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1. Introduction

A group of particle physics experiments involves the search for new signal or measuring small
signal at the circumstance with significant background. A limit on, or a measurement of, a physical
quantity at a given confidence level is usually set by comparing a number of detected events with
the expected number of background events in the "signal" region where the signal events (if exist)
shall reside. How well this comparison can be made for the observed events and the expected back-
ground depends strongly on the systematic uncertainties existing in the measurement. Therefore,
systematic uncertainties must be taken into consideration in the limit or confidence belt calculation.

In the frame of frequentist statistics, confidence limits are set using a Neyman construction [1].
This method suffers from so-called undercoverage and "flip-flopping" policy when the observable
is close to the physics boundary, namely, the actual coverage is less than the requested coverage
(confidence level) and to report a central confidence interval or an upper limit is artificially decided
by the experimenter’s choice. In particular, in the case when no events have been observed, this
method gives no answer for the confidence interval.

Feldman and Cousins [2] proposed a new method to construct confidence interval based on
likelihood ratios, which automatically provides a central confidence interval or an upper confidence
limit, which is decided by the observed data itself. Therefore, it is often denoted as the "unified
approach".

However, this approach also has its drawbacks. If the observable is a Poisson variable, there
is a background dependence of the upper limit in the case of fewer events observed than expected
background. This can lead to situation where measurements with higher background give a smaller
upper limit, which is clearly undesirable. To overcome this shortcoming, Roe and Woodroofe [3]
proposed a solution to this problem by using such a fact that, given an observation n, the background
b can not be large than n in any case. Therefore, the usual Poisson pdf (probability density function)
should be replaced by a conditional pdf, and then this conditional pdf is used to construct the
confidence interval. This approach solves the background dependence of the upper limit, however,
does not satisfy all the requirements of proper coverage [4] and has problems when applied to the
case of a Gaussian distribution with boundaries [5]. An extension based on a Bayesian approach
with tests of coverage can be found in [6].

Along this line, a modification of the Neyman method incorporating systematic uncertainty of
the signal detection efficiency has been proposed by Highland and Cousins [7], in which a "semi-
Bayesian" approach is adopted, where an average over the probability of the detection efficiency
is performed. This method is of limited accuracy in the limit of high relative systematic uncertain-
ties. On the other hand, an entirely frequentist approach has been proposed for the uncertainty in
the background rate prediction [8]. This approach is based on a two-dimensional confidence belt
construction and likelihood ratio hypothesis testing and treats the uncertainty in the background as
a statistical uncertainty rather than as a systematic one. Recently, Conrad etal extend the method of
confidence belt construction proposed in [2] to include systematic uncertainties in both the signal
and background efficiencies as well as systematic uncertainty of background expectation predic-
tion [9]. It takes into account the systematic uncertainties by assuming a pdf which parameterizes
our knowledge on the uncertainties and integrating over this pdf. This method, combining classical
and Bayesian elements, is referred to as semi-Bayesian approach. A FORTRAN program, POLE,
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has been coded to calculate the confidence intervals for a maximum of observed events of 100 and
a maximum signal expectation of 50 [10].

In the frame of Bayes statistics, Narsky depicted the estimation of upper limits for Poisson
statistic with the known background expectation [11], [12]. Treatment of background uncertainty
is discussed with the flat prior for simplified cases of background expectation distributions in
Refs [13], [7].

In this paper, we use Bayesian approach to formulate the upper limit at given confidence
level for the Poisson observable incorporating systematic uncertainties in the signal efficiency and
background expectation. A FORTRAN program has been developed to calculate the corresponding
upper limit.

2. Bayesian approach to estimate upper limit

In Bayesian approach one has to assume a prior pdf of an unknown parameter and then perform
an experiment to update the prior distribution. The prior pdf reflects the experimenter’s subjective
degree of belief about unknown parameter before the measurement was carried out. The updated
prior, called posterior pdf, is used to draw inference on unknown parameter. This updating is done
with the use of Bayes theorem [14]. Assuming that n represents the number of observed events, s
is the number of signal events which is unknown and to be inferred, p(n|s) is the conditional pdf of
observing n events with given signal s, π(s) is the prior pdf, the Bayes theorem gives the posterior
pdf:

h(s|n) =
p(n|s)π(s)∫ ∞

0 p(n|s)π(s)ds
. (2.1)

Here the lower limit of the integral is zero, which is the possible minimum number of signal events.
Using this posterior pdf, one can calculate a Bayesian confidence interval for the signal expectation
at given confidence level CL = 1−α :

1−α =
∫ sU

sL

h(s|n)ds.

