
P
o
S
(
A
C
A
T
)
0
7
3

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Error-Free Algorithms to Solve Special and General
Discrete Systems of Linear Equations

Miroslav Morháč1
Institute of Physics, Slovak Academy of Sciences
Dúbravska cesta 9, Bratislava, 845 11, Slovak republic
E-mail:Miroslav.Morhac@savba.sk

Abstract

The paper presents a survey of error-free algorithms to solve various systems of linear
equations. The presented algorithms do not introduce computational errors into the solution and
thus they are well suited to solve ill-conditioned linear systems. The error-free algorithms are
based on modulo arithmetic. Two basic approaches have been investigated in the paper. The
first one is based on iterative scheme using one modulus only. The other one is parallel and uses
several moduli and the Chinese theorem. It is based on polynomial algebra operations that allow
to express the operation of deconvolution as a sequence of convolutions of both response and
output signals.

XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research
Amsterdam, the Netherlands
23-27 April, 2007

1 Speaker

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 2

1. Introduction

The solution of linear algebraic equations is a very frequent task in numerical mathematics
and experimental physics at all. When solving such a set of linear equations one often meets the
problem of ill-conditioned matrix of the set. For large dense sets of linear equations, which are
as a rule ill-conditioned, the stability of the solution cannot be guaranteed. Rounding-off and
truncation errors, during the numerical computations, involved in obtaining the solution to the
problem cannot be tolerated. Let us illustrate the situation using a simple example.

Illustrative example:
Let us have ill-conditioned set of two linear equations
x + 3y = 4
x + 3.00001y = 4.00001,

 (1)

which has the solution x=1, y=1 . On the other hand let us consider the set

x + 3y = 4
x + 2.99999y = 4.00002.

 (2)

This set has the solution x = 10, y = -2. Very small change in the coefficients (0.00002 and
0.00001) caused enormous changes in the solution. The inverse matrix of (1) contains elements
of the order of 510 . It demonstrates its ill-conditionality.

We are motivated by the fact that in scientific computations there are large classes of ill-
conditioned problems and there are also numerically unstable algorithms. Digital computer is a
finite machine and therefore it is capable of representing internally only a finite set of numbers.
There exist difficulties associated with the attempts at approximating arithmetic in the field of
real numbers + −(R, ,) by using the finite set of so-called floating-point numbers F , more
appropriately called the set of computer-representable numbers. There is no possibility of
representing the continuum of real numbers in any detail. A “practical” solution is to represent a
real number by the closest computer-representable number, thereby introducing the rounding
error.

It is well known that computers can perform certain arithmetic operations exactly if the
operands are integers. Moreover there are many situations in practice when we work with
integer input data. Processing of spectra (histograms) in nuclear physics can serve as a good
example. When solving ill-conditioned problems during the analysis of spectra it is not
reasonable to leave the world of exact integers and thus introduce instability. It motivated us to
consider integer arithmetic as a mean of avoiding rounding errors in the hope that certain ill-
conditioned problems can be solved exactly. Residue number system is an example of a number
system with which we can do exact arithmetic. The aim of the contribution is to present error-
free algorithms to solve ill-conditioned systems of linear equations.

Let us summarize how we can proceed when the solution of ill-conditioned linear system
of equations can be expressed as rational fractions of integers

• we can increase the precision of floating point representation - however it does not need
to guarantee the correct result

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 3

• we can work with long integers - from algorithmic point of view it is many times very
cumbersome

• we can work with integers in finite rings using residue class or modulo arithmetic and at
the end of the calculation to convert the modulo representation into real numbers.

In the rest of the paper when speaking about modulo arithmetic we shall consider prime
moduli. Let us now illustrate modulo representation of negative numbers and inverse numbers
for modulus 17=M (see Table I and II).

x 0 1 2 3 4 5 6 7 8 -8 -7 -6 -5 -4 -3 -2 -1
x(mod M) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table I. Modulo representation of numbers from the range 1 2 1 2− − −(M) / ,(M) / for

17=M

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1x (mod M)− 0 1 9 6 13 7 3 5 15 2 12 14 10 4 11 8 16

Table II. Modulo inverse numbers for 17=M
One can observe that the assignment between numbers and their negatives and inverses is prime
moduli uniquely unique. By definition for 0 we have taken inverse number to be 0.

2. Convolution systems

In many applications the dynamic behavior of a linear system can be described by means
of impulse response function h(n) . The periodical convolution of finite sets x(n) and h(n)
is

1

0
() () (), 0,1, , 1,

N

m
y n h n m x m n N

−

=

= − = −∑ … (3)

where N is the length of both vectors. Very frequently the advantageous property of
factorization of the convolution of two signals to the product of their Fourier coefficients is
utilized [1], [2]

[] [] []() () () , 0,1, , 1.i i iF y n F h n F x n i N= ⋅ = −… (4)

Since the Fourier transform cannot be computed with absolute precision, the number theoretical
transforms were defined with the aim to carry out the fast error-free convolution of data. These
transforms are defined in the ring of integers using the operations carried out in modulo M
arithmetic, where M is prime. Direct and inverse Number Theoretical Transforms (NNT) can
be defined

1

0
() () (mod) 0,1, , 1,

N
kn

n
X k x n M k Nα

−

=

⎡ ⎤
= = −⎢ ⎥
⎣ ⎦
∑ … (5)

1
1

0
() () (mod) 0,1, , 1,

N
kn

k
x n N X k M n Nα

−
− −

=

⎡ ⎤
= = −⎢ ⎥
⎣ ⎦

∑ … (6)

where
1. (mod) 1,a N N M−⋅ =

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 4

. (mod) 1,Nb Mα =

and N must divide 1−M . Among NTT the most famous are Merssene and Fermat transforms
[2]. They are frequently used for error-free calculations of convolutions. However, the problem
of precision is much more critical in the inverse operation, i.e., deconvolution.

2.1 Precise deconvolution using the Fermat number transform [3]

Convolution system (3) can be written in matrix form

()
()

()
()

() () () ()
() () () ()

() () () ()
() () () ()

()
()

()
()

0 00 , 1 , 2 , 1
1 11 , 0 , 3 , 2

2 , 3 , 0 , 12 2
1 , 2 , 1 , 01 1

y xh h N h h
y xh h h h

h N h N h h Ny N x N
h N h N h hy N x N

⎡ ⎤ ⎡ ⎤⎡ ⎤−
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −− −⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥− −− −⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

i (7)

or
Hy x.= ⋅ (8)

The solution of any regular system of linear equations (8) can be expressed as

0 1 2
0 1 2

1 m
mM M M M ,

D
x x x x x⎡ ⎤= + + +⎣ ⎦ (9)

where D is determinant of the matrix H , M is chosen modulus (in our case Fermat number)
and m is a finite number. Substituting (9) into matrix equation (8) gives

0 1
0 1

1 m
mM H M H M H

D
y x x x⎡ ⎤= ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅⎣ ⎦ (10)

or after some modifications

()0 1
1 1 1

mD H H H
M M M

y x x x 0⎡ ⎤⎡ ⎤⋅ − ⋅ − ⋅ − ⋅ =⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
. (11)

From (11) we can define the vectors

() ()1 0 1
1 1 1 2j j jD H , H , j , , ,m.
M M

y y x y y x+= ⋅ − ⋅ = − ⋅ = … (12)

If the vector 1+y j equals the zero vector the calculation can be finished. It can serve as an

indication of the end of iterations.
To calculate modulo solution of (8) we can utilize the Fermat number transform. For

transformed values it holds
() () ()1 0 1 1i i iR R R (mod M) i , , ,N .x h y−= ⋅ = −… (13)

Using inverse Fermat transform we obtain modulo M solution of the vector x

MDD(mod M) (mod M) (mod M),
D DM M Mx x x x= = = (14)

where

()
1

0
0

N

M M M M
i

D k M D , D , D H i (mod M).x x
−

=

⎡ ⎤
= ⋅ + = ⋅ = ⎢ ⎥

⎣ ⎦
∏ (15)

Then

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 5

()()0 1 2 mD M M M .x x x x x= ⋅ − + +… … (16)

Substituting (16) to (12) yields
()1 1 2 mH M H M Hy x x x= ⋅ + ⋅ + ⋅ ⋅…

or in general
1 2j(mod M) H , j , , ,m.jy x= ⋅ = … (17)

Hence to find particular solution x j we can apply again Fermat transform. Then we can proceed

to the next iteration step

1
j j

j

H
.

