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Abstract 

The paper presents direct visualization techniques of multidimensional nuclear spectra as well as 
visualization techniques based on projections of embedded subspaces. While the first group of 
graphical models is limited to four dimensions, the second one can be theoretically extended to 
any dimension. The presented algorithms of visualization have been implemented in nuclear 
data acquisition, processing and visualization system developed at the Institute of Physics, 
Slovak Academy of Sciences. The focuses on presentation of nuclear spectra. However the 
majority of algorithms can be successfully applied for visualization of scalar arrays of other data 
types. 
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1. Introduction 

The power of computers to collect, store and manipulate experimental data has increased 
dramatically. In today’s nuclear physics experiments the number of detectors being included in 
the measurements is going up to one hundred or more. The results of such measurements, 
however, generate such large data sets as to be nearly incomprehensible. Scanning these large 
sets of numbers to determine trends and relationships is a tedious and ineffective process. To 
address this problem the physicists have turned to visualization of experimental data. If the data 
are converted to a visual form, the trends are often immediately apparent. Without visualization 
much of the increased power of computers would be wasted because experiments are poor at 
gaining insight from data presented in numerical form. 

The goal of visualization of experimental data is an improved understanding of the result 
of the information gathered during experiment. It is one of the most powerful and direct ways 
how the huge amount of information can be conveyed in a form comprehensible to a human 
eye. As a result, development of visualization algorithms takes on great significance, offering a 
promising technology for transforming an indigestible mass of numbers into a medium, which 
experimenters can understand, interpret and explore.  

The visualization techniques presented in this work make it possible to display either raw 
experimental spectra, processed data or to make slices of the same or lower dimensionality in an 
interactive way. They allow obtaining an imagination about event distribution and correlations 
in coincidence spectra up to five-dimensional space.  

The objective of the paper is to present visualization techniques and graphical models to 
display multidimensional nuclear spectra (histograms), which were implemented in the nuclear 
data acquisition, processing and visualization system [1, 2]. Though the software package is 
designed mainly for use with nuclear data, any kind of data can be processed as well. Other 
systems for nuclear spectra graphical representation were presented in [3, 4]. 

2. Direct visualization techniques of scalar fields 

A scalar variable is a single quantity, in the case of nuclear spectra - counts, which can be 
represented as a function of independent variables - particle energies. Most scalar visualization 
techniques use a consistent approach across one-, two-, or three-dimensional fields. More recent 
techniques, e.g. of the visualization of three-dimensional fields, attempt to show the full three-
dimensional variations of a scalar variable within a volume field. These techniques include 
isosurfaces, particle clouds, volume slicing and sampling planes [5-7].  

The sophisticated visualization algorithms are presented in [8]. The paper presents 
conventional as well as newly developed visualization techniques and graphical models. The 
structure and complexity of the algorithms lend themselves for implementation in on-line live 
mode during the data acquisition or processing. The pictures can be simultaneously updated.  

One can select various attributes of the display, e.g. color of the spectrum, the limits of the 
displayed part of the spectrum, window, marker, type of scale, and various display modes, 
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slices, to rotate two-, or more-dimensional data. In the above-mentioned paper, we have 
developed the direct visualization algorithms up to four-dimensional data. 

 

2.1 Two-dimensional spectra 

Two-parameter coincidence nuclear spectrum (histogram) is represented by a matrix of 
data with two independent variables (parameters) and one dependent variable, (counts), i.e., 

( , )c f x y= . To project the three-dimensional scene onto a two-dimensional screen the 
perspective transformation is employed. To display three-dimensional data on screen we have 
employed the following model 

,

, ,
xx xy x

yx yy yz y

x t i t j v

y t i t j t c v

= ◊ + ◊ +

= ◊ + ◊ + ◊ +
       (1) 

where , , , , , ,xx xy yx yy yz x yt t t t t v v are transform coefficients reflecting translation in both original 

two-dimensional scalar field (in x, y dimensions as well as in counts) and in the position on 
screen, scaling, rotation around z-axis and elevation of the view. The position of a point on the 
screen is ', 'x y and 

min yy y k j= + ◊  min xx x k i= + ◊ ; 0, ; 0,x yi n j nŒ< > Œ< >  

max min max min;x y
x y

x x y yk k
n n
- -

= =  

,x yn n are numbers of nodes of a regular grid. The model proposed in such a way allows: 