The upper limit of the number of signal events at given confidence level CL = 1− α , SUP, is
naturally given by:

1−α =
∫ SUP

0
h(s|n)ds. (2.2)

The nice feature of the Bayesian approach is that the zero value of an upper limit SUP always cor-
responds to the zero value of confidence level CL = 1−α , which is not necessarily true for the
classical approach. The most important issue is to determine a prior pdf of the parameter. This is
an issue which brings most of controversies into Bayesian methods. An important question is that
if one should use an in f ormative prior, i.e., a prior which incorporates results of previous experi-
ments, or a non− in f ormative prior, i.e., a prior which claims total ignorance. The major objection
against informative prior is based on such argument: if we assume a prior which incorporates re-
sults of previous experiments, then our measurement will not be independent, hence, we will not
be able to combine our results with previous results by taking a weighted average. Thus, we only
discuss the Bayesian inference that assumes a non-informative prior for the non-negative parameter
of a Poisson distribution.
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For the case that in the "signal region" where the signal events resides, the number of signal
events is a Poisson variable with unknown expectation s , and the number of background events is a
Poisson variable with expectation b , the conditional pdf of observing n total events can be written
as

p(n|s) = e−(s+b) (s+b)n

n!
. (2.3)

To deduce the posterior pdf, one has to assume a prior pdf. Bayes stated that, the non-informative
prior for any parameter must be flat [14]. This statement does not based on any strict mathematical
argument, but merely his intuition. The obvious weakness of Bayes prior pdf is that if one can
assume a flat distribution of an unknown parameter, then one can also assume a flat distribution
for any function of this parameter; however, these two prior functions are apparently not identical.
Jeffreys [15], [16], Jaynes [17], and Box etal [18] derived the non-informative prior from first
principle to resolve this problem, which are proportional to 1/θ and 1/

√
θ , respectively, where

θ is the unknown parameter. Comments on these three non-informative priors can be found in
Refs. [11], [12]. For the pdf shown in Eq. 2.3, the corresponding prior pdfs are proportional to
1/(s+b) and 1/

√
s+b. In general, we can use a prior pdf of

π(s) ∝
1

(s+b)m , s≥ 0, 0≤ m≤ 1, (2.4)

where m = 0 corresponds to Bayes prior, m = 0.5 to 1/
√

s+b prior, and m = 1 to 1/(s + b)
prior. One can choose m value as he/she thinks appropriate, however, it should always be kept in
mind that different m value will give different answer for the confidence interval and upper limit.
Expected coverage and length of confidence intervals constructed with these three priors and with
the Neyman construction [1] and unified approach [2] can be found in Ref. [12]. It has been shown
that the 1/

√
s+b prior is the most versatile choice among the Bayesian methods, it provides a

reasonable mean coverage for the confidence interval and upper limit for Poisson observable.
Substituting p(n|s) of Eq. 2.3 and π(s) of Eq. 2.4 into Eq. 2.1, the posterior pdf is then given

by

h(s|n) =
(s+b)n−me−(s+b)

Γ(n−m+1,b)
, (2.5)

where
Γ(x,b) =

∫ ∞

b
sx−1e−sds, x > 0,b > 0 (2.6)

is an incomplete gamma function.
In the case that the systematic uncertainties of the signal efficiency and background expectation

can be neglected, the signal expectation s is an unknown constant and the background expectation
b is a known value. Substituting this posterior pdf into Eq. 2.2, we obtain

α =
Γ(n−m+1,SUP +b)

Γ(n−m+1,b)
. (2.7)

If the flat prior (m=0) is used, Eq. 2.7 turns into

α = e−SUP · ∑n
k=0

(SUP+b)k

k!

∑n
k=0

bk

k!