M
y x

y +

− ⋅
= (18)

The final solution x can be calculated using (9).
In (9), (10), (11), (12), (14) we assumed we know the exact value of the determinant D of

the convolution matrix H . In what follows we introduce the algorithm to calculate it [3], [4].
By employing the Fourier transform the determinant of the convolution matrix of the system (8)
can be expressed

() ()() ()()
11 1 2 1 122

0 1 2 1
0

1
N

N N N kk k
N

k

D h hW h W h W
−

− − + −
−

=

= − ⋅ + + + +∏ (19)

where
()2− ⋅

=
j

NW e
π

 and N is a power of 2, i.e., the determinant of such a matrix can be
expressed as the product of the coefficients of the Fourier transform of the response vector h .
The Fourier transform is used only formally. For details we refer to [3].

Let us illustrate the algorithm by an example with 8=N . Applying DFT to vector h we
obtain the bit reversed vector

0

1
2 2 2 2

2
2 2 2 2

3
2 3 2 3

4
2 3 2 3

5
3 2 3 2

6
3 2 3 2

7

0 1 2 3

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1
1 1
1 1
1 1
1 1

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− − − − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− − − −
⎢ ⎥⎢ ⎥

− − − − ⎢ ⎥⎢ ⎥ ⋅ =⎢ ⎥⎢ ⎥− − − − ⎢ ⎥⎢ ⎥
− − − − ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥− − − − ⎢ ⎥⎢ ⎥
⎢ ⎥− − − −⎢ ⎥⎣ ⎦ ⎣ ⎦

+ + + +

=

h
h
hW W W W
hW W W W
hW W W W W W

W W W W W W h
W W W W W W h
W W W W W W h

h h h h h

() ()
() ()
() () () ()
() () () ()
() () () ()
() () () ()

4 5 6 7

0 1 2 3 4 5 6 7

0 2 4 6 1 3 5 7

0 2 4 6 1 3 5 7

2 3
0 4 1 5 2 6 3 7

2 3
0 4 1 5 2 6 3 7

3 2
0 4 1 5 2 6 3 7

3 2
0 4 1 5 2 6 3 7

+ + +⎡
⎢ − + − + − + −⎢
⎢ − + − + − + −
⎢

− + − − − + −⎢

− + − + − + −

− − − + − − −

− + − − − + −

− − − − − − −⎣

h h h
h h h h h h h h
h h h h h h h h W

h h h h h h h h W

h h h h W h h W h h W

h h h h W h h W h h W

h h h h W h h W h h W

h h h h W h h W h h W

}
}

0
0

0
1

2
0 1 2

2
0 1 3

2 3
40 1 2 3

2 3
50 1 2 3

3 2 3
60 1 2 3

3 2 3 7
0 1 2 3

1
2

3

⎤ ⎡ ⎤ ⎡ ⎤⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎢ ⎥+ ⎢ ⎥ ⎫⎥ ⎢ ⎥ ⎢ ⎥ ⎬⎥ ⎢ ⎥− ⎭⎢ ⎥⎢ ⎥ = =⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ − + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦− − −⎢ ⎥⎣ ⎦⎦

 group
 group

a .X
b .X
c c W X

.c c W X
Xd d W d W d W
Xd d W d W d W
Xd d W d W d W
Xd d W d W d W

4

⎫
⎪
⎪
⎬
⎪
⎪⎭

 group

 group.

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 6

The numbers in the first and the second group are real. In the third group we multiply the
numbers 2 3X ,X and in the fourth group the numbers 4 5 6 7X , X , X , X . The fact that 4 1= −W must
be taken into account. Then

()()
()()
() ()
()()
() ()

2 2 2 2
2 3 0 1 0 1 0 1

2 3 2 3
4 5 0 1 2 3 0 1 2 3

2 2 2 2 2 2
0 1 3 2 1 0 2 3 0 1

3 2 3 2
6 7 0 1 2 3 0 1 2 3

2 2 2 2 2 2
0 1 3 2 1 0 2 3 0 2

4 5 6 7 0 1

2 2

2 2

X X c c W c c W c c

X X d d W d W d W d d W d W d W

d d d d d d d d W e eW

X X d d W d W d W d d W d W d W

d d d d d d d d W e e W

X X X X e eW

⋅ = + − = +

⋅ = + + + − + − =

= + − − + − = −

⋅ = + − + − − − =

= + − + + − = +

⋅ ⋅ ⋅ = −()()2 2 2 2
0 1 0 1e eW e e .+ = +

We see that both products are real numbers.
Generally, let us have the vectors 0 1 2X X X …n n n, , , , where for Xk

n and 1+ Xk
n it holds

()

()
()

()
()

1

2

2 1

1

0

k
n

k
nk

n k
n

k
n

k
n

X j

X j /

X j /

X

X

X

−

=
−

()
()

()
()

()
()

1

0

1

2 1

2

2

1

k
n

k
n

k
nk

n k
n

k
n

k
n

X

X j

X j /
,

X j /

X

X

X+

−⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ +
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

20 1 log 1= −…n , , , N is the number of reduction, 10 1 2 += … nk , , ,N / is the number of cyclic shifts

with a negative transition to the topmost position and 2= nj N / . Then for the reduced vector
0

1+Xn we get

() () () () () ()

() () () () () ()

1
2

2 2

1
0

1

1
20 0 2 0 2 0 0

1

1 0 2 2 1 1 1

1 0 2 2 1 1 1

j

k ik k k k
n n n n

i

n

j

i
n n n n

i

X X j / X i X j i

.

X X j / X i X j i

X

−

=

+

−

=

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥− − + − ⋅ + ⋅ − −⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥= ⎢ ⎥

⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥− − + − ⋅ + ⋅ − −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑

∑

Repeating the above described procedure until the length of the vector 0
1+Xn is greater than 1,

we can calculate the exact integer value of the product of the appropriate group. Multiplying the
products of all groups we can get the determinant of the convolution matrix, which is used in
the above outlined deconvolution algorithm.

Illustrative example:
Let us have the convolution system

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 7

()
()
()
()

0 33 0 0 2
12 3 0 0 5

0 2 3 0 32
0 0 2 3 03

x

x

x

x

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋅ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

, (20)

where the determinant 65=D . We shall use the modulus 17=M , which is the Fermat
number and 4=N . Then the forward and inverse Fermat transform matrices are as follows

1

1 1 1 1 1 1 1 1
1 4 16 13 1 13 16 4

13
1 16 1 16 1 16 1 16
1 13 16 4 1 4 16 13

T , T .−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Then

() ()

3 51 1 1 1
1 4 16 13 2 11
1 16 1 16 0 1
1 13 16 4 0 12

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ = ⋅ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

th hT mod 17 mod 17 .

Employing Euclidian algorithm we calculate vector of inverse modulo values

() []1 1 1 1 15 11 1 12 7 14 1 10
T T, , , mod 17 , , , .th − − − − −⎡ ⎤= =⎣ ⎦

1-st iteration step
We calculate the vector of the transformed output values

()

3 111 1 1 1
1 4 16 13 5 3
1 16 1 16 3 1
1 13 16 4 0 14

T mod 17 .m0 m0Y y

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ = ⋅ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Then due to factorization property of the Fermat number transform (13) we get

0

911 7
3 14 8

17
1 1 1

14 10 4

(mod) .X

⋅ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⋅ ⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥⋅
⎢ ⎥⎢ ⎥⋅⎣ ⎦ ⎣ ⎦

Applying the inverse Fermat transform we obtain

0

9 14 14 14 91 1 1 1
1 13 16 4 8 15 15 15 6113 17 17
1 16 1 16 1 8 8 8 1065
1 4 16 13 4 6 6 6 16

MDD(mod) (mod) ,
D D

x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ ⋅ = = = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

where MD was calculated using relation (15). Let us suppose that the positive numbers are

represented in the range ()0 1 2, M /− and the negative ones in the range ()1 2 1 1M / ,M− + − .