• to choose and display any part of the spectrum by setting min max min max, , ,x x y y to 

appropriate values 
• to set any range of displayed counts – min max,c c  

• to place the display of spectrum anywhere on the screen 
• to rotate and elevate the view of the spectrum 
• to change the density of display nodes. This is important when displaying accumulated 

spectra in on-line mode, i.e., during the acquisition of spectra. 
To illustrate the capabilities of the proposed visualization algorithms we introduce several 

examples. In Fig. 1 we present two-dimensional spectrum shown in contours display mode. The 
same spectrum shown in triangle display mode in log scale can be seen in Fig. 2. To identify 
interesting locations in spectra together with displayed spectrum one can display one-
dimensional slices and to move with them in both directions (see Fig. 3). 

Sophisticated surface display mode with shading according to heights of peaks is shown in 
Fig. 4. Shading according to the position of fictive light source is shown in Fig. 5. One can 
change the position of the light source thus giving the possibility to achieve special effects. 
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Fig. 1 Two-dimensional spectrum shown in contours display mode 

 
Furthermore, there exists possibility to combine both shading methods. In Fig. 6 we 

present the display mode with mixed surface shading (according to height and light position) 
with ratio 50:50. One can include also the display of shadows according to the light source (Fig. 
7). 
 

 
Fig. 2 Two-dimensional spectrum shown in triangle display mode (log scale) 
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Fig. 3 Two-dimensional spectrum shown in points display mode with raster and slices 

 
Fig. 4 An example of surface display mode with shading according to heights 
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Fig. 5 An example of surface display mode with shading according to fictive light 

source

 
Fig. 6 An example of surface display mode with combined shading algorithms (given 

in Fig. 4 and Fig. 5 ) 
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Fig. 7 Surface display mode (like in Fig. 5) with shadows 

 
All display parameters can be changed according to the needs of the experimenters. 

Informative way of the display is rectangular view with contour shading (positron annihilation 
spectrum) shown in Fig. 8. One can define Regions Of  Interests (ROIs) in the spectrum. Every 
ROI has its own display parameters independent of the main spectrum and other ROIs. In Fig. 9, 
one can see two ROIs in the two-dimensional γ-ray spectrum displayed in different display 
modes and color shadings. Similarly, one can display also the peaks in the spectrum found in 
the process of peak identification (Fig. 10). There are many other display combinations 
possible. Their presentation however, goes beyond the scope of this work. 
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Fig. 8 Rectangular view of positron annihilation spectrum with contour shading 

 
Fig. 9 Two-dimensional γ-X-ray spectrum  with two ROIs 
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Fig. 10 Two-dimensional γ-γ-coincidence spectrum with displayed peaks 

 

2.2 Three-dimensional spectra 

Analogously to the previous section three-parameter γ-ray coincidence nuclear spectrum is 
three-dimensional scalar field with three independent parameters  , ,x y z  (particle energies) and 

one dependent variable – counts ( , , )c f x y z= . As with two-parameter scalar fields one can 
idealize the display of three-parameter scalar field using discrete symbols at specific locations in 
space, or use techniques that show the variations in the three-parameter space. Hence each 
channel is defined by three parameters – coordinates , ,x y z  in original space, which determine 
the position of a channel. First let us consider a model where the channel is shown as a sphere 
(other marks as square, triangle, star etc. also can be used) with the size proportional to the 
event counts it contains. Then the position of the channel , ,x y z  on the screen is 

,

,

;

,
xx xy xz x

yx yy yz y

x t i t j t k v

y t i t j t k v

= ◊ + ◊ + ◊ +

= ◊ + ◊ + ◊ +
       (2) 

where , , , , , , , ,xx xy xz yx yy yz x y zt t t t t t v v v  are display transform coefficients reflecting translations in 

both original three-dimensional scalar field (in , ,x y z  dimensions as well as in counts) and in 
the position on screen, scaling, rotation around axes , ,x y z  and 

min min min; ; ,x y zx x k i y y k j z z k k= + ◊ = + ◊ = + ◊  

where  

max min max min max min; ; ;x y z
x y z

x x y y z zk k k
n n n
- - -

= = =  
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, ,x y zn n n  are numbers of nodes of regular grid. The model proposed in such a way allows: 