. (2.8)
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The upper limit SUP at a given confidence level 1−α can be acquired by solving Eq. 2.7 or Eq. 2.8
numerically from measured values of n and b.

Now we turn to the question of inclusion of systematic uncertainties.
First we consider only the uncertainty of background expectation is present, and the distribu-

tion of the background expectation is represented by a pdf fb′(b,σb) with the mean b and standard
deviation σb. The conditional pdf expressed by Eq. 2.3 now is modified to

q(n|s)b =
∫ ∞

0
p(n|s)b′ · fb′(b,σb)db′, (2.9)

where p(n|s)b′ has the same expression in Eq. 2.3 with b replaced by b′.
Next we take into account the uncertainties of the signal efficiency and background expectation

simultaneously, and consider they are independent each other. The distribution of the signal relative
efficiency ε (with respect to the mean value of the signal detection efficiency) is described by a pdf
fε(1,σε) with the mean 1 and standard deviation σε . The conditional pdf described by Eq. 2.3 is
then further modified to

q(n|s)b =
∫ ∞

0

∫ ∞

0
p(n|sε)b′ fb′(b,σb) fε(1,σε)db′dε, (2.10)

where p(n|sε)b′ represents that b is replaced by b′, and s by sε in Eq. 2.3. One notices that the
lower limits of integrals in Eqs. 2.9, 2.10 are all zeros, which are the possible minimum value of
any efficiencies and number of background events. Using q(n|s)b in Eqs. 2.9, 2.10 to construct
posterior pdf

h(s|n) =
q(n|s)bπ(s)∫ ∞

0 q(n|s)bπ(s)ds
, (2.11)

one can calculate the upper limit SUP on s at any given confidence level with inclusion of systematic
uncertainties in terms of Eq. 2.2.

3. BPULE: An algorithm for calculating confidence upper limit

We have developed an algorithm to calculate the upper limit for the Poisson observable at
given confidence level with or without inclusion of systematic uncertainties in background expec-
tation and signal efficiency. It has been implemented as a FORTRAN program, BPULE (Bayesian
Poissonian Upper Limit Estimator) [19], where an iterative procedure is carried out by minimizing
the difference between the given confidence level and the calculated value in terms of Eq. 2.2 until
a convergence is reached. It contains two executable files: BPULE.exe for calculating a single
upper limit while BPULE_batch.exe for a batch of upper limits. When the code is implemented,
a flag is required to input, indicating what kind of upper limit (UL) is going to be calculated.
Four options are available: UL without inclusion of any systematic uncertainty, UL with inclusion
of merely systematic uncertainty of background expectation and merely systematic uncertainty of
signal efficiency, and UL with inclusion of systematic uncertainties of both signal efficiency and
background expectation, which are considered to be independent each other. There are also flags to
select the type of distribution for detection efficiency and/or background expectation. Three types
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of functions with the mean 1 and standard deviation σ are supported: Gaussian, Log-Gaussian and
flat distributions. For the Log-Gaussian distribution, the pdf is

1√
2πσxx

e
−(lnx−µ)2

2σ2x , x ∈ (0,∞),

where µ =−ln(1+σ2)/2, σx =
√

ln(1+σ2).

4. BPULE’s results and discussions

The upper limits for some typical cases have been calculated with BPULE. Inclusion of sys-
tematic uncertainties generally leads to a larger upper limit. We restrict to presenting the SUP vary-
ing with systematic uncertainty of signal and background efficiency separately to give a clear idea
of the effect of a single variable at a time. Real applications usually combine those uncertainties.

4.1 Comparison of results of BPULE and POLE

Examples for some resultant upper limits acquired by BPULE and POLE [9] are given in
Table 1 and 2. Different combinations of the number of measured events n and the expected back-
ground b are given for different uncertainties in signal efficiency and background expectation. The
results of BPULE are obtained under flat and 1/

√
s+b prior with Gaussian pdf for uncertainty dis-

tributions. There are differences between the results given by BPULE and POLE for same n and b,
this reflects that the confidence intervals and upper limits at a same nominal confidence level deter-
mined by the Bayesian approach and classical/semi-Bayesian approach virtually differ from each
other [12]. Even so, some common trends can be found: the inclusion of systematic uncertainties
leads to an increase of the confidence upper limit; when the uncertainty of background expectation
increases, the upper limit grows only gently, while it grows much faster with increased uncertainty
of signal efficiency.