Then we obtain the negative values for numbers greater than ()1 2M /− by subtracting the

modulus

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 8

[]0
1 8 6 7 1
65

T, , , .x = − − −

Further we calculate

()

0 0

1 0

3 0 0 2 8 26
2 3 0 0 6 21 1
0 2 3 0 7 965 65
0 0 2 3 1 17

195 26 13
325 2 191 1
195 9 1217

0 17 1

H ,

D ,
M m0

y x

y y y

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = ⋅ = ⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥′= ⋅ − = − =
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

[]17 13 2 12 1 T(mod) , , , .m1 1y y= ==

2-nd iteration step
In the next iteration step we obtain

[] [] []117 11 5 5 14 11 7 5 14 5 1 14 10 17 9 2 5 4T T TT (mod) , , , , , , , (mod) , , , .m1 m1Y y X= ⋅ = = ⋅ ⋅ ⋅ ⋅ =

Using the inverse Fermat transform we calculate the vector

[]1
1 1 17 5 3 2 16 TT (mod) , , , .x X−= ⋅ =

Adjusting the elements greater than ()1 2M /− we obtain []1 5 3 2 1 T, , , .x = − Then we calculate

[] [] [] []1 1
1 1 2

113 19 12 1 13 19 12 1 13 19 12 1 0 0 0 0
17

T T T TH , , , , , , , , , , , , , .
M

y yy x y
′−′ ⎡ ⎤= ⋅ = = = − =⎣ ⎦

The zero vector 2y indicates the end of calculation. The resulting vector is then obtained by

[] [] [] []0 1
1 1 117 8 6 7 1 17 5 3 2 1 77 57 27 18

65 65
T T T, , , , , , , , , .

D
x x x ⎡ ⎤= + ⋅ = − − − + ⋅ − = −⎣ ⎦

This is the exact solution of our illustrative example (20).
The periodical k-dimensional convolution of the finite sets 1 2 kx(n ,n , ,n)… and

1 2 kh(n ,n , ,n)… is defined by

() () ()
1 2

1 1 1

1 2 1 2 1 1 2 2
0 0 0

, ,..., ... , ,... , ,..., .
k

N N N

k k k k
m m m

y n n n x m m m h n m n m n m
− − −

= = =

= ⋅ − − −∑ ∑ ∑

Analogously to one-dimensional case in [5] we have derived the error-free algorithm of
multidimensional deconvolution as well as algorithm to calculate the determinant of the
multidimensional convolution matrix.

2.2 Error-free deconvolution using polynomial algebra concept [6], [7]

Polynomial algebra plays an important role in digital signal processing because
convolutions can be expressed in terms of operations on polynomials [2]. Polynomial algebra is
the basis of one group of fast and error-free one- and multidimensional convolution algorithms.

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 9

Let us suppose the elements of () ()h m , x l to be coefficients of the polynomials ()H z and

()X z of the degree 1N − . Hence we have

() () () ()
1 1

0 0

N N
m l

m l
H z h m z , X z x l z .

− −

= =

= =∑ ∑ (21)

If we multiply ()H z by ()X z , the resulting polynomial will be of degree 2 2N − . Thus

() () () ()
2 2

0

N
n

n
Y z H z X z y n z .

−

=

= ⋅ = ∑ (22)

This means that the convolution of two sequences can be treated as the product of two
polynomials.

If the one-dimensional convolution defined by (1) is cyclic the indices n,m,l are

calculated modulo N . This implies that 1Nz (mod N) = and therefore the cyclic convolution can
be considered as the multiplication of two polynomials

() ()Y(z) H z X z ,= ⋅ (23)

where the powers of the polynomial variable z are calculated modulo N or by

() () () ()1NY z H z X z mod z .= ⋅ − (24)

Let us proceed to multidimensional case of convolution. The k-dimensional cyclic
convolution of the discrete input signal x and the response signal h is defined

() () ()
1

1

11

1 1 1 1
0 0

k

k

NN

k k k k
m m

y n , n , , h m , m x n m , ,n m ,
−−

= =

= − −∑ ∑… … … … (25)

where 1 1 2 20 1 0 1 0 1k kn ,N , n ,N , , n ,N∈ − ∈ − ∈ −… and indices 1 1n m− , are calculated

modulo 1N , indices 2 2n m− are calculated modulo 2N , etc. By considerations analogous to

those of the one-dimensional case the polynomial expression of the k-dimensional convolution
is obtained

() () ()1 2 1 2 1 2k k kY z ,z , ,z H z ,z , ,z X z ,z , ,z ,= ⋅… … … (26)

where the powers of the variable 1z are calculated modulo 1N and the powers of the variable

kz are calculated modulo kN . In the case of deconvolution, i.e. when we know the output

signal y and the response signal h , the input signal can be formally expressed in polynomial
form

() () ()1X z Y z H z ,−= ⋅ (27)

and
() () ()1

1 2 1 2 1 2k k kX z ,z , ,z Y z ,z , ,z H z ,z , ,z ,−= ⋅… … … (28)

for one-, and k-dimensional deconvolution, respectively. Let us illustrate the algorithm of
calculation of (27) and (28) by the following examples.

Illustrative example for one-dimensional deconvolution:

Let the vectors of output signal and impulse response be

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 10

[] []3 1 2 1 1 4 2 0T Ty , , , , h , , , .= =

According to (23) it holds

() () ()2 3 23 2 1 4 2z z z z z X z .+ + + = + + ⋅

Formally we can express the sought

()
2 3

2

3 2
1 4 2

z z zX z .
z z

+ + +
=

+ +

Multiplying the numerator and the denominator by the polynomial () 1NH z (mod z)− − we obtain

() ()()
()()

()
()

2 3 2 2 3

2 2 2

3 2 1 4 2 3 9 4 5

1 4 2 1 4 2 5 12

z z z z z z z z
X z .

z z z z z

+ + + − + − + −
= =

+ + − + −

In the following sections of the paper the product () ()H z H z⋅ − will be called the reduction of

the polynomial ()H z with respect to the variable z . If we multiply the numerator and the

denominator by the polynomial 25 12z ,+ the resulting polynomial is

() ()()
()()

2 3 2 2 3

2 2

3 9 4 5 5 12 63 105 56 133
1195 12 5 12

z z z z z z zX z .
z z

− + − + − + −
= =

−− +

The coefficients of the polynomial X(z) represent exact solution of the example.

Illustrative example for two-dimensional deconvolution:

Let the matrices of two-dimensional output signal and two-dimensional impulse response

be
3 2 2 3
1 4 1 3

, ,
y , h .

, ,
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Using (26) for k = 2 we have

() () () () ()1 1 2 1 1 2 1 23 2 4 2 3 3z z z z z z X z ,z⎡ + + + ⋅ ⎤ = ⎡ + + + ⋅ ⎤ ⋅⎣ ⎦ ⎣ ⎦

or

()
() ()
() ()

1 1 2
1 2

1 1 2

3 2 4
2 3 3

z z z
X z ,z .

z z z
⎡ + + + ⋅ ⎤⎣ ⎦=
⎡ + + + ⋅ ⎤⎣ ⎦

By multiplying the numerator and the denominator by the polynomial ()1 2H z , z− , , i.e., by its

reduction with respect to the variable 2z , we get

()
() () () ()
() () () ()

() ()1 1 2 1 1 2 1 1 2
1 2

11 1 2 1 1 2

3 2 4 2 3 3 11 13 4 2
13 142 3 3 2 3 3

z z z z z z z z z
X z ,z .

zz z z z z z
⎡ + + + ⋅ ⎤ ⎡ + − + ⋅ ⎤ + + +⎣ ⎦ ⎣ ⎦= =

+⎡ + + + ⋅ ⎤ ⎡ + − + ⋅ ⎤⎣ ⎦ ⎣ ⎦

Now we multiply this result by the polynomial 113 14z−

()
() () ()

()()
() ()1 1 2 1 1 1 2

1 2
1 1

11 13 4 2 13 14 39 15 24 30
13 14 13 14 27
z z z z z z z

X z ,z .
z z

⎡ + + + ⎤ − − + − +⎣ ⎦= =
+ −

The resulting matrix is

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 11

39 241
15 3027

,
x .

