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1. Introduction

ATLAS is one of the particle detector experiments currently being constructed at the Large
Hadron Collider (LHC) at CERN in Switzerland. When completed, ATLAS will be 46 metres long
and 25 metres in diameter, and will weigh about 7,000 tonnes. ATLAS is designed as a general-
purpose detector and consists of the Inner Detector, the calorimeters, the muon spectrometer and
the magnet systems [1].

ATLAS has a three level trigger system [2] which reduces the initial 40 MHz rate to about 100
Hz of events to be recorded. The first level trigger (LVL1) is a hardware-based trigger which makes
a fast decision (with latency 2.5 µs) selecting events which are of interest for further processing.
The LVL1 trigger reduces the rate to below 75 kHz and identifies regions of the detector (“Regions
of Interest”, RoIs) which contain interesting signals (e.g. high-pT electrons). The LVL1 RoIs are
used and refined in the subsequent trigger levels to guide the trigger reconstruction. The High Level
Trigger (HLT) is software-based and consists of two levels. At Level 2 (LVL2) the full granularity
of the detector is used to confirm the LVL1 results and then to combine information from various
sub-detectors within the LVL1 RoIs. This stage of event selection employs fast reconstruction
algorithms and has a time budget of about 10 ms (25-30 ms on a 2.4 GHz CPU). The LVL2 output
rate is about 1-2 kHz. Finally at the Event Filter (EF), “offline-like” algorithms are used along with
better alignment and calibration information to produce a final decision about whether or not an
event is accepted. With an execution time of about 1 s, the rate is reduced to 100 Hz.

The experiment has a broad B-physics programme and plans to study CP violation (in B0
d →

J/ψK0
S and B0

s → J/ψφ channels), B0
s oscillations (using B0

s → Dsπ and B0
s → Dsa1 channels), and

to search for rare decays (e.g. B0
d,s → µ−µ+(X), B0

s → φγ). However, ATLAS is a general-purpose
experiment with an emphasis on high-pT physics and as such has only a limited bandwidth (about
5-10 %) for the B-physics events. Thus accommodating the B-physics programme requires a highly
selective trigger with exclusive or semi-inclusive reconstruction of decays already at the LVL2.

An essential part of the B-physics event selection is vertex finding and fitting using tracks re-
constructed by the LVL2 tracking algorithms as input. Due to the LVL2 timing constraints a vertex
fitting algorithm for the LVL2 application has to be fast. An additional requirement stems from
the LVL2 track reconstruction which provides input track parameter errors in form of a covariance
matrix. In contrast, vertex fitting algorithms proposed in the literature [3]–[5] assume uncertainties
of the input track parameters to be described by weight (inverse covariance) matrices. However, if
only track covariance matrices are available, these algorithms require them to be inverted before-
hand thus resulting in substantial computing time overhead.

To alleviate this drawback a fast vertex fitting algorithm capable of using track covariance
matrices directly (i.e. without time-consuming inversion) has been developed. The specific fea-
ture of the algorithm is that track momenta at perigee points rather than “at-vertex” momenta are
selected as the fit parameters. Such a choice of fit parameters makes it possible to apply a decor-
relating measurement transformation so that the transformed measurement can be partitioned into
two uncorrelated vectors – measured momenta and its linear combination with measured track co-
ordinates at the perigee. This linear combination comprises a new 2D measurement model while
the measured momenta and the corresponding blocks of the input track covariance matrices are
used to initialize a parameter vector and covariance matrix of the vertex fit. This approach provides
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a mathematically correct and numerically stable initialization of the vertex fit. The reduced size
(2D instead of 5D as in the algorithm [4]) of the measurement model makes the proposed Kalman
filter very fast and therefore suitable for an online application in the ATLAS Level 2 Trigger.

2. The vertex fitting problem

Let n reconstructed tracks {tk}, k = 1, . . . ,n originate from a common point – vertex V (Fig.1).
The problem is to estimate a vector X of fit parameters – vertex position R and track momentum
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Figure 1: Geometry of a vertex fit.

vectors Tk, k = 1, . . . ,n using measured track parameters mk = (mr
k,m

q
k)

T , k = 1, . . . ,n, where mr
k is

a measurement of a track position rk at some reference surface and mq
k is a measurement of track

momentum qk at the reference surface.
The dependence of the measured track parameters mk on the fit parameter vector X is given by

the measurement equation
mk = H (R,Tk)+ εk, (2.1)

where H(·, ·) is a 5D nonlinear measurement function and εk is the error of track parameter mea-
surement, assumed to be a Gaussian random vector with a 5×5 covariance matrix cov(εk) = Vk.

