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We calculate the O
�
α2

s � gluonic massive operator matrix elements for unpolarized and polarized

heavy flavor production, at asymptotic values Q2 � m2. This calculation is done in Mellin space

and without applying the integration-by-parts method, which was used in a former x-space cal-

culation in Ref. [1], the results of which we confirm. However, our results present themselves in

a more compact way, needing a basis of only 2 compared to 48 basic functions in the unpolari-

zed case, and 24 in the polarized case. The results are obtained in two ways, by hypergeometric

functions and by the use of Mellin-Barnes integrals, on which we put the emphasis in this paper.
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1. Introduction

The contributions of the heavy–flavor corrections to the unpolarized deep–inelastic structure
functions in the range of small values of Bjorken-x are on the level of 20–40%. Hence, the knowled-
ge of these contributions to high accuracy is of importance for precision measurements of ΛQCD [2]
and the parton distributions. For the general kinematic range, the next-to-leading order corrections
were given semi-analytically in [3], with a fast implementation of these corrections in Mellin–space
given in [4].
In the region Q2 � m2, Q2 denoting the virtuality of the gauge boson exchanged in deep–inelastic
scattering, and m the mass of the heavy quark under consideration, the heavy flavor Wilson coeffi-
cients were derived analytically to O � α 2

s � in [1, 5]. These calculations were done in x-space using
the integration-by-parts method, making the integrals obtained more easy to solve, however, lea-
ding to a proliferation of a huge set of terms. Here, we summarize the results of a first re-calculation
of the unpolarized and polarized O � α 2

s � gluonic massive operator matrix elements (OMEs) carried
out in [6,7]. The unpolarized and polarized massive operator matrix elements can be used to calcu-
late the asymptotic heavy-flavor Wilson coefficients for F2 � x � Q2 � and g1 � x � Q2 � to O � α2

s � [1, 5–7],
and for FL � x � Q2 � to O � α3

s � [8]. In contrast to the work in [1, 5], our calculation is performed in
Mellin space using harmonic sums [9, 10], without applying the integration-by-parts technique. In
this way, we can significantly compactify both, the intermediary and final results, which are found
to be in agreement with the results obtained in [1,5]. The calculation was done using two methods:
On the one hand we used generalized hypergeometric functions to express and expand the integrals
in ε � D � 4, on the other hand we used the Mellin–Barnes technique (see e.g. [11, 12]).
In this paper, we particularly emphasize the use of Mellin–Barnes integrals and the fact that the
calculation was done in Mellin space. The method of Mellin–Barnes integrals was in our calculati-
ons mainly used to obtain numeric results rather than analytic results. However, the appearance of
Mellin–Barnes integrals in many calculations throughout the last years [13] and the fact that they
provide a numeric check on our results, motivates having a closer look at this method.

2. Mellin space and Mellin–Barnes integrals

The Mellin–transform M � f � s � of a function f is given by the integral (cf. e.g. [14], and Refe-
rences therein):

F � s � � M � f � s ���
	 ∞

0
xs � 1 f � x � dx � a � Re � s � � b �

under the condition that f � x � falls down rapidly enough at the boundaries. The mathematical inverse
of this function is given by the following integral, which is also called a Mellin–Barnes integral:

f � x � � 1
2πi

	 c  i∞

c � i∞
x � s F � s � ds � a � c � b �

An important example of a Mellin–transform and its inverse, which we will make use of in the
following, is given by the Euler–Beta function (cf. [14]):

M � f � s ��� Γ � s � Γ � t �
Γ � s � t � � 	

∞

0

xs � 1

� 1 � x � s  t dx � � Re � s � t ��� 0 � �
2
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From this we deduce that

f � x � � 1� 1 � x � ν � 1
2πi

	 c  i∞

c � i∞
x � s Γ � s � Γ � ν � s �

Γ � ν � ds � 0 � c � Re � ν � �
The integration contour is placed at a value c, such that it separates the poles of the Γ-function Γ � s �
from those of the function Γ � ν � s � . A generalization of this formula is used in the calculation of
the two–loop massive OMEs in the next section.
In our context, we encounter the Mellin transformation in deep–inelastic scattering, where the
integral is given over the Bjorken variable, x � Q2 � 2pq, which runs between 0 � x � 1. Hence, the
Mellin–transform is given by the corresponding integral:

F � N � � M � f � N � � 	 1

0
xN � 1 f � x � dx �

The convolution of two functions f and g is defined as:

� f � g � � x � �
	 1

0
dx1 	 1

0
dx2 δ � x � x1x2 � f � x1 � g � x2 � �

One of the advantages of Mellin–space calculations is the fact that the Mellin–transform of a con-
volution of functions (see below) reduces to a simple product:

M � f � g � N � � M � f � N � M � g � N � � F � N � G � N � �
The Mellin–parameter N appears in our results in form of harmonic sums of limit N. The general
form of a harmonic sum is given by [9, 10]:

Sa1 � � � � � am � N � � N

∑
n1 � 1

n1

∑
n2 � 1

� � � nm � 1

∑
nm � 1

� sign � a1 � � n1

n � a1 �1

� sign � a2 � � n2

n � a2 �2

� � � � sign � am � � nm

n � am �m

�
N �
	 ���� � a ��������� 0 � �

3. The Method

In the limit Q2 � m2, one finds on the one hand the heavy flavor structure functions to be a con-
volution of the perturbatively calculable heavy flavor Wilson coefficients and the non–perturbative
parton distribution functions. On the other hand, the heavy quark contributions to the twist-2 Wil-
son coefficients are determined by universal massive operator matrix elements � i �A l � j � between
partonic states. The process dependence enters through the corresponding massless Wilson co-
efficients [15]. This separation is obtained applying the renormalization group equation(s) to the
(differential) scattering cross sections, cf. [1]. In this way all logarithmic and the constant con-
tribution in m2 � Q2 can be determined. The operator matrix elements are calculated applying the
operator insertions due to the light-cone expansion in the respective amplitudes. One obtains the
following convolution for the heavy flavor Wilson coefficients:

HS �NS�
2 � L � � i � Q2

µ2 � m2

µ2 � � AS �NS
k � i �

m2

µ2 ��  "! #
massive OMEs

� CS �NS�
2 � L � � k � Q2

µ2 � ��  "! #
light Wilson coefficients

3
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Both convolutions cited above reduce to a pure product in Mellin space, as explained in the pre-
vious section. The OMEs contain ultraviolet and collinear divergences. The collinear singularities
are absorbed into the parton distribution functions while the ultraviolet divergences are removed
through renormalization. The O � α 2

s � coefficient of the perturbative expansion of the gluonic OME
reads :

A
�
2 �

Qg � 1
8 ���P � 0 �qg ��� P � 0 �qq � P

�
0 �

gg � 2β0 ��� ln2

�
m2

µ2 � � 1
2 �P � 1 �qg ln

�
m2

µ2 �
� a
�
1 �

Qg � � P � 0 �qq � P
�
0 �

gg � 2β0 � � a
�
2 �

Qg �
and similar for the quarkonic contributions. Here, µ 2 denotes the factorization and renormalization
scale, which are set to be equal, P

�
k � 1 �

i j are the kth–loop splitting functions and β0 denotes the

lowest expansion coefficient of the β–function. a
�
k �

i j and ā
�
k �

i j are the O � ε0 � , O � ε � -terms resp., in the
expansion of the OME, which form the main objective of the present calculation.

4. Calculation

Our calculation was done in two ways: On the one hand, after momentum integration, we ex-
pressed the Feynman–parameter integrals as hypergeometric functions and generalizations thereof,
expanding these functions in ε and solving for each desired order in ε the corresponding sums.
The results were further simplified using algebraic relations between harmonic sums [16]. On the
other hand, we used Mellin–Barnes integrals as explained in [12a] for scalar integrals. Consider, for
example, diagram I of [12a] and its corresponding integral after Wick rotation to Euclidean space:

Ie : � 	 	 dDqdDk� 2π � 2D

� ∆ � q � N� q2 � m2 � � � q � p � 2 � m2 � � k2 � m2 � � � k � p � 2 � m2 � � � k � q � 2 �
The idea is following the gluing operation of graphs, as explained in [12a]. The result of the two–
point function with the three–point sub-diagram shrunk to a point is, using that ∆ is a light-like
vector with ∆2 � 0, easily evaluated to a simple fraction of Γ–functions:

	 dDq

iπ D
2

� m2 � ν14 � D 	 2 � ∆ � q � N� q2 � m2 � ν1 � � q � p � 2 � m2 � ν4
� � ∆ � p � N Γ � ν14 � D � 2 � Γ � ν4 � N �

Γ � ν4 � Γ � ν14 � N � � (4.1)