• to choose and display any part of  three-dimensional array - 

min max min max min max, , , , ,x x y y z z  

• to choose any range of displayed counts – min max,c c  

• to place the picture anywhere on the screen 
• to rotate the spectrum around the axes , ,x y z  

• to change the density of display nodes. 
The particle gradient display modes where the channels are shown as spheres with either 

diameter or color proportional to their contents are shown in Fig. 11 and Fig. 12, respectively.  
From the figures, one can localize interesting parts (peaks) in the spectrum. Sometimes 
however, to identify these parts, it is preferable to display only a slice in the spectrum, to move 
with it and interactively find appropriate channels. One- and two-dimensional slice in three-
dimensional spectrum is shown in Fig. 13 and 14, respectively. 

One can use even more sophisticated surface display mode. The defined surface separates 
the events with higher counts (statistics) from those with lower counts. Moreover, to achieve 
smooth surface one can interpolate the three-dimensional space using B-spline technique. In 
Fig. 15 and Fig. 16, we see the three-dimensional  γ-ray coincidence spectrum and positron 
annihilation spectrum, respectively. 

Finally, there exists a possibility to display three-dimensional spectrum in volume 
rendering mode. From the color contours on the sides of cube, one can get an imagination about 
positions of interesting peaks in three-dimensional space. An example of such a display mode is 
given in Fig. 17. Again, one can employ interpolation of the three-dimensional space using B-
splines of various degrees. 

 
Fig. 11 Three-dimensional γ γ γ- - -coincidence spectrum with channels shown as 

spheres with diameters proportional to counts 
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Fig. 12 Three-dimensional γ γ γ- - -coincidence spectrum with channels shown as 

spheres with colors proportional to counts 
 

 
Fig. 13 One-dimensional slice in three-dimensional spectrum 
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Fig. 14 Two-dimensional slice in three-dimensional spectrum 

 

 
Fig. 15 Three-dimensional γ γ γ- - -ray coincidence spectrum shown in smoothed 

surface display mode 
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Fig. 16 Three-dimensional positron annihilation spectrum shown in smoothed surface 

display mode 
 
 

 
Fig. 17 Three-dimensional γ γ γ- - -ray coincidence spectrum shown in volume 

rendering mode 
 



P
o
S
(
A
C
A
T
)
0
6
4

Interactive visualization Miroslav Morháč 

 
     14 

 
 

2.3 Four-dimensional spectra 

Now the counts is a function of four parameters (particle energies), i.e., ( , , , )c f x y z v=  . 
Let us imagine that instead of one channel belonging to one point of 3-D space in three-
parameter nuclear spectrum visualization now this point represents a slice in the fourth 
parameter, i.e., , , ( ) ( , , , ).i j k i j kc v f x y z v=  We depict each slice as a closed polygon with the 

center positioned in analogy with three-dimensional data at the location 
,

, ,

,
, , .

i j k xx xy xz x

i j k yx yy yz y

x t i t j t k v

y t i t j t k v

= ◊ + ◊ + ◊ +

= ◊ + ◊ + ◊ +
      (3) 

For the positions of the vertices of the polygon , ,i j k on screen we have 

, , min,, , min
, , , , max 0

max min max min

, , min,, , min
, , , , max 0

max min max min

( ) 2 ( )( ) cos ,
1

( ) 2 ( )( ) sin ,
1

i j k
i j k i j k

i j k
i j k i j k

c v c π v vx v x r φ
c c v v

c v c π v vy v y r φ
c c v v

- Ê ˆ-= - ◊ ◊ +Á ˜- - +Ë ¯

- Ê ˆ-= + ◊ ◊ +Á ˜- - +Ë ¯

  (4) 

where the fourth parameter min max max, ,v v v rŒ< >  (constant value) is maximum distance of a 

polygon vertex from its center, 0φ  is starting angle of the display of the first vertex of the 

polygon and min max,c c  determine the range of displayed counts.  The principle of 4D display is 

illustrated in Fig. 18. 