3. Measurement model reduction

Usually, track momenta at a vertex are used as the fit parameters T. Alternatively, track
momenta at a measurement surface qk can be chosen as the fit parameters such that Tk = qk,
k = 1, . . . ,n. Such a choice reduces the size of the non-linear part of the measurement equation
(2.1), which can be then partitioned as follows

mr
k = h(R,qk)+ ε r

k (3.1)
mq

k = qk + εq
k , (3.2)

where a 2D vector ε r
k and 3D vector εq

k are parts of the vector εk.
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Let the Kalman filter formalism be applied to the measurement model given by Eqs. (3.1),(3.2).
In principle, the measured track momentum mq

k can be used as a prior estimate q̂0
k of the momentum

qk with a covariance matrix given by the V qq
k block of the covariance matrix Vk . However, in the

standard Kalman filter, the error of a prior estimate and the measurement error are assumed to be
uncorrelated. Obviously, this does not hold for the measurement model (3.1),(3.2) as, in general,
εq

k and ε r
k are correlated and the corresponding covariance block V rq

k is non-zero. This difficulty
can be rectified by applying a linear decorrelating transformation.

We can replace Eqs. (3.1),(3.2) by an equivalent system

mr
k +Lkmq

k = h(R,qk)+Lkqk + ε r
k +Lkεq

k (3.3)
mq

k = qk + εq
k , (3.4)

where matrix Lk is such that the vectors ε q
k and ε r

k + Lkεq
k are uncorrelated. The matrix Lk can be

written in terms of the Vk blocks as

Lk = −V rq
k

(
V qq

k

)−1
.

The modified measurement model splits into two uncorrelated parts – Eq. (3.4), which defines a
prior estimate of the track momentum, and Eq. (3.3), which is, in fact, a new measurement equation
for the Kalman filter.

4. A fast vertex fitting algorithm

Using Eqs. (3.3),(3.4) we can derive equations of a Kalman filter step that adds a new, k+1-th
track to a vertex already fitted with k tracks. For a k-prong vertex, the fit parameter vector reads

Xk = (R,q1, . . . ,qk)
T (4.1)

Let X̂k be an estimate of Xk with covariance matrix Γk. Following the structure of the vector Xk,
this matrix can be partitioned into four blocks:

cov
(

X̂k

)
= Γk =

(
Ck ET

k

Ek Dk

)
,

where Ck is a 3×3 vertex covariance, Dk is a 3k×3k joint covariance matrix of the track momenta,
and Ek is a 3k×3 matrix of mutual "vertex-track" correlations.

If a k+1-th track is added to the vertex the vector Xk has to be augmented and its prior estimate
(prediction) is

X̃k+1 =
(

X̂k, q̂
0
k+1

)T
.

If a prior estimate q̂0
k+1 is defined by Eq. (3.4) the prediction, X̃k+1, and its covariance become

X̃k+1 =

(
X̂k

mq
k+1

)
, Γ̃k+1 =

(
Γk 0
0 V qq

k+1

)
. (4.2)
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The Kalman filter updates the prediction as follows:

X̂k+1 = X̃k+1 +Kk+1dk+1, (4.3)

where Kk+1 is the Kalman filter gain, dk+1 is a 2D residual between the actual measurement
mr

k+1 + Lk+1mq
k+1 and its prediction. In accordance with Eq. (3.3), the predicted measurement

is h(R̂k, q̂0
k+1) + Lk+1q̂0

k+1, where R̂ denotes an estimate of the vertex position given by the first
three components of the vector X̂. Note that, if q̂0

k+1 = mq
k+1 the Lk+1mq

k+1 terms enter both actual
and predicted measurements. They cancel out and the residual becomes

dk+1 = mr
k+1 −h

(
R̂k,m

q
k+1

)
. (4.4)

A 2×2 covariance matrix Sk+1 of the residual (4.4) is given by

Sk+1 = Ak+1CkAT
k+1 −Bk+1V

qr
k+1 −V rq

k+1BT
k+1 +Bk+1V

qq
k+1BT

k+1 +V rr
k+1, (4.5)

where Ak+1, Bk+1 are matrices obtained by linearizing the measurement function h(·, ·) in the vicin-
ity of the prediction X̃k+1:

Ak+1 =
∂h
∂R

∣∣∣∣
R̂k,m

q
k+1

Bk+1 =
∂h
∂q

∣∣∣∣
R̂k,m

q
k+1

. (4.6)

In turn, the Kalman filter gain is given by

Kk+1 = Mk+1S−1
k+1, (4.7)

where a (3k +6)×2 matrix Mk+1 denotes the following matrix expression

Mk+1 =




CkAT
k+1

EkAT
k+1

V qq
k+1BT

k+1 −V qr
k+1


 .

An updated covariance matrix of the estimate X̂k+1 is

Γk+1 = Γ̃k+1 −Kk+1MT
k+1. (4.8)

Finally, a χ2 contribution of the k +1-th track to the total χ 2 of the vertex fit is given by

∆χ2
k+1 = dT

k+1S−1
k+1dk+1. (4.9)

Since dk+1 is a 2D vector, the contribution ∆χ 2
k+1 has two degrees of freedom.