In a second step, one seeks for a way to rewrite and solve the integral for the three–point one–loop
sub-diagram such that it can be combined with the two–point result. More precisely, one tries to
express the following integral of the sub-diagram into the momentum invariants of (4.1):

	 dDk

iπ D
2

�m2 � ν235 � D 	 2
� k2 � m2 � ν2 � � k � p � 2 � m2 � ν3 � � k � q � 2 � ν5

!� c � Γ �� 2πi � 2 	
γ1  i∞

γ1 � i∞
dσ 	 γ2  i∞

γ2 � i∞
dτ 
 � q � p � 2 � m2

m2 � σ 
 q2 � m2

m2 � τ

Γ � ε � νi � σ � τ � �

4
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where Γ � ε � νi � σ � τ � is any fraction of Γ–functions occurring. This is achieved by first introducing
Feynman parameters and in such expressing the product of propagators into a sum of terms:

1

Aν1
1 Aν2

2 � � � Aνn
n
� 	 1

0
dx1 � � � dxn δ � ∑xi � 1 � Πxνi � 1

i� x1A1 � x2A2 � � � � � xnAn � ∑νi

Γ � ν1 � � � � � νn �
Γ � ν1 � � � � Γ � νn � �

After doing the momentum integration as usual, one groups the expression in such a way that
the Ai are in the form of the momenta of the integral in (4.1). To this sum one then applies the
Mellin–Barnes transformation, in this transforming the sum back into a product:

1� A1 � A2 � � � � � An � ν � 1� 2πi � n � 1Γ � ν � 	
γ  i∞

γ � i∞
dσ1 � � � 	 γ  i∞

γ � i∞
dσn � 1

� Aσ1
1 Aσ2

2 � � � A � σ1 � � � � σn � 1 � ν
n Γ � � σ1 � � � � Γ � � σn � 1 � Γ � σ1 � � � � � σn � 1 � ν � �

In this sense, one can consider the Mellin–Barnes integral as the inverse of Feynman parametriza-
tion (cf. [17]).

With the Mellin–Barnes integrals obtained in this way, we then used the mathematica package
MB [18], written by M. Czakon, to derive numeric results. In order to obtain analytic results,
one can close the contour of the Mellin–Barnes integrals at infinity and use the residue theorem
to express the integrals as sums over Γ–functions (cf. [11, 12]). However, for the general scalar
integrals it turned out to be very difficult to solve the sums obtained by the method of residues, and
therefore only a subset of all diagrams was calculated analytically in this way. Additionally, one
does not only have genuine scalar two–loop integrals, but due to the numerator structure, one also
encounters integrals where one or more of the propagators cancel (so–called reduced integrals),
or appear in the numerator of the integral. Especially the reduced integrals were not always easily
expressible as a Mellin–Barnes integral in our kinematics, however, could rather be solved by
simply rewriting the corresponding Feynman parameter integral into Beta–functions.

5. Results

We calculated the gluonic massive operator matrix elements both, for the gluon–heavy quark
and light–heavy quark transitions in the flavor non-singlet and singlet cases, for unpolarized and
polarized nucleon targets. The constant contribution to the unpolarized and polarized OMEs for the
transition g � Q are (cf. [6, 7]):