 

Fig. 18 Principle of 4D display 
 

In Fig. 19 we show four-dimensional display of the synthetic Gaussian with the center at 
8x y z v= = = = . Three parameters determine the position of the center of the slice. The 

channels of the slice are shown as bars (drawn in red color) starting in the center of the slice 
with lengths proportional to their contents. The channels are displayed starting from 9 o’clock 
position in clockwise direction. The example of a chunk (16x16x16x16 channels) of smoothed 
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experimental γ γ γ γ- - - -ray spectrum through the use of this display algorithm is shown in 
Fig. 20. 

 
Fig. 19 Display of four-dimensional synthetic Gaussian 

 
 
 
 

 
Fig. 20 Smoothed experimental four-parameter spectrum 
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Analogously to 2 and 3D data to find interesting parts of the spectra one can display slices 
of various dimensionality. In Fig. 21 we present 3D slices with fixed y  and z  variables, 
respectively. Changing the values of y  and z  one can move with the slices. Subsequently in 
Fig. 22 we give an example of three two-dimensional slices in four-dimensional spectrum with 
fixed xy , xz  and yz  variables. In Fig. 23 we illustrate similar situation when we fix the forth 
variable. We show the two-dimensional slice with fixed zv  variables. Finally in Fig. 24 we 
introduce the display of  three one-dimensional slices with fixed xyv , xzv  and yzv  variables, 
respectively. 

 
Fig. 21 Two three-dimensional slices in four-dimensional spectrum 
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Fig. 22 Three two-dimensional slices in four-dimensional spectrum with fixed xy, xz, 

yz variables 
 

 
Fig. 23 Two-dimensional slice in four-dimensional spectrum with fixed zv variables 
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Fig. 24 Three one-dimensional slices in four-dimensional spectrum with fixed xyv, 

xzv, yzv variables 
 

To illustrate the display of ridges in four-dimensional space we show the examples of 
synthetic spectrum before and after background elimination in Fig. 25 and Fig. 26, respectively. 

 
Fig. 25 Synthetic four-dimensional spectrum before background elimination 
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Fig. 26 Four-dimensional peaks after background elimination from the data from 

Fig. 25 
 

In Fig. 27, we present four-fold coincidence positron annihilation spectrum with 
interpolated channels. 

 
Fig. 27 Four-fold coincidence positron annihilation spectrum 

 
In pies display mode one can change the color (level of shading) while keeping the radius 

of circle constant. According to the resolution in the fourth independent variable the circle is 
divided to channels (pies) with colors proportional to the contents of channels. The size of the 
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circle is proportional to the sum of counts in the fourth dimension 
max

min

( , , , ).
v

i j k
v v

f x y z v
=
Â  An 

example of synthetic 4D spectrum in pies display mode is shown in Fig. 28. 

 
Fig. 28 Four-dimensional synthetic spectrum displayed in pies display mode 

 
Finally, in Fig. 29 we present four-dimensional spectrum in isosurface mode. Analogously 

to three-dimensional data, the surface separates the channels with higher counts from those with 
lower counts. In this case, however, the color of the surface is defined by the position of the first 
occurrence of the channel with the same or higher value than the defined boundary value. 

 
Fig. 29 Four-dimensional spectrum shown in isosurface display mode 
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3. Technique of successive projections of embedded subspaces  

The dimensionality of above-presented visualization techniques is limited to four. 
However, with increasing dimensionality of nuclear spectra the requirements in developing of 
multidimensional scalar visualization techniques becomes striking. In principle, the above-
mentioned algorithms can be used even for higher dimensions by employing technique of 
embedded subspaces. The goal is to propose a technique that allows one to localize and scan 
interesting parts (peaks) in multidimensional spectra. Moreover it should permit to find 
correlations in the data, mainly among neighboring points, and thus to discover prevailing 
trends around multidimensional peaks. 

The proposed technique makes benefit of specific character and features of nuclear 
spectra. It utilizes the fact that the interesting objects (peaks) have shape of quasi Gaussians. 
Further, in enormous multidimensional space the events are distributed very sparsely, which 
allows to preserve main features of data even after reducing the dimensionality by employing 
projection functional. Successive decreasing the dimensionality makes it possible to determine 
the positions of appropriate multidimensional peaks. 