,
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦

Now let us generalize the algorithm for k-dimensional data. Let us assume that the
dimensions of the convolution system 1 2 kN ,N , ,N… are powers of 2. Then the algorithm of

inversion of the polynomial ()1 2 kH z ,z , ,z… and its simultaneous multiplication by the

polynomial ()1 2 kY z ,z , ,z… can be expressed as successive reductions of the response function

(autoconvolutions) and convolutions of ()1 2 kY z ,z , ,z… with reduced response

(crossconvolutions).
The 1(p) th+ − reduction of the response in the direction k (autoconvolution) is

() () () ()
11

1 1

1
11 2

1 1
1 1 1 1 1 1

0 0 0

2 2 1

k
p

k
k

k k

N
NN

ip p p p p
k k k k k k k k k

i i i

h l , ,l , l h i , ,i , i , h m , ,m ,m ,
−

−

⎛ ⎞−⎜ ⎟−− ⎝ ⎠
+ +

− − −
= = =

⋅ = ⋅ ⋅ −∑ ∑ ∑… … … … (29)

where

() () ()1
1 1 1 1 1 1 1 1 2 2p p

k k k k k k k km l i mod N , ,m l i mod N ,m l i mod N ,+
− − − −= − = − = ⋅ − ⋅

1 1 1 1 10 1 0 1 0 1
2

k
k k k p

Nl ,N , ,l ,N , l , ,− − +

⎛ ⎞∈ − ∈ − ∈ −⎜ ⎟
⎝ ⎠

…

and the number of the reduction 2 10 1 log kp , , , N .−= …
Next we derive the algorithm of crossconvolution. Let

() ()0
1 2 1 2k k kn i ,i , ,i y i ,i , ,i ,=… …

where

1 1 2 20 1 0 1 0 1k ki ,N , i ,N , ,i ,N .∈ − ∈ − ∈ −…

Then the calculation of the 1(p) th+ − reduction of the signal kn in the direction k is

() () () ()
11

1 1

1
11 2

1
1 1 1 1 1 1

0 0 0

2 1

k
p

k
k

k k

N
NN

ip p p p
k k k k k k k k k

i i i

n l , ,l ,l n i , ,i , i , h m , ,m ,m ,
−

−

⎛ ⎞−⎜ ⎟−− ⎝ ⎠
+

− − −
= = =

= ⋅ ⋅ −∑ ∑ ∑… … … … (30)

where

() () ()1 1 1 1 1 1 1 1 2 p
k k k k k k k km l i mod N , ,m l i mod N ,m l i mod N ,− − − −= − = − = − ⋅

1 1 1 10 1 0 1 0 1k k k kl ,N , ,l ,N , l ,N ,− −∈ − ∈ − ∈ −…

and the number of the reduction 2 10 1 log kp , , , N .−= …
We repeat the algorithm (29), (30) until the number of reductions is 2 1log kN .− Then we

continue with the reductions of the response and the signal kn in the direction 1k − (again

using formulas (29), (30)). We proceed in this way until all the reductions of the response in all
the directions are carried out, i.e., until the k-dimensional discrete signal of the response is
reduced to the only non-zero element. It represents the value of the determinant of the system
matrix kh , hence

()0 0 0r
kD h , , , ,= …

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 12

where

2
1

log
k

i
i

r N .
=

=∑

The final solution is k
k .

D
nx =

3. Special linear systems

3.1 Error-free algorithm to solve integer Toeplitz system [8]

In this section we propose an algorithm to solve integer nonsymmetrical Toeplitz system,
which is based on Levinson algorithm [9]. It removes rounding off errors. Their accumulation
can, when using classic algorithms, deteriorate or destroy the solution. Toeplitz system of linear
equations is defined

0 1 2 1 1 1

1 0 1 2 2 2

1 2 3 0

N

N

N N N N N

a , a , a , , a x y
a , a , a , , a x y

a , a , a , , a x y

− − − +

− − +

− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

…
…

…

 (32)

or

1
1 2

N

i j j i
j

a x y , i , , ,N−
=

= =∑ … . (33)

For integer regular Toeplitz system one can write

1
1 2

N
j

i j i
j N

x
a y , i , , ,N .

D−
=

= =∑ … (34)

In [8] we derived the algorithm for fast solution of integer Toeplitz system (34) using recursive
procedure solving in each iteration step the system

1
1 2 1 2

(M)M
j

i j i
j M

v
a y , i , , ,M ; M , , ,N .

D−
=

= = =∑ … … (35)

To determine quantities with the index 1M + we get

1 0
1

1 1
11

1

0 1 1
1

1

1
1 1 1

1

1
1 1 1

1

M
(M)

M M j j
j

M
(M)

M M M j j
j(M)

M M
(M)

M M j M j
j

M
M

(M) (M)
M M M M j j

j

M
(M) (M)
M M M j M j

j

D D a a b ,

y D a v
v ,

a D a b

D

c a D a c ,

b a D a b .

+
=

+ + −
=+

+

+ − + −
=

+

+
+ + + −

=

+
+ − − − −

=

= ⋅ −

−
=

−

= −

= −

∑

∑

∑

∑

∑

 (36)

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 13

To determine remaining components of the vectors v, b, c we have

1 1
1 1 1

1 1
1 1 1

1 1
1 1 1

1

1

1 1 2

(M) (M) (M) (M)
j j M M M j

M

(M) (M) (M) (M)
j j M M M j

M

(M) (M) (M) (M)
j j M M M j

M

v v D v b ,
D

c c D c b ,
D

b b D b c , j , , ,M ,
D

+ +
+ + + −

+ +
+ + + −

+ +
+ + + −

⎡ ⎤= −⎣ ⎦

⎡ ⎤= −⎣ ⎦

⎡ ⎤= − =⎣ ⎦ …

 (37)

with initial values
1 1 1

1 0 1 1 1 1 1 1
() () ()D a ,v y ,c a ,b a .−= = = = (38)

From the above given formulas, one can see that all quantities are integers. After some iteration
steps, however, their magnitudes increase rapidly, which complicates the realization of the
calculation. To overcome this problem we can carry out the calculation in modulo arithmetic in
different prime modulo classes 1 2im , i , , ,r= , so that it holds [10]

1 2 rP m m m= … , (39)

where P must satisfy the condition

{ }2 1 2 12 1 y

1 1 1

N / N (N) / N

i j

P max N M(A) ,N(N) M(A) M() ,

M(A) max a , i N ,N , M(y) max y , j ,N .

− −> ⋅ ⋅ − ⋅ ⋅

= ∈ − + − = ∈
 (40)

The calculation in the given modulo class is independent of other modulo classes and thus this
model of implementation is well suited for parallel computing. By inverse conversion from
residual representation, employing Chinese theorem [2], [9], one can calculate resulting vector
x and determinant D .

Illustrative example:

Let us find the exact solution of the Toeplitz system

1

2

3

1 1 2 1
3 1 1 3
2 3 1 1

, , x
, , x .
, , x

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

First we initialize the vectors and variables

[] [] [] []
[] [] []

p 1 2 n 1 2a 0 3 2 0 , a 0 1 2 0 , y 1 3 1

b 1 c 3 , v 1 1

T T T T T
,

T T T

a ,a , , a ,a , , , , ,

, , , , , , , , D .

− −= = = = − = −⎡ ⎤⎣ ⎦

= − − − = − − = − − − =

With respect to (39) and (40) we choose the moduli 1 2 35 7 11m , m , m .= = = Carrying out

the first iteration step yields

[] [] []
[] [] []
[] [] []

b 5 3 1 b 7 0 1 b 11 4 1

c 5 0 3 c 7 5 0 c 11 5 4

v 5 2 1 v 7 2 6 v 11 2 6
5 4 7 4 11 4

T T T

T T T

T T T

(mod) , , ; (mod) , , ; (mod) , , ;

(mod) , , ; (mod) , , ; (mod) , , ;

(mod) , , ; (mod) , , ; (mod) , , ;
D(mod) ; D(mod) ; D(mod) .