5
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a � 2 � unpol �
Qg

�
N ��� 4CF TR

�
N2 � N � 2

N
�
N � 1 � � N � 2 �
	�� 1

3
S3

1
�
N � 1 � � 4

3
S3
�
N � 1 � � S1

�
N � 1 � S2

�
N � 1 �

� 2ζ2S1
�
N � 1 �� � N4 � 16N3 � 15N2 � 8N � 4

N2
�
N � 1 � 2 � N � 2 � S2

�
N � 1 � � 3N4 � 2N3 � 3N2 � 4N � 4

2N2
�
N � 1 � 2 � N � 2 � ζ2

� 2
N
�
N � 1 � S2

1
�
N � 1 � � N4 � N3 � 16N2 � 2N � 4

N2
�
N � 1 � 2 � N � 2 � S1

�
N � 1 � � P1

�
N �

2N4
�
N � 1 � 4 � N � 2 ���� 4CATR

�
N2 � N � 2

N
�
N � 1 � � N � 2 � 	 4M � Li2

�
x �

1 � x � � N � 1 � � 1
3

S3
1
�
N � � 3S2

�
N � S1

�
N �

� 8
3

S3
�
N � � β � � � N � 1 � � 4β � � N � 1 � S1

�
N � � 4β

�
N � 1 � ζ2

� ζ3  � N3 � 8N2 � 11N � 2
N
�
N � 1 � 2 � N � 2 � 2 S2

1
�
N �

� 2
N4 � 2N3 � 5N2 � 2N � 2�
N � 1 � N2

�
N � 1 � 2 � N � 2 � ζ2 � 7N5 � 21N4 � 13N3 � 21N2 � 18N � 16�

N � 1 � N2
�
N � 1 � 2 � N � 2 � 2 S2

�
N �

� N6 � 8N5 � 23N4 � 54N3 � 94N2 � 72N � 8
N
�
N � 1 � 3 � N � 2 � 3 S1

�
N � � 4

N2 � N � 4�
N � 1 � 2 � N � 2 � 2 β � � N � 1 �

� P2
�
N ��

N � 1 � N4
�
N � 1 � 4 � N � 2 � 4 ���

a � 2 � pol �
Qg

�
N ��� CF TR

�
4

N � 1
3N

�
N � 1 ����� 4S3

�
N � � S3

1
�
N � � 3S1

�
N � S2

�
N � � 6S1

�
N � ζ2 �

� 4
N4 � 17N3 � 43N2 � 33N � 2

N2
�
N � 1 � 2 � N � 2 � S2

�
N � � 4

3N2 � 3N � 2
N2

�
N � 1 � � N � 2 � S2

1
�
N �

� 2

�
N � 1 � � 3N2 � 3N � 2 �

N2
�
N � 1 � 2 ζ2 � 4

N3 � 2N2 � 22N � 36
N2

�
N � 1 � � N � 2 � S1

�
N � � 2P3

�
N �

N4
�
N � 1 � 4 � N � 2 ���� CATR

�
4

N � 1
3N

�
N � 1 � � 12M � Li2

�
x �

1 � x � � N � 1 � � 3β � � � N � 1 � � 8S3
�
N � � S3

1
�
N �

� 9S1
�
N � S2

�
N � � 12S1

�
N � β � � N � 1 � � 12β

�
N � 1 � ζ2 � 3ζ3 � � 16

N � 1
N
�
N � 1 � 2 β � � N � 1 �� 4

N2 � 4N � 5
N
�
N � 1 � 2 � N � 2 � S2

1
�
N � � 4

7N3 � 24N2 � 15N � 16
N2

�
N � 1 � 2 � N � 2 � S2

�
N � � 8

�
N � 1 � � N � 2 �
N2

�
N � 1 � 2 ζ2� 4

N4 � 4N3 � N2 � 10N � 2
N
�
N � 1 � 3 � N � 2 � S1

�
N � � 4P4

�
N �

N4
�
N � 1 � 4 � N � 2 ��� �

Here Pi � N � denote polynomials given in [6,7]. The corresponding quarkonic expressions are given

there.
Structural relations for harmonic sums [20], which include half–integer relations and differentia-
tion w.r.t. the Mellin variable N, lead to the observation that the OMEs above depend only on the
two basic harmonic sums S1 � N � and S � 2 � 1 � N � . We expressed the latter in terms of the Mellin trans-
form M � Li 2 � x � � � 1 � x � � � N � in the above. Here β � N � � � 1 � 2 � � �ψ � � N � 1 � � 2 � � ψ � N � 2 � � . Previous
analyzes of various other space– and time–like two–loop Wilson coefficients and anomalous di-
mensions including also the soft and virtual corrections to Bhabha-scattering [20a,21], showed that
the following six basic functions, S1 � N � � S � 2 � 1 � N � � S � 3 � 1 � N � � S � 2 � 1 � 1 � N � , are needed in general to
express these quantities. Note that none of the harmonic sums occurring contains an index � � 1 �
as observed in all other cases being analyzed.

6
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Comparing to the results obtained in Refs. [1, 5] in x–space, we find 48 functions to express
the final result in the unpolarized case and 24 functions in the polarized case.

To obtain expressions for the heavy–flavor contributions to the structure functions in x–space,
analytic continuations have to be performed to N � C for the basic functions given above, see [20,
22, 23]. Finally a (numeric) contour integral has to be performed around the singularities present.

6. Conclusions

We calculated the gluonic unpolarized and polarized massive operator matrix elements to
O � α2

s � . They are needed to express the heavy flavor Wilson coefficients contributing to the deep–
inelastic structure functions F2, g1 and FL to O � α2

s � , O � α3
s � resp., in the region Q2 � m2. The

calculation was performed in Mellin space without using the integration-by-parts technique. The
results express themselves in form of nested harmonic sums. Throughout the calculation, we app-
lied representations by Mellin–Barnes integrals and generalized hypergeometric functions. In this
paper, we emphasized the use of Mellin–Barnes integrals, which can be regarded as an inverse
transformation of Feynman parametrization.
In course of the calculations, a series of new infinite sums over products of harmonic sums weigh-
ted by related functions were evaluated, cf. [6, 7]. These representations were essential to keep the
complexity of the intermediary and final results as low as possible. Furthermore, we applied a se-
ries of mathematic relations for the harmonic sums to compactify the results further. We confirm
the results obtained earlier in Refs. [1, 5] by other technologies.
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