Without loss of generality, we shall assume the reduction of the space up to two-
dimensional one. Other alternatives are also possible, but the display of two-dimensional array 
using perpendicular view allows utilizing screen area the most efficiently. Let us start with 
three-dimensional spectrum ( , , )f x y z . Let us apply a projection functional reducing 

dimensionality by one to two-dimensional array, e.g. (1) ( , ) [ ( , , )]f x y F f x y z= . In place of the 
functional one can use, e.g. sum of channels contents in a slice 

  
max

min

(1) ( , ) ( , , )
z

z z

f x y f x y z
=

= Â ,  

or maximum in a slice  
(1) ( , ) max{ ( , , )}f x y f x y z= , 

where min max,z z zŒ< >  or any other suitable operation. Let us display each channel ,i j  

in the form of a mark with size proportional to (1) ( , )f i j . Again, because of the most efficient 
way of utilizing the screen, in place of the mark we choose a rectangle. The rectangle represents 
a “window” into the subspace. Inside of the rectangle, we can display the slice ( , , )f i j z , 

min max,z z zŒ< > . From the distribution of rectangles, one can find out the positions of 

interesting peaks, then focus the view to an appropriate region or to zoom a slice to full screen 
size, respectively. 

Let us proceed to four-dimensional data 1 2 3 4( , , , )f x x x x . In place of the functional, we 

shall use the sums of channels in appropriate two-dimensional regions 

  
3 max 4 max

3 3min 4 4 min

(1)
1 2 1 2 3 4( , ) ( , , , )

x x

x x x x

f x x f x x x x
= =

= Â Â .     (5) 
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Then inside of each rectangle belonging to the channel 1 2,i i  we display two-dimensional 

slice 1 2 3 4( , , , )f i i x x  , using any of the two-dimensional above presented graphical models. 

In the case of five-dimensional spectrum, we can apply one-, or two-step reduction of 
dimensionality, i.e., either 

3 max 4 max 5 max

3 3min 4 4 min 5 5 min

(1)
1 2 1 2 3 4 5( , ) ( , , , , )

x x x

x x x x x x

f x x f x x x x x
= = =

= Â Â Â     (6) 

or 
5 max

5 5 min

(1)
1 2 3 4 1 2 3 4 5( , , , ) ( , , , , )

x

x x

f x x x x f x x x x x
=

= Â      (7) 

3 max 4 max

3 3min 4 4 min

(2) (1)
1 2 1 2 3 4( , ) ( , , , )

x x

x x x x

f x x f x x x x
= =

= Â Â .     (8) 

In the first case in each rectangle window belonging to the channel 1 2,i i  one can display 

three-dimensional slice 1 2 3 4 5( , , , , )f i i x x x  using any of the three-dimensional graphical models. 

In the second one, in each rectangle belonging to the channel 1 2,i i  one can display two-

dimensional distribution  of (1)
1 2 3 4( , , , )f i i x x  again in the form of rectangles. Then in each 

rectangle belonging to the channel 1 2 3 4, , ,i i i i  , one can display the one-dimensional slice 

1 2 3 4 5( , , , , )f i i i i x . Employing this algorithm and using successive zooming one can localize the 

positions of five-dimensional peaks. 
Though realizing the technical limitations, apparently the technique of embedded 

subspaces lends itself to generalization for p -  dimensional nuclear spectra employing several 
level merging and projections. Without loss of generality, we shall assume that p  is even. 
Analogously to the above-given relations one can write 

( 1) max max

1 ( 1) min min

(1)
1 2 2 1 2( , ,..., ) ( , ,..., )

p p

p p p p

x x

p p
x x x x

f x x x f x x x
-

- -

-
= =

= Â Â     (9) 

( 3) max ( 2) max

3 ( 3) min 2 ( 2) min

(2) (1)
1 2 4 1 2 2( , ,..., ) ( , ,..., )

p p

p p p p

x x

p p
x x x x

f x x x f x x x
- -

- - - -

- -
= =

= Â Â   (10) 

. 

. 
( 1) max ( ) max

1 ( 1) min ( ) min

( ) ( 1)
1 2 2 1 2 2 2( , ,..., ) ( , ,..., )

p j p j

p j p j p j p j

x x
j j

p j p j
x x x x

f x x x f x x x
- - -

- - - - - -

-
- - -

= =

= Â Â   (11) 

. 