4.2 Comparison of results of flat and 1/
√

s+b priors

The upper limits determined by 1/
√

s+b prior are smaller than those by flat prior as can
be seen from Table 1, 2 and 3, where SUP(0.9) (upper limit at 90% CL) for n = b = 0,1, · · ·,10
is presented without inclusion of systematic uncertainty. The reason is that, the denominator in
Eq. 2.1 just plays a role of a normalization factor, while the numerator determines the shape of the
posterior pdf h(s|n). In the flat prior case, p(n|s) at any s has same weight in h(s|n), whereas in the
1/
√

s+b or 1/(s + b) prior case, p(n|s) at larger s has smaller weight, which induces the h(s|n)
value moving towards to small s. As a result, for a same confidence level, the bigger the m value,
the smaller the SUP.

In case of fewer events observed than background expectation (n < b), the SUP(0.9) versus
b at n = 0 without inclusion of systematic uncertainties using 1/

√
s+b prior is listed in Table 4;

while the SUP(0.9) would be all equal to 2.30 for any b > 0 at n = 0 if we use flat prior.
Although the Bayesian flat prior has been widely used to determine the upper limit, however,

as stated in section 2, from the Bayesian statistics point of view, the 1/
√

s+b prior may be more
appropriate.
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Table 1: SUP(0.9) (Upper limit at 90% CL) incorporating systematic uncertainty in signal efficiency which
pdf is Gaussian with mean 1 and standard deviation σε . The results of POLE are quoted from Ref. [9].

n b σε POLE BPULE
Likelihood Likelihood ratio flat 1/

√
s+b

ratio with conditioning prior prior
2 2 0. 3.90 4.00 3.88 3.41

0.1 3.97 3.48
0.2 3.95 4.34 4.32 3.71
0.3 4.10 4.75 5.57 4.37
0.4 4.65 5.35 9.87 5.94

3 2 0. 5.40 5.30 4.93 4.38
0.1 5.05 4.47
0.2 5.70 5.65 5.52 4.79
0.3 5.95 6.20 7.19 5.65
0.4 6.80 7.10 13.3 7.69

4 2 0. 6.60 6.60 6.09 5.50
0.1 6.25 5.61
0.2 7.10 7.30 6.87 6.04
0.3 7.75 7.85 9.05 7.16
0.4 8.95 9.15 17.2 9.78

4.3 Comparison of results for three type pdfs for uncertainties

Fig.1 shows, for n = 10,b = 8, the SUP(0.9) as function of σ ′
b (=σb/b) and σε for three type

pdfs (Gaussian, Log-Gaussian, and flat) of uncertainties using flat and 1/
√

s+b prior, respectively.
The relations of SUP(0.9) versus σ ′

b for flat and Gaussian pdfs are similar, and the difference with
that of Log-Gaussian pdf is also small. The SUP(0.9) grows faster for Gaussian pdf than those
of flat and Log-Gaussian pdfs with increased σε , especially in larger σε ; in particular when the
flat prior is used the SUP(0.9) rises drastically. This picture is typical for flat prior and Gaussian
pdf in larger σε , which warns us that in this case, cautious consideration must be taken that if the
Gaussian pdf is a proper distribution for signal efficiency uncertainty.

4.4 Relation of SUP vs. b without systematic uncertainty

Fig.2 shows the SUP(0.9) as function of b at different values of n− b without inclusion of
systematic uncertainty, which are calculated with flat and 1/

√
s+b priors, respectively. It can be

seen that when enlarge the "signal region"( b will be increased, and n−b will be nearly constant if
the signal region is wide enough to contain the signal events), SUP(0.9) will increase slowly except
both n and b close to zeros. For example, for b = 10,20 and n−b = 8 , the corresponding SUP(0.9)
with flat prior are 14.8 and 16.2, respectively. This means that, enlarging the width of the signal
region will not significantly change the SUP(0.9).
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Table 2: SUP(0.9) incorporating systematic uncertainty in background expectation which pdf is Gaussian
with mean b and standard deviation σb = bσ ′b. The results of POLE are quoted from Ref. [9].