= − = − = −

= − = − = −

= − = − = −

= = =

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 14

After the second iteration step 1 2(M N)= − = the calculation in this example is finished. The
resulting values of vectors and determinant are then as follows

[] [] []
[] [] []
[] [] []

b 5 3 1 0 b 7 0 1 1 b 11 4 1 4

c 5 0 3 4 c 7 5 0 4 c 11 5 4 0

v 5 1 3 2 v 7 2 3 3 v 11 5 3 4
5 3 7 2 11 1

T T T

T T T

T T T

(mod) , , ; (mod) , , ; (mod) , , ;

(mod) , , ; (mod) , , ; (mod) , , ;

(mod) , , ; (mod) , , ; (mod) , , ;
D(mod) ; D(mod) ; D(mod) .

= = =

= = =

= = =

= = =

By conversion of the vector v and the determinant D from residue class code one obtains

[]16 3 367 23T, , , D .= =v

Positive numbers are represented in the range ()0 1 2, P /− and negative ones in the range

()1 2 1 1P / ,P− + − . Then the negative values are calculated by subtracting P . Then the final

solution is

[]1 16 3 18
23

T, , .= −x

3.2 An algorithm to solve Hilbert system of linear equations exactly [11]

Typical example of extremely ill-conditioned matrices are Hilbert matrices. In literature
one can find the examples of Hilbert matrices with the elements

1 1
1i , ja ; i, j ,N .

i j
= ∈

+ −

We shall consider more general Hilbert systems with elements

1

1 1i , j
i j

a ; i, j ,N .
d + −

= ∈

Then for 3N = we can write

1 2 3
1 1

2 2
2 3 4

3 3

3 4 5

1 1 1

1 1 1

1 1 1

, ,
b b b

x y
, , x y

b b b
x y

, ,
b b b

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

or after exchanging the elements of the vector x

3 2 1 0 1 2
3 1 0 1 2 1

2 2 1 0 1 2
4 3 2 1 0 1

1 3 2 1 0 3

5 4 3 2 1 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

, , , ,
b b b s s s

x z R , R , R z
, , x , , z R , R , R z .

b b b s s s
x z R , R , R z

, , , ,
b b b s s s

− −
− −

−
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 15

However this represents Toeplitz system of linear equations. Assuming that all quantities are
integers the determinant of the matrix can be written in the form of rational fraction. For 3N =
one obtains

3 2 2 1 2 3 2 1
0 2 1 1 2 2 0 2 1 0 1 2 1 0 1 2

1 1 1 1 2 C C

D

D DD ,
s s s s s s s s s s s s s s s s D− − − − − −

= + + − − = =

where left upper index C denotes numerator and D denominator. Without being interested in
the numerator for the denominator of the determinant in general case one can write

1 2 1 1 2 1
1 2 1 0 1 2 1

D N N N
N N N ND s s s s s s s− −

− + − + − − −= … .
We introduce pairs of expressions of all quantities for both numerator and denominator,
respectively. First let us determine quantities with the index 1M +

1
1 11 1 1

1 1 1
11 1 1

1
1 11 1 1

1 1 1
11 1 1

1
1

C (M)CM M
jM iD (M) C (M) D (M) M

M i M M D D (M)
ji M M M j M j

C (M)CM M
jM iD (M) C (M) D (M) M

M i M M D D (M)
ji M M M M j j

D (M
M

bDb s ; b b ;
s D s b

cDc s ; c c ;
s D s c

v

−
+ − ++ + +

+ + +
==− − − − − −

+
+ − −+ + +

+ + +
==− + + + −

+
+

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

= = −⎢ ⎥
⎢ ⎥⎣ ⎦

∑∏

∑∏
1

1 1 11 1
1 1 11

11 1

1

1
1 1 1

10 1

M
D

C (M)i C C M
j) D (M) C (M) D (M)i M M

M M MM D D D (M)
jM M M j j

i
i

C (M)CM M
jM iD C D M

M i M M D D (M)
ji M M M j j

y vy Dc ; v v ;
y D s vs

bDD s ; D D .
s D s b

+

+ + += +
+ + ++

=+ + −

=

+ −
+ + +

==− + −

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦

∏
∑

∏

∑∏

Then we determine remaining components of the vectors b, c, v
1

1 11
1 1 11 10

1 1 1
1 1 1

0

1

11
11 10

1 1

0

j

D (M) D C C (M) C (M) C (M)M i
j M M j M M jD (M) D C (M)i

j M jj C D D (M) D (M) D (M)
M M j M M j

i
i

j

D (M) D C CM i
j M MD (M) D C (M)i

j M jj C
M

i
i

s b D D b b c
b D ; b ;

D D b b cs

s c D D
c D ; c

Ds

−

+ +− − +
+ + + −+ +=

+ − +
+ + + −

=

−

++ −
++ +=

+ −

−
=

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦

= =

∏

∏

∏

∏

1
1 1

1
1 1 1

1 11
1 1 11 1 11

1 1
1 1 1 1

(M) C (M) C (M)
j M M j

D D (M) D (M) D (M)
M j M M j

D (M) D C C (M) C (M) C (M)D (M)
j M M j M M jD (M) D (M) C (M)M

j j jD (M) C D D (M) D (M) D (M)
M M M j M M j

c c b
;

D c c b

v D D v v bvv c ; b .
c D D v v b

+
+ + −
+

+ + + −

+ ++
+ + + −+ + ++

+ +
+ + + + −

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦

The initial values were set
1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 11 1 1D C D () D C () C D () C () D () C ()D s ; D ; v y ; v y ; b s ; b ; c s ; c .−= = = = = = = =

3.3 Error-free algorithm to solve Vandermonde system of linear equations [12]

Let us have Vandermonde system

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 16

1 1

2 1 2 3 2
2 2 2 2

3 1 2 3 3

1 1 1 1
1 2 3

1 1 1 1

N

N

N N N N
N N N

y x
y a a a a x
y a a a a x A

y a a a a x− − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⋅
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x. (41)

It is well known that the determinant of the system matrix is
1

1 1

N N

i j
j i j

D (a a)
−

= = +

= −∏∏ (42)

and the elements of inverse matrix can be expressed using polynomial coefficients [12]

1

11

N N
ki

j j ,k
ki ,i j j i

x aP (x) B x .
a a

−

== ≠

−
= =

− ∑∏ (43)

Analogously to the algorithm given in [13] we determine coefficients of the polynomial

1
2 1

1

N
N N

i N
i

P(x) (x a)(mod M) x c x c x c (mod M).−

=

= − = + + + +∏ (44)

Polynomials from (43) modulo M can be expressed

1

1

1 1

1

N
k

j ,k
k

j N N
j

j i j i
i ,i j i ,i j

z x
P(x)P (x) (mod M) (mod M).

(x a) (a a) (a a)

−

=

= ≠ = ≠

= ⋅ =
− − −

∑

∏ ∏
 (45)

Then one can derive

1

1 1

1

1 1 1

j ,N

j ,N N j ,N j

j ,N i N i j ,N i j

z ,

z (c z a)(mod M),

z (c z a)(mod M)

i ,N , j ,N .

−

− − + − +

=

= + ⋅

= + ⋅

∈ − ∈

 (46)

Resulting inverse matrix modulo M is
1

1 1 1 2 11

2 1 2 2 221

1 2

0 0
0 0

0 0

, , ,N

, , ,N
M

N , N , N ,NN

z z zd
z z zd

A (mod M) (mod M) B ,

z z zd

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

 (47)

where

1

N

j j i
i ,i j

d (a a)(mod M).
= ≠

= −∏

We can employ iterative scheme of error-free solution of linear equation system from the
section 2.1.

Illustrative example:

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 17

Let us have the Vandermonde system

1

2

3

4

1 1 1 1 0
1 3 5 4 1
1 9 25 16 2
1 27 125 64 0

x, , ,
x, , ,
x, , ,

, , , x

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

 .

The determinant of the matrix, according to (42), is -48. We shall use modulus 5M = . Then
2MD = . Using the relations (45), (46), (47) yields inverse matrix in modulo class 5

24 0 0 0 60 47 12 1 0 2 3 1
0 4 0 0 20 29 10 1 0 1 0 4

5
0 0 8 0 12 19 8 1 1 3 4 2
0 0 0 3 15 23 9 1 0 4 3 3

M

, , , , , , , , ,
, , , , , , , , ,

B (mod) .
, , , , , , , , ,
, , , , , , , , ,

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Then the procedure to calculate the exact solution is as follows

[]

[] []

0 2 3 1 0 3
0 1 0 4 1 1

0 1 2 0 5 5
1 3 4 2 2 1
0 4 3 3 0 0

2 3 1 1 0 5 1 2 2 0

M

M

, , ,
, , ,

, , , B (mod) (mod)
, , ,
, , ,

D , , , (mod) , , , .