. 
3 max 4 max

3 3min 4 4 min

( / 2 1) ( / 2 2)
1 2 1 2 3 4( , ) ( , , , )

x x
p p

x x x x

f x x f x x x x- -

= =

= Â Â ,    (12) 
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where j  is the level of merging. Apparently, if p  is odd 0 -level subspaces are one-
dimensional.. 

Obviously, from theoretical point of view this algorithm has no limitation. However, due 
to technical limitations of today’s computers (sizes of memories, resolution of displays) the 
practical meaning of these formulas for higher values of p  is rather restricted. Finally, we 
would like to emphasize that the given algorithm of  embedded subspaces presents one of the 
possible approaches to cope with the problem of visualization of multidimensional nuclear 
spectra. In principle one can change dimensionality of subspaces at every level of merging, 
rotate subspaces, define other projection functional etc. 

3.1 Three-dimensional spectra 

Using the technique of embedded subspaces we can divide three-dimensional space to 
outer two-dimensional subspace and inner one-dimensional subspaces (slices in the third 
variable). An example of the projection of synthetic three-dimensional Gaussian and two ridges 
to two-dimensional outer subspace is given in Fig.  30. 

 
Fig. 30 Projection of three-dimensional synthetic spectrum to two-dimensional outer 

subspace 
The sizes of small rectangles are proportional to the contents inside of the slice in the 
appropriate channel of outer space. The display inside of rectangles is senseless because of poor 
resolution. Let us imagine that we are interested in the peak region denoted in Fig. 30 as 
“Region of interest”. Let us focus the display to the ROI and enable the display inside rectangles 
(Fig. 31). 
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Fig. 31 Displayed one-dimensional inner subspaces of the ROI 

 
One can see simultaneously the distribution of the two-dimensional projection (yellow squares) 
together with one-dimensional slices. One can observe correlations among neighboring points 
inside of rectangles as well as correlation of corresponding points in the rectangles in both x and 
y directions. 

Let us illustrate an example of experimental three-dimensional spectrum. Again, outer 
subspace and zoomed ROI are given in Fig. 32 and Fig. 33, respectively. 

 
Fig. 32 Experimental three-dimensional spectrum - outer subspace 
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Fig. 33 Zoomed ROI of the data from Fig. 32 

 
If the experimenter is not interested in the distribution in outer subspace and wishes to see 
details in the rectangles the size can be set equal (Fig. 34). Then one can observe better the 
correlations among corresponding channels. 

 
Fig. 34 Zoomed ROI of the data from Fig. 32 with equal sizes of rectangles 

 
Analogously with the direct visualization technique now we can also display one- and two-

dimensional slices and thus to determine correlations among neighboring channels in different 
directions. In Fig. 35 we present spectrum in point display mode with equal sizes of rectangles 
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together with one-dimensional slices for fixed xy  (blue bars), xz  (green bars) and yz  (red 
bars) variables, respectively. In Fig. 36 we present two dimensional slices for fixed x  (blue 
bars), y  (green bars) and z  (red bars) variables, respectively. 

 

Fig. 35 One-dimensional slices for fixed  xy,  xz and  yz variables 

 

Fig. 36 Two-dimensional slices for fixed  x  y and  z variables 
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3.2 Four-dimensional spectra 

Now the dimensionality of both outer and inner subspaces will be two. An example of a 
view focused on four-dimensional synthetic Gaussian is illustrated in Fig. 37. 

 
Fig. 37 Four-dimensional synthetic Gaussian (shown both, outer and inner 

subspaces) 
One can watch correlations in four dimensions, i.e., in two-dimensional subspace in each 
rectangle and among corresponding points in neighboring rectangles in both directions in outer 
subspace. 

Let us proceed to experimental four-dimensional spectrum. In Fig. 38, one can see a 
projection of the four-dimensional rather noisy spectrum to outer subspace and in Fig. 39 
zoomed ROI of it. 
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Fig. 38 Projection (outer subspace) of four-dimensional experimental γ γ γ γ- - - -

ray coincidence spectrum 
From this view, one can observe basic tendencies in the spectrum. 