n b σ ′
b POLE BPULE

Likelihood Likelihood ratio flat 1/
√

s+b
ratio with conditioning prior prior

2 2 0. 3.90 4.00 3.88 3.41
0.1 3.89 3.43
0.2 3.95 4.10 3.93 3.46
0.3 3.95 4.25 4.00 3.53
0.4 3.95 4.35 4.07 3.60

3 2 0. 5.40 5.30 4.93 4.38
0.1 4.94 4.40
0.2 5.45 5.35 4.98 4.44
0.3 5.45 5.45 5.05 4.51
0.4 5.50 5.55 5.13 4.58

4 2 0. 6.60 6.60 6.09 5.50
0.1 6.10 5.51
0.2 6.95 6.65 6.14 5.55
0.3 6.95 6.80 6.20 5.60
0.4 6.95 6.80 6.27 5.67

Table 3: SUP(0.9) for n = b = 0,1, · · ·,10 without inclusion of systematic uncertainty.
n = b = 0 1 2 3 4 5 6 7 8 9 10

Flat
prior 2.30 3.27 3.88 4.36 4.78 5.15 5.49 5.80 6.09 6.37 6.63

1/
√

s+b
prior 1.35 2.76 3.41 3.92 4.36 4.74 5.09 5.41 5.70 5.98 6.25

Table 4: SUP(0.9) determined by 1/
√

s+b prior for n = 0 and b = 0,1, · · ·,10 without inclusion of system-
atic uncertainty.

b 0 1 2 3 4 5 6 7 8 9 10
SUP(0.9) 1.35 1.92 2.03 2.08 2.12 2.15 2.16 2.18 2.19 2.21 2.21

4.5 Relation of SUP vs. b incorporating systematic uncertainties

Fig.3 shows the SUP(0.9) calculated with flat prior as function of b at different values of n−b
incorporating systematic uncertainties of background expectation and signal efficiency, σ ′

b,σε . The
pdfs of systematic uncertainties of background expectation and signal efficiency are assumed to be
Gaussians. When the systematic uncertainty of signal efficiency is taken into account, the SUP(0.9)
is not significantly sensitive to the width of "signal region", similar to the case of without inclusion
of systematic uncertainty. However, this situation does not hold when the systematic uncertainty
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of background expectation is taken into consideration. The bigger the σ ′
b, the faster the SUP(0.9)

grows for increased b.

4.6 Relation of SUP vs. σ ′
b,σε incorporating systematic uncertainties

Fig.4 and 5 show the SUP(0.9) as functions of σ ′
b and σε at different b values with inclu-

sion of systematic uncertainties calculated with flat prior. The pdfs of systematic uncertainties of
background expectation and signal efficiency are assumed to be Gaussians. For small b value, the
SUP(0.9) is insensitive to the variation of σ ′

b , while for larger b the increase of the SUP(0.9) is
gradually drastic with increased σ ′

b . The relations of SUP(0.9) vs. σε at different b values are
similar: the SUP(0.9) rises gently at small σε , and rapidly for σε ≥ 0.3.

4.7 Relation of SUP vs.σ ′
b,σε incorporating systematic uncertainties in case of n < b

Fig.6 shows the SUP(0.9) as functions of σ ′
b and σε in case of fewer events observed than back-

ground expectation incorporating systematic uncertainties, calculated with both flat and 1/
√

s+b
priors. The pdfs of systematic uncertainties of background expectation and signal efficiency are
assumed to be Gaussians. The variation of SUP(0.9) with increased σ ′

b is smooth in both priors,
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while the SUP(0.9) rises gently at small σε , and rapidly for σε ≥ 0.3, in particular when the flat
prior is used.

5. Summary

We have formulated the upper limit calculation at any given confidence level in the frame
of Bayesian approach for the Poisson observable incorporating systematic uncertainties in both
the signal efficiency and background expectation prediction. A FORTRAN program, BPULE, has
been developed to implement the upper limit calculation. Generally, the inclusion of systematic
uncertainties leads to an increase of the confidence upper limit. The upper limits for some typical
cases have been calculated with BPULE and related discussions have been presented.
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