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=

T
0 M 0

T T
0 M

ym = y = ; x = ym ;

x = x =

Next we calculate vectors

[]

0

1,1, 1, 1 1 5 0 5 1
1, 3, 5, 4 2 17 48 17 131; ;
1, 9, 25, 16 2 69 96 69 335
1, 27,125, 64 0 305 0 305 61

4,2,2,4

A

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = = − =
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

0 1

1

y = x y =

ym = T

1-st iteration step

0, 2, 3,1 4 4
0,1, 0, 4 2 3

.
1, 3, 4, 2 2 1
0, 4 ,3, 3 4 1

MB (mod 5) (mod 5)

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1x = ym

Again let us suppose that the positive numbers are represented in the range ()0 1 2, M /− and

the negative ones in the range ()1 2 1 1M / ,M− + − . Then we obtain the negative values for

numbers greater than ()1 2M /− by subtracting the modulus

[]T1, 2,1,1 .− −1x =

Further we calculate vectors

[] [] []1
1 2 21,2,22,134 ; 5 0,3, 11, 39 ; 0,2,4,1 .T T TA −′ = − = − − =1y = x y ym

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 18

2-nd iteration step
We continue in calculations with

[]2,1,3,4 .T
MB (mod 5) =2 2x = ym

After adjustment of elements greater than ()1 2M /− we have

[]T2,1, 1, 2 .− −2x =

Again we calculate vectors

[] [] []2 3 30, 8, 46, 224 ; 0,1,7,37 ; 0,1,2,2 .T T TA′ = − − − = =2y = x y ym

3-rd iteration step
Finally we calculate

[]0, 1,0,1 .T
MB (mod 5) = −3 3x = ym

We calculate vectors

[] []3 40,1,7,37 ; 0,0,0,0 .T TA′ = =3y = x y

The zero vector 4y indicates the end of iterations. The result is

2 3

1 1 2 0 46
2 2 1 1 1081 1= 5 5 5 .
2 1 1 0 18-48 -48
0 1 2 1 80

⎧ ⎫−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ ⋅ + ⋅ + ⋅ =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

x

4. General linear systems

4.1 Parallel error-free algorithm [14, 15]

Let us have system of linear equations, where all the elements of the matrix A and vector
y are integers

1
1 2

N

m
y(n) a(n,m)x(m), n , , ,N

=

= =∑

or

1 1 1 2 1 3 1 1 1

2 1 2 2 2 3 2 2 2

1 2 3

, , , ,N

, , , ,N

N , N , N , N ,N N N

a , a , a , , a x y
a , a , a , , a x y

A

a , a , a , , a x y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

x=y

…
…

…

.

Let us split the calculation into several residue classes satisfying conditions (39), (40). Then in
each residue class we can carry out separately the calculations

1iA (mod m) , i ,r .∈x =y

Calculations in residue classes can be carried out in parallel. Gauss-Jordan elimination in
residue class m can be described by the following procedure. Let

() { } { }0
, , (); 1,2, , , 1,2, , 1 .i j i ja a mod m i n j n⎡ ⎤= ∈ ∈ +⎣ ⎦ … …

For 1,2, ,k n= … (k denotes elimination step) do:

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 19

1. search for such ()fi c f k≠ < that ,1 0, ,i ka c i≠ =

2. () () ()() { }
11 1

, , 1 ,1 (), 1,2, , 1 ,k k k
i j i j ia a a mod m j n k

−− −
+

⎡ ⎤= ⋅ ∈ + −⎢ ⎥⎣ ⎦
… (49)

3. for 1,2, ,l n= … and l i≠ do:
() () () () { }1 1
, , 1 ,1 ,1 (), 1,2, , 1 .k k k k

l j l j l ia a a a mod m j n k− −
+

⎡ ⎤= − ⋅ ∈ + −⎣ ⎦ … (50)

The determinant in the residue class m is obtained as the modulo product of the elements ()1
,1
k

ia −

(see (49))

() ()1
,1

1

() 1 (),
n

J k
m k

k

D mod m D a mod m−

=

⎡ ⎤⎡ ⎤
= = −⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦
∏ (51)

where J is the total number of exchanges of the elements. Then, the sought solution of (48) in
the residue class m is given by

[]1() () ().m
Dmod m mod m D mod m
D D
⎡ ⎤= = = ⋅⎢ ⎥⎣ ⎦

m m mx x x x (52)

After the calculation of the solution of a linear equations set in the modular arithmetic is
finished we have 1n + element vectors

()1(), (), , () , 1,2, , .k k n kD mod m x mod m x mod m k r=… … (53)

The resulting integer values 1 2, , , , nD x x x… can be obtained by the inverse conversion of the
vectors (53) from the residue class code. Since we use the known algorithm (given e.g. in [16])
we describe it very briefly from algorithm point of view. We suppose we have a vector of
moduli

()0 1 2, , , rm m mβ = … (54)

and a vector of the residue representation of the integer jx

(),1 1 2(), (), , () .j j j j rt x mod m x mod m x mod m= … (55)

Further let us denote
()

() () ()()
()

1 2

, , , ,

, , ,

, , ,

, 1 , ,

()(), , ()() .

k k k r

j k j k j k j k

j k j k k j k r

m m m

t t k t k t r

d t k mod m t k mod m

β + +=

= +

=

…

…

…

If we define the vector , 1j kt + to be

() 1
, 1 , , (),j k j k j k k kt t d m mod β−
+

⎡ ⎤= − ⋅⎣ ⎦

then the resulting sought number is
() () () ()(),1 1 ,2 2 ,3 1 ,1 2 3 .j j j j r j rx t m t m t m t r−⎡ ⎤= + + + + ⋅⎣ ⎦ (56)

4.2 Sequential algorithm to solve general system of linear equations [17]

So far we have mentioned two basic algorithm classes to solve linear equations exactly

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 20

• iterative algorithm (applied in section 2.1 – Fermat transform, section 3.3 –
Vandermonde system)

• parallel algorithm (applied in section 3.1 – Toeplitz system, section 4.1 – general
system of linear equations)

In this section we want to demonstrate that sequential iterative algorithm can be applied also for
general systems of linear integer equations. Let us define the following algorithm:

Algorithm A

a. Let .=m0y y

b. Calculate vector ()1
M A mod M .−= m0x y

c. It holds ()M MD mod M .=0x x

d. Let 0 .=x x
e. Calculate vectors

() ()0 1 1
1A , D , mod M .
M

= = ⋅ − =' '
0 m0 0 m1y x y y y y y (57)

f. 1j .=

g. Calculate ()1
j A mod M .−= m1x y (58)

h. For 0 1 1i , , ,N= −… (N is the size of vectors x, y) calculate

() () () j
jx i x i x i M .= +

i. Calculate vectors

()A , , mod M .
M
−

= = =
'

j j'
j j j+1 m,j+1 j+1

y y
y x y y y

j. If for all ()10 1 1 0ji , , ,N , y i ,+= − =… finish the calculation. If not, increment j and

repeat the algorithm from point g. on.

The resulting solution of system (48) is simply calculated as .
D

=
xx Then determinant of the

system of linear equations can be calculated using the formula

() () ()
11

01

jN

j
ij

D a j, j a j,i k i ,
−−

==

⎡ ⎤
= − ⋅⎢ ⎥

⎣ ⎦
∑∏ (59)

where the coefficient vectors jk are calculated by exact solution of sets

1 1 2 1j , j j ,A A j , , ,N ,⋅ = = −jk … (60)

using the Algorithm A.
Next problem in the algorithm A is calculation of the inverse matrix in modulo arithmetic.

Let us define iterative procedure where

()
1 1

1 11
1 1

1 1 1 1 1 1
j , j

j , j j , j , j j ,
j , j

, j , , j ,

A A B B
A , A mod M .

