral I of the whole profile in the above-mentioned range was evaluated by numerically
integrating the profile curves, specified at a certain number of points (at least greater than 4), with a
NAG routine, which evaluates the integral using a third-order finite-difference formula, according
to a method due to Gill and Miller [15]. The integral between successive points is calculated by
a four-points finite-difference formula centered on each interval, except in the case of the first and
last intervals, where four-points forward and backward difference formulae respectively are em-
ployed.
The values of the parameters p10, p50, p90 were then determined interpolating with a first-order
polynomial in the interval, inside of which the required 10%I, 50%I, 90%I integrals are reached.
The choice of using such NAG routine is motivated by the fact that it does work with unequally-
spaced points, as the points of the experimental profiles actually are.
The parameter space built in this way is therefore suitable for the neural network method applica-
tion.

4. Neural network application to simulated data

This section presents the application of a neural network technique to the identification prob-
lem, describing the design of the network used, and the steps followed to perform the analysis.
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4.1 The network design

A feed forward neural network (NN) is structured in parallel layers of neurons, connected to
neurons in adjacent layers by weighted connections, indicating the strength of the neuron link. The
input layer is connected to the input data vector and an indefinite number of hidden layers process
the signal towards the output layer which returns the final response of the network to the presented
input data. The basic processing unit in the network is the neuron: the input signals xi (i=1,m)

Figure 2: A single neuron of index i: the input vector components xi, the weights wi j (j=1,...m), the biases
bi, the transfer function f and the output signal f (zi) are showed.

coming from each input channel are linearly transformed by applying a multiplicative weight wi j

and an additive bias bi to form the net neuron input zi:

zi =
m

∑
j=1

wi jx j +bi (4.1)

The neuron output is obtained by applying a transfer function f (zi) to the net input (see Figure 2).
Common forms of such activation functions are the simple linear function f (zi) = αzi + β , or the
sigmoidal form functions, as well as the logistic function f (zi) = 1

1+exp(−αzi)
and the hyperbolic

tangent function f (zi) = exp(zi)−exp(−zi)
exp(zi)+exp(−zi)

.
After testing several network architectures, we obtained good results using a net with an input
vector of dimension 7, 3 hidden layers, each one with 10 neurons, and an output layer with one
neuron. The activation functions are hyperbolic tangent in the hidden layers and linear in the output
layer.
Next step is the choice of the training algorithm. The training data is a set of N events (xi,yi) i =
1, ...N, defined by the 7-dim input vector xi ≡(Xmax, Nmax, E, θ , p10, p50, p90)i and by the desired
output vector (the mass identity of the event) yi. The supervised training algorithm minimizes the
difference between the desired output yi and the network computed output ti, by adjusting iteratively
the weights and biases of the net in order to minimize a given error function E. The error function
used for the present analysis is the standard square error function:

E =
1
2

N

∑
i=1

[yi(x,w)− ti]2 (4.2)

Some backpropagation training algorithms have been tested (steepest descent, conjugated gradient
and quasi-Newton algorithms). We achieved better identification performances with quasi-Newton
methods, since other algorithms often return bad or local minima of the error function. We used a
quasi-Newton algorithm with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) error minimization
formula [16][17].
Next subsection will describe the identification procedure we followed.

6



P
o
S
(
A
C
A
T
)
0
3
5

A neural network approach to cosmic ray mass identification S. Riggi

4.2 The identification method

The identification analysis proceeds as follows:

• Pattern selection: we divided the simulated shower set in three independent subsets (learn,
validation and test data set), the first used to train the network, the second to stop the train-
ing phase and check the net generalization capabilities and the last to evaluate the achieved
performances.

• Feature pre-processing: we normalized the features in the range [-1,1] to avoid large dynam-
ics among the network inputs;

• Training phase: we trained the network to return a value of 0 or 1 in presence of a proton or
iron event, respectively. The learning phase was stopped at a given epoch when the network
began to show a clear overtraining behavior, corresponding to a loss of generality in the
identification procedure, e.g. when the network error calculated over the test sample stopped
to fall down and began to increase.