 
Fig. 39 Zoomed ROI of the data from Fig. 38 

 
If desired, to see better the details, one can expand rectangles to equal size (Fig. 40). 
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Fig. 40 Zoomed ROI of the data from Fig. 37 with equal sizes of rectangles 

 
Also for four-dimensional spectra displayed using the technique of embedded subspaces 

one can show one-, two- and three-dimensional slices. In Fig. 41 one can see four-dimensional 
spectrum shown in points display mode with equal sizes of rectangles together with four one-
dimensional slices for fixed xyz , xyv , xzv  and yzv  variables, respectively. One can observe 
the correlations among neighboring channels in four directions. 

 

Fig. 41 Four-dimensional spectrum shown in points display mode together with four 
one-dimensional slices for fixed  xyz ,  xyv, xzv  and  yzv variables 
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3.3 Five-dimensional spectra 

Five-dimensional space can be divided in two ways, i.e., either two-, plus three-
dimensional subspaces or two-, plus two-, plus one-dimensional subspaces. Let us start with the 
first case. In Fig. 42 one can see outer subspace of five-fold  -ray spectrum. 

 
Fig. 42 Outer subspace of five-fold γ - ray spectrum 

One can observe high level of background due to relatively low statistics in the spectrum. Let us 
assume we are interested in the outlined ROI. Zoomed ROI with enabled display of inner three-
dimensional subspaces is illustrated in Fig. 43. 

 
Fig. 43 Zoomed ROI of the data from Fig. 42 with displayed three-dimensional inner 

subspaces 
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From the presented chunk of the five-dimensional space, mainly from the shown inner three-
dimensional subspaces it is difficult to discover tendencies in the spectrum. It can be improved, 
to some extent, by smoothing the data using B-splines and employing isosurface display 
technique shown in Fig. 44. 

 
Fig. 44 Zoomed ROI of the data from Fig. 42  with inner subspaces displayed in 

isosurface display mode with B-spline smoothing 
The alternative way is to proceed in the projections and to divide inner three-dimensional 

subspaces to two- plus one-dimensional ones. In Fig. 45 we show outer and the first level inner 
subspaces (display of the second level inner subspaces was disabled). 

 
Fig. 45 Zoomed ROI with shown outer and the first level inner subspaces 
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While yellow rectangles represent outer subspace, the light blue ones represent the first level 
inner subspaces. If we enable the display of the second level subspaces, we can see all three 
levels simultaneously (Fig. 46). 

 
Fig. 46 Zoomed ROI with shown outer, the first level and the second level inner 

subspaces 
 
One may focus attention to the channel 10x = ,  10y = , where the volume of data is the 
biggest (yellow rectangle here is the largest, Fig. 47). 

 
Fig. 47 One channel of the outer subspace zoomed 
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Now one can see in detail the slices in the second level inner subspaces. Employing this 
technique one can scan multidimensional nuclear spectra. Moving from the outer subspace to 
inner ones and back gives possibility to discover interesting parts in such a spectrum.  

Let us denote the fifth independent variable as w . Analogously to three- and four-
dimensional data in Fig. 48 we show five-dimensional spectrum shown in points display mode 
with equal sizes of rectangles together with five one-dimensional slices for fixed xyzv , xyzw , 
xyvw , xzvw  and yzvw  variables, respectively. One can observe the correlations among 
neighboring channels in five directions. 

 

Fig. 48 Five-dimensional spectrum shown in points display mode together with five 
one-dimensional slices for fixed  xyzv,  xyzw, xyvw, xzvw  and  yzvw variables 

 

4. Conclusions  

In the paper we have presented conventional as well as new developed visualization 
algorithms of nuclear spectra. For 3D spectra we have proposed particle gradient display 
technique and isosurface display technique. Raw data can be interpolated using B-spline 
algorithms up to 4-th degree. For 4D spectra we have designed the algorithms based on slicing 
in fourth dimension, pies display mode as well as isovolume display mode. 

Furthermore, we have derived new technique of visualization of multidimensional spectra 
based on projections of embedded subspaces. This allows one, in interactive way, to localize 
interesting parts in the data of this kind, to find correlations among neighboring points and to 
discover trends in multidimensional data. 
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The visualization algorithms presented have been implemented in the data acquisition, 
processing and visualization system DaqProVis which is being developed at Institute of Physics, 
Slovak Academy of Sciences [9]. The algorithms for the display of 2D spectra have also been 
implemented in ROOT system in TSpectrum2Painter class (SPECTRUMPAINTER directory) 
[10]. 
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