A A B B+ +

−
+ +

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (61)

Then one can derive

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 21

()
()
()

()

11
1 1 11 1 1

1
1 1 1 1

1
1 1 1 1

1 1
1 1 1 1

, , , j j , j j ,

j , j , j j , ,

, j , , j j , j

j , j j , j j , , , j

B A A A A mod M ,

B A A B mod M ,

B B A A mod M ,

B A B B B mod M .

−−

−

−

− −

⎡ ⎤= − ⋅ ⋅⎣ ⎦
= − ⋅ ⋅

= − ⋅ ⋅

= + ⋅ ⋅

 (62)

4.3 Sequential error-free algorithm to solve system of polynomial equations [18]

Sequential iterative algorithm can be successively applied also for polynomial systems of
linear integer equations

() () ()
() ()1 1 1 1 0 1 1 1 1 0p p p p

i , j i , j i , j i , j i i i i

A s s s ,

a s a s a s a , y s y s y s y .− − − −

⋅ =

= ⋅ + + ⋅ + = ⋅ + + ⋅ +

x y
 (63)

Assuming the coefficients being integers, the solution of the system given by (63) can be
expressed as

() () () () () () () ()1

0 1
1 1 1 1

kp p p
ks s s s s s s ,

D s
⎡ ⎤= ⋅ − ⋅ + − ⋅ + + − ⋅⎢ ⎥⎣ ⎦

x x x x (64)

and vectors

() () () ()0 1
0 1

m
i i ims M s M s M s ,⎡ ⎤= ⋅ + ⋅ + + ⋅⎣ ⎦ix x x x (65)

where M is a prime modulus D is determinant of the matrix A and ,m k are finite integers.
Let us suppose for the moment that the determinant ()D s (polynomial) is known. We denote
polynomial modulus as

() 1pP s s .= −

The algorithms for the determinant and inverse matrix of polynomial system can be derived
analogously to relations (59-62). For details we refer to [18]. New problem is the calculation of
inverse polynomial. In what follows we outline briefly this algorithm.

We have to find polynomial ()b s to polynomial ()a s so that

() () ()() 1a s b s mod P s (mod M) .⋅ ⋅ = (66)

According to [2], the cyclic convolution using polynomial algebra concept is
1

0

p

l i l i
i

c a b ,
−

−
=

= ⋅∑ (67)

where indices l i− are calculated modulo p . From what is given above, it follows that solution
of equation (66) represents the solution of linear system

() () ()
() () ()

() () ()

()
()

()

00 1 1 1
1 0 2 1 0

1 2 0 01

ba , a p , a
a , a , a b

(mod M) ,

a p , a p , a b p

⎡ ⎤⎡ − ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ − ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (68)

in residual class M . Inverse polynomial ()b s can be obtained by successive reductions of
polynomial ()a s or vector a . For 1r st+ − reduction it holds

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 22

() () () ()
()2 1

1 1

0

2 2 1
rN /

ir r r r r

i

a l a i a m (mod M),
−

+ +

=

⋅ = ⋅ ⋅ ⋅ −∑

where

()1
12 2 0 1

2
r r

r

Nm l i (mod N); l , ,+
+

⎛ ⎞= ⋅ − ⋅ ∈ −⎜ ⎟
⎝ ⎠

and number of reduction 20 1r , , ,log N= … . Let []0 1 0 0 T, , , ,=n and

() () () ()
()2 1

1

0
2 1 (

rN /
ir r r r

i
n l n i a m mod M),

−
+

=

= ⋅ ⋅ ⋅ −∑

where

()2 0 1rm l i (mod N); l ,n ,= − ⋅ ∈ −

and number of reduction 20 1 log 1r , , , N .= −… The resulting solution of polynomial inversion is

()0

t

t (mod M),
a

= ⋅
nb

where 2logt N .=

Illustrative example:

Let us have linear system consisting of polynomials

()
2

2

1 3 1
2 1 2

s , s s
s .

s, s
+ ⎡ ⎤+⎡ ⎤

⋅ = ⎢ ⎥⎢ ⎥+⎣ ⎦ ⎣ ⎦
x

We shall use polynomial modulus () 3 1P s s= − and numerical modulus 5M = . Further we

shall assume that we know the determinant () 3 25 1D s s s s ,= − + + the determinant in the

residue class ()P s and the residue class M

() () ()()()3 1 5 2Dpm s D s mod s mod s= − = + , (69)

and the inverse matrix in the residue class ()P s and the residue class M

() () ()()()
2

1 3
2 2

3 4 2 3
1 5

3 2 3
s , s s

B s A s mod s mod .
s s , s s

− ⎡ ⎤+ + +
= ⋅ − = ⎢ ⎥+ + +⎣ ⎦

We calculate

() ()() ()
2 2 2

3
2 2

3 4 2 3 1
1 5

3 2 3 2 0p
s , s s s s

s mod s mod .
s s , s s

⎡ ⎤ ⎡ ⎤⎡ ⎤+ + + +
= ⋅ ⋅ − ⋅ =⎢ ⎥ ⎢ ⎥⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x

Using ()Dpm s from (69) we get

() () ()()()
2 2

3
00

2
1 5

0 0
s s

s Dpm s mod s mod .
⎡ ⎤ ⎡ ⎤

= ⋅ − =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x

We initialize vectors and control variables

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 23

() () () ()

()

5 4 3 22
3 2

3 2

2

5 2 4 11
5 1

2 2 10 2 2

2 1
0 0

0

s s s s ss
s s D s s s s ,

s s s

s
j ,k , s .

⎡ ⎤− + − + +⎡ ⎤+
= ⋅ = ⋅ − + + = ⎢ ⎥⎢ ⎥

− + +⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤+

= = = ⎢ ⎥
⎣ ⎦

T y

x

We calculate vectors

() () ()

() () ()

()
() ()()

() ()()

3 22

00 2 3

5 4 2
0

3 2

3 2 2

2 2

2

1 3 2 2 12 1
2 1 0 4 2

5 6
2 10 2

1 5 51
5 5 10 2

4 4
5

3

s , s s s ss
s A s s ,

s, s s s

s s s
s s s M ,

s s

s mod s s s s s
s ,

s s

s s
s s mod

s

⎡ ⎤+ + + +⎡ ⎤+⎡ ⎤
= ⋅ = ⋅ = ⎢ ⎥⎢ ⎥⎢ ⎥+ +⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤− −
= − ⋅ = ⎢ ⎥

− − +⎢ ⎥⎣ ⎦

− ⎡ ⎤ ⎡ ⎤− − − −
= = ⋅ =⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+
= =

'
00

'
00

01

p,01 01

y x

T T y

T
y

y y
2

.
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

The vector () 0s ,≠01y thus we set 1k =

() () () ()()()

()()() ()

3

22
3

2 2 2

1 5

4 4 43 4 2 3
1 5 5

0 03 2 3 3

s B s s mod s mod

s s s ss , s s
mod s mod mod .

s s , s s s

= ⋅ − =

⎡ ⎤+ −⎡ ⎤+ + + ⎡ ⎤ ⎡ ⎤
= ⋅ − == =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

01 p,01x y

If any coefficient of the solution is greater than ()1 2M /− , it is considered negative and

according to the rules of modulo arithmetic its negative value is calculated by subtracting
modulus M . We update intermediate result

()
2 2

12 1 2 5 1
5

00 0
ss s s

s .
−⎡ ⎤ ⎡ ⎤+ − +⎡ ⎤

= + ⋅ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

x

Further, we calculate appropriate vectors

() () ()

() () ()

()
() ()()

()

2

2 2

5 4 2
1

3

3

1 3
2 1 0 2

5 5
5

2 2

1

5

s , s s s s
s a s s ,

s, s s

s s s s
s s s ,

s

s mod s
s , s .