• Evaluation of the results: we evaluated the performances of the method by means of the
identification efficiency ε and purity P for a given mass class i of primaries :

ε
(i) =

N(i)
right

N(i)
true

(4.3)

P(i) =
N(i)

right

N(i)
right + ∑

j 6=i
N( j)

wrong

(4.4)

where Ntrue, Nright and Nwrong represent the true number of events for the given mass class,
the number of correctly identified events and the number of misclassified events. Nright was
evaluated through a cut over the network output: events with an output smaller than 0.5 were
recognized as protons, otherwise as iron nuclei.

5. Results

In this section we report the results of the classification analysis, in terms of the achieved
identification efficiency and purity.

5.1 Results with pure simulated data

Figure 3 shows the outputs computed by the net in presence of the test set. The dashed blue
histogram corresponds to the true proton events, while the red one, located above 1, represents the
true iron events. As we can clearly see, the net is able to associate the proton and iron events to the
desired outputs with very little misclassifications.
The identification efficiency and purity, relative to the chosen cut at 0.5, are shown in Table 1 for
the proton and iron mass classes.
We tested our method also in presence of a five components primary flux (proton, helium, oxygen,
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Figure 3: Output computed by the net in presence of the test set. The dashed blue histogram (left) corre-
sponds to the true proton events, while the red histogram (right), located above 1, represents the true iron
events.

Table 1: Identification efficiency, eq. (4), and purity, eq. (5), for the training, validation and test samples.

LEARN VALIDATION TEST
ε(%) P(%) ε(%) P(%) ε(%) P(%)

p 98.96 99.65 98.77 99.60 98.81 99.51
Fe 99.57 98.72 99.51 98.49 99.40 98.54

silicon and iron nuclei) assigning a desired net output of 0, 1, 2, 3, 4 respectively, to the five classes.
Results are showed in Figure 4. By cutting at 0.5, 1.5, 2.5 and 3.5 we separated the five classes,
obtaining the classification matrix showed in Table 2.

Table 2: Classification matrix and identification purity for the training, validation and test samples.

LEARN
Classification PCi→C j (%) Purity

C j = p C j = He C j = O C j = Si C j = Fe
Ci = p 68.37 29.14 2.27 0.21 8.32·10−3 72.77
Ci = He 26.93 60.52 11.21 1.31 0.04 55.89
Ci = O 0.14 18.76 56.33 23.47 1.29 56.43
Ci = Si 0.06 0.90 24.59 64.00 10.45 60.57
Ci = Fe 0.00 0.04 0.37 20.74 78.84 85.95

The diagonal values are the identification efficiency of the four classes, while the non-diagonal
elements give information about the misclassification of a class with respect to the others. Results
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Figure 4: Output computed by the net in presence of the test set. The first (left) and the last (right) histograms
correspond to the true proton and iron events, while the three lower histograms correspond to the true helium,
oxygen and silicon events, respectively from left to right.

VALIDATION
Classification PCi→C j (%) Purity

C j = p C j = He C j = O C j = Si C j = Fe
Ci = p 69.05 28.49 2.28 0.18 8.38·10−3 73.24
Ci = He 26.48 60.81 11.70 0.93 0.07 56.13
Ci = O 0.22 19.21 55.52 23.86 1.19 55.29
Ci = Si 0.02 1.05 25.46 62.90 10.57 59.82
Ci = Fe 0.00 0.02 0.33 21.32 78.32 85.85

TEST
Classification PCi→C j (%) Purity

C j = p C j = He C j = O C j = Si C j = Fe
Ci = p 69.36 28.13 2.35 0.15 0.00 73.07
Ci = He 26.83 60.57 11.20 1.30 0.10 56.52
Ci = O 0.22 18.62 56.39 23.61 1.17 56.61
Ci = Si 9.32·10−3 1.00 24.28 64.36 10.36 60.25
Ci = Fe 0.00 0.05 0.31 21.63 78.01 85.97

show that the lightest and heavier components are better reconstructed, while a stronger contami-
nation is found in the intermediate components.
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5.2 Taking into account the FD response

Final step of the present analysis is the evaluation of the identification efficiency including the
response of the fluorescence detector alone. We decided to restrict the analysis to the proton and
iron components.
CONEX showers were simulated in the field of view of LosLeones detector at the Pierre Auger
Observatory, by randomly choosing the core positions, as showed in figure 5.
Simulation and reconstruction phase were performed using the official Offline framework at the

Figure 5: Core positions of the simulated events in the Auger map: red dots represent the event cores,
generated inside a semicircle of radius 20 km around LosLeones detector. The positions of the Cherenkov
tanks and the other three fluorescence detectors are also showed, even if these detector are not used in the
simulation and reconstruction step.