The system (4.2)-(4.9) completely describes a fast vertex fitting algorithm. This algorithm
is mathematically equivalent to the algorithm [4] and has a number of computational advantages.
Due to using the so-called “gain matrix” formalism [4], track covariance matrices Vk, k = 1, . . . ,n
are utilised directly and as soon as the last track is processed the estimate of the full fit parameters
vector X̂n and its covariance Γn are available immediately, i.e. no smoothing pass [4] is needed.
Another advantage of the algorithm is that the only matrices to invert are 2×2 symmetrical matri-
ces Sk, k = 1, . . . ,n. This feature is especially important since vertex fitting is an iterative procedure
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– after processing all tracks the linearizing (4.6) is repeated using the estimated vertex position
and the Kalman filter cycle (4.2)-(4.9) is repeated for each track. Typically, a few iterations are
required for convergence so that the overall computational cost of the vertex fit can be significantly
reduced by using the fast Kalman filter (4.2)-(4.9) in the iteration loop. It is also worth mentioning
that although the equations of the filter are derived using the decorrelating measurement transfor-
mation, in fact, explicit transformation of the measurements mk, k = 1, . . . ,n is not needed as their
components and blocks of the covariance matrices Vk, k = 1, . . . ,n are used directly in the filter
equations.

5. Algorithm validation

The algorithm has been validated on data produced using a full ATLAS Monte Carlo (MC)
simulation. The results described in this section have been obtained on Bs → J/ψ(µ+µ−) +

Φ(K+K−) dataset. Track reconstruction has been performed by the LVL2 tracking algorithms
[6],[7]. Muon and kaon tracks have been selected according to the MC truth information and com-
bined into J/ψ(µ+µ−) and Bs(µ+µ−K+K−) vertices. These vertices have been fitted using the
algorithm (4.2)-(4.9) and evaluated using the following performance criteria:

• normalized residuals (pulls) Px, Py, and Pz of estimated vertex coordinates. The pull (for
example, Px) is defined as follows

Px =
x̂n − xMC√

Cxx
n

,

where x̂n is an estimated x-coordinate of a vertex, xMC is a vertex coordinate from the MC
truth, Cxx

n is a corresponding element of a vertex covariance.

• χ2 probability defined as

pχ2 =
∫ +∞

χ2
fχ2 (z,nDOF ) dz,

where χ2 is the total χ2 of a vertex fit, nDOF is the number of degree-of-freedom of the χ 2,
fχ2(·, ·) is a p.d.f. of the χ2 distribution. If the χ2 values produced by the vertex fit obeys the
χ2 law the pχ2 will be uniformly distributed between 0 and 1.

• computing time needed to fit a vertex.

The normalized residuals and χ 2-probability distribution for the J/ψ(µ−µ+) vertices are
shown in Fig.2 and their parameters are summarized in Table.5.

Pull r.m.s. pχ2 distribution parameters
Px Py Pz mean r.m.s

1.09 1.09 1.09 0.49 0.29

Table 1: Parameters of the vertex pulls and χ2-probability distribution.
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Figure 2: Vertex pulls and χ2-probability.

The pull distributions in Fig.2 are nearly perfectly Gaussian with an r.m.s close to 1. This
indicates that covariance matrices produced by the vertex fit correctly reflect the actual estimation
errors of the vertex parameters. Also these results confirm that the decorrelating transformation
of the measurement model does not introduce any bias. The χ 2-probability distribution is flat and
its parameters are close to those of a uniform distribution between 0 and 1. There is a small (less
that 2 %) excess of vertices with a χ 2-probability below 0.01. Typically, these vertices contain
poorly reconstructed tracks, e.g. with pixel hit-outliers – hits located near the true trajectory and
erroneously included in track fit.

The computing time of the vertex fit has been measured on a Xeon 2.4 GHz processor as a
function of track multiplicity n. The number of iterations in the vertex fit has been fixed at 5. The
results for J/ψ(µ+µ−) (n = 2) and Bs(µ+µ−K+K−) (n = 4) vertices are shown in Fig. 3 and
summarised in Table.2.
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Figure 3: Computing time of the vertex fit.

As can be seen, the vertex fitting algorithm is very fast. Its computing time is negligible
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n 2 4
CPU time, ms 0.20 0.36

Table 2: Average computing time per vertex.

with respect to the available LVL2 time budget which is approximately 25-30 ms for a 2.4 GHz
processor.

6. Conclusion and outlook

A fast vertex fitting algorithm developed for the ATLAS Level 2 Trigger has been presented.
The algorithm features a Kalman filter with a reduced-size measurement model and decorrelating
measurement model transformation, which reduce the computational burden of the vertex fit.

The algorithm has been successfully validated on simulated B-physics data and shown to have
the required performance. The computing time measurements have shown that the algorithm is fast
enough to meet the Level 2 Trigger timing constraints.

Although the algorithm has been developed specifically for fitting secondary vertices of B-
mesons decays the algorithm application to fitting primary vertices with high track multiplicity
might also be very promising.
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