⎡ ⎤+ − − −⎡ ⎤⎡ ⎤
= ⋅ = ⋅ = ⎢ ⎥⎢ ⎥⎢ ⎥+ −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤− − +
= − ⋅ = ⎢ ⎥

− +⎢ ⎥⎣ ⎦

−
= = =

'
01 01

'
01

02 p,02

y x

T T y

T
y 0 y 0

The vectors () () 0s s= ≠p,02y 0, T . Therefore we set control variables 1 0j , k= = . Then we

calculate

() () () ()()
2 2

3

5
5

1 2 3
s s s s

s , s s mod .
s

⎡ ⎤ ⎡ ⎤−
= = = =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

p,10

T
T y T

Further we calculate next particular solution

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 24

() () ()() ()
2 2

3
2 2

3 4 2 3
1 5 5

3 23 2 3 3
s ss s s s

s mod s mod mod ,
s s s s

⎡ ⎤⎡ ⎤+ + + ⎡ ⎤ ⎡ ⎤
= ⋅ ⋅ − ⋅ = ⋅ =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−+ + + ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

10x

which we add to intermediate result

() ()
4 22

3
3

2 6 12 5 1
1

20 2 2
s s s ss s

s s .
s

⎡ ⎤+ − +⎡ ⎤− + ⎡ ⎤
= + ⋅ − = ⎢ ⎥⎢ ⎥ ⎢ ⎥− − +⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

x

Again we repeat and calculate

() () ()

() () () () ()

2

2

0

1 3 5
2 1 2 2

5

s , s s s s
s A s s ,

s, s

s s s , s , s

+ ⎡ ⎤−⎡ ⎤⎡ ⎤
= ⋅ = ⋅ = ⎢ ⎥⎢ ⎥⎢ ⎥+ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= − ⋅ = = =

'
10 10

'
10 11 p,11

y x

T T y 0 y 0 y 0.

Both vectors ()s11y and ()sT equal the zero vectors. It means that we finish the calculation.

The resulting solution is

() () ()
4 2

3 2 3

2 6 11 1
5 1 2 2

s s s
s s .

D s s s s s

⎡ ⎤+ − +
= ⋅ = ⋅ ⎢ ⎥

− + + − +⎢ ⎥⎣ ⎦
x x

5. Volterra systems

Direct generalization of convolution systems for nonlinear systems are Volterra systems

1 1 2

1 1 1

1 1 1 2 1 2 1 2
0 0 0

1 2

() () () (,) () ()

() () , 0,1, , 1.

N N N

l l l
y j h l x j l h l l x j l x j l

y j y j j N

− − −

= = =

= − + − −

= + + = −

∑ ∑∑
…

 (70)

Problems connected with Volterra systems can be divided into several items
• determination of Volterra kernels [19]
• calculation of the output of the nonlinear Volterra filter [20]
• determination of inverse kernels to the given nonlinear Volterra system [21].

We shall focus on determination of Volterra kernels. Let us again employ polynomial algebra
and express the input signal and i th− Volterra kernel

1 2

1 2

1 1 1 1

1 2 1 2 1 2
0 0 0

i

i

N N N N
ll ll

i i i i i
l l l l

X (z) x(l)z , H (z ,z , ,z) h (z ,z , ,z)z z z .
− − − −

= = =

= =∑ ∑∑ ∑

According to [19] for the Volterra kernel of the i th− degree we can write

1 2 1 2
1 2

1 2

p
i i i i

i i
i

Y (z z z) Y (z ,z , ,z)H (z ,z , ,z) .
X (z)X (z) X (z) D

= = (71)

We can again employ the algorithm based on successive reductions of the denominator of (71)
(see section 2.2). The algorithm consists in autoconvolutions and crossconvolutions. Let us
demonstrate the algorithm using simple example.

Illustrative example:

Let 2, 2N i= = and

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 25

[] []3 4 1 2T T, , , .=2y x=

Then according to (71) and after the reductions we have

1 2 1 2 1 2
2 1 2

1 2 1 1 2 2

1 2 1 2 1 2 1 2
2 2 2

3 4 3 4 1 2 1 2
1 2 1 2 1 2 1 2 1 2 1 2

19 14 14 16 19 14 14 16
1 2 9

z z (z z)(z)(z)H (z ,z)
(z)(z) (z)(z)(z)(z)

z z z z z z z z .
()

+ + − −
= = =

+ + + − + −
− − + − − +

=
−

Hence the resulting kernel of the second degree is

2

19 141
14 169

h .
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦

6. Conclusions

In the contribution we have presented several error-free algorithms to solve one- and
multidimensional convolution systems based on Fermat number theoretical transform. The main
significance of the use of modulo arithmetic is eliminating rounding-off and truncation errors.

In the contribution we have derived the error-free algorithm to solve convolution systems
that is based on polynomial algebra concept. This form of k -dimensional deconvolution
algorithm permits to express it as a sequence of k -dimensional “autoconvolutions” of the
response signal and “crossconvolutions” of the response and the output signal.

Further in the contribution we have extended the error-free algorithms to special linear
systems, e.g. Toeplitz, Hilbert, Vandermonde systems. We continued with general systems of
linear equations. In principle the algorithms proposed in the contribution can be divided into
two groups

• iterative (using one modulus – one residue class)
• parallel (using several moduli – several residue classes and Chinese theorem).
The parallel algorithm is well suited for the implementation on parallel computers that

allows the increase of the calculation speed.
We have extended the iterative algorithm also for the linear system of polynomial

equations. At the end of the contribution we outlined the possible extension of the application of
error-free algorithms for nonlinear Volterra systems.

References

[1] N. Ahmed and K.K. Rao, Orthogonal transforms for digital signal processing, Springer-Verlag
1975.

[2] H. J. Nussbaumer, Fast Fourier transform and convolution algorithms, Springer-Verlag 1981.

[3] M. Morháč, Precise deconvolution using the Fermat number transform, Computers and
Mathematics with Applications 12A (1986) 319.

[4] M. Morháč, Error-free deconvolution based on cyclic determinant calculation approach, Computer
Mathematics 49 (1993) 41.

P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč

 26

[5] M. Morháč, K-dimensional error-free deconvolution using the Fermat number transform,
Computers and Mathematics with Applications 18 (1989) 1023.

[6] M. Morháč, Precise multidimensional deconvolution using the polynomial algebra concept,
International J. Computer Mathematics 32 (1990) 13.

[7] M. Morháč and V. Matoušek, Exact algorithm of multidimensional circulant deconvolution, Applied
Mathematics and Computation 164 (2005) 155.

[8] M. Morháč, An error-free Levinson algorithm to solve integer Toeplitz system, Applied
Mathematics and Computation 61 (1994) 135.

[9] R. E. Blahut, Fast algorithms for digital signal processing, IBM Corporation, Owego, NY, 1985.

[10] M. Newman, Solving equations exactly, Nat. Bureau Standards 71B:171-179 1967.

[11] M. Morháč, An algorithm to solve Hilbert systems of linear equations precisely, Applied
Mathematics and Computation 73 (1995) 209.

[12] M. Morháč, An iterative error-free algorithm to solve Vandermonde systems, Applied Mathematics
and Computation 117 (2001) 45.

[13] W. H. Press et al., Numerical recipes, Cambridge University Press, Cambridge, 1986.

[14] M. Morháč, R. Lórencz, A modular system for solving linear equations exactly. I. Architecture and
numerical algorithms, Computers and Artificial Intelligence 11 (1992) 351.

[15] R. Lórencz, M. Morháč, A modular system for solving linear equations exactly. II. Hardware
realization. Computers and Artificial Intelligence 11 (1992) 497.

[16] R.T.Gregory, E.V.Krishnamurthy, Methods and applications of error-free computation. Springer-
Verlag, New York, Berlin, Heidelberg, Tokyo, 1984.

[17] M. Morháč, One-modulus residue arithmetic algorithm to solve linear equations exactly,
Mathematical and Computer Modelling 19 (1994) 95.

[18] M. Morháč, An error-free algorithm to solve linear system of polynomial equations, Mathematical
and Computer Modelling 19 (1994) 85.

[19] M. Morháč, Fast error-free algorithm for the determination of kernels of the periodical Volterra
representation, Applied Mathematics and Computation 38 (1990) 87.

[20] M. Morháč, A fast algorithm of nonlinear Volterra filtering, IEEE Transactions on Signal
Processing 39 (1991) 2353.

[21] M. Morháč, Determination of inverse Volterra kernels in nonlinear discrete systems, Nonlinear
Analysis, Theory, Methods & Applications 15 (1990) 269.