Auger Observatory.
Simulation phase involves the simulation of the shower at some distance from one of the eyes,
generation of the fluorescence and Cherenkov light emitted by the shower as it develops and prop-
agation of the emitted photons to the telescope aperture. Final step include the simulation of the
PMTs response and triggering, up to the second trigger level (SLT).
The reconstruction phase was carried out, beginning with calibration of the fluorescence telescopes,
a procedure which transforms simulated raw data into physical quantities. A standard value of 5
was used as conversion factor photons/ADC counts. Afterwards a pulse finding algorithm is used
to further process the traces recorded by the fluorescence telescopes. Next, a series of geometrical
reconstruction modules are employed. First the plane containing the shower axis and the eye which
detected it is determined. A geometrical fit within this plane is performed, taking into account the
timing of the shower image as it traverses the telescope pixels. A calculation of the light flux
reaching the telescope aperture is then carried out. The last step is the profile reconstruction, which
converts the fluorescence light profile recorded by the telescopes to a determination of the energy
deposit at a given atmospheric depth along the shower axis.
The events fed into the neural network were subjected to a series of quality cuts: the main cuts
applied require a good fit of the longitudinal profile with a reduced chi square less than 5.
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During the training phase we encountered an early loss of the network generalization capabilities:
we faced this problem by adding a regularization term to the mean square error function of the net
to avoid larger value weights, as showed below:

REGMSE = γMSE +(1− γ)
Nw

∑
i=1

w2
i (5.1)

with γ = 0.5 and Nw equal to the number of weights in the network.
In figure 6 we show the response of the network in presence of the reconstructed events.

Figure 6: Output computed by the net in presence of a test set, made up of reconstructed events. The dashed
blue histogram (left), located above 1, corresponds to the true proton events, while the red histogram (right)
represents the true iron events.

Table 3: Identification efficiency, eq. (4), and purity, eq. (5), for the train and test samples.

LEARN TEST
ε(%) P(%) ε(%) P(%)

p 81.60 80.52 80.70 80.72
Fe 74.14 75.47 74.70 74.68

Results obtained for the classification efficiency and purity are showed in Table 3: as we
expected, the performance drops below of around 20% with respect to the pure simulated events.
We point out that this results are to be regarded as a first estimate of the performance of the method,
since many factors have to be still taken into account, first of all the atmospheric conditions, in order
to report conclusive values for the classification matrix. As soon as the matrix elements are well
known, together with their uncertainties, they can be freezed, and it will be possible to deconvolute
the effects of the misclassification and get the reconstructed number of events of each mass in a
data sample.
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6. Conclusion and future perspectives

We proposed and tested the neural network approach to the mass identification problem of
high energy cosmic rays.
We studied mass discrimination in the case of CONEX simulated showers with a 2-components
(proton and iron nuclei) and 5-components (proton and helium, oxygen, silicon and iron nuclei)
mass flux, making use of parameters from the longitudinal profiles. In the first case we obtain
excellent performances, with very small misidentification probabilities, of the order of 2%.
In the second case we found misclassification probabilities of 30%, 40%, 44%, 36% and 22% for
the considered mass classes. The identification performances varied very little even if we tried to
slightly modify the network architecture, e.g. varying the number of hidden layers and the number
of neurons per layer.
We evaluated the performance of the method taking into account the response of the FD in the case
of proton and iron events: the obtained identification efficiency drops down at the level of 80% and
75% respectively.
A more accurate work is planned: the effects of different atmospheric conditions over mass identi-
fication should be taken into account, we would like to restrict the analysis to smaller energy bins
and release a final classification matrix for each bin.
Possible future developments could be the increase of the number of mass components and the
number of network inputs, by including also observables measured with the SD.
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