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Abstract 

The paper presents a survey of error-free algorithms to solve various systems of linear 
equations. The presented algorithms do not introduce computational errors into the solution and 
thus they are well suited to solve ill-conditioned linear systems. The error-free algorithms are 
based on modulo arithmetic. Two basic approaches have been investigated in the paper. The 
first one is based on iterative scheme using one modulus only. The other one is parallel and uses 
several moduli and the Chinese theorem. It is based on polynomial algebra operations that allow 
to express the operation of deconvolution as a sequence of convolutions of both response and 
output signals. 
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1. Introduction 

The solution of linear algebraic equations is a very frequent task in numerical mathematics 
and experimental physics at all.  When solving such a set of linear equations one often meets the 
problem of ill-conditioned matrix of the set.  For large dense sets of linear equations, which are 
as a rule ill-conditioned, the stability of the solution cannot be guaranteed. Rounding-off and 
truncation errors, during the numerical computations, involved in obtaining the solution to the 
problem cannot be tolerated. Let us illustrate the situation using a simple example. 

Illustrative example: 
Let us have ill-conditioned set of two linear equations 
x + 3y = 4
x + 3.00001y = 4.00001,

       (1) 

which has the solution x=1, y=1 . On the other hand let us consider the set 

x + 3y = 4
x + 2.99999y = 4.00002.

       (2) 

This set has the solution x = 10, y = -2.  Very small change in the coefficients (0.00002 and 
0.00001) caused enormous changes in the solution. The inverse matrix of (1) contains elements 
of the order of 510 . It demonstrates its ill-conditionality. 

We are motivated by the fact  that in scientific computations there are large classes of ill-
conditioned problems and there are also numerically unstable algorithms. Digital computer is a 
finite machine and therefore it is capable of representing internally only a finite set of numbers. 
There exist difficulties associated with the attempts at approximating arithmetic in the field of 
real numbers + −( R, , )  by using the finite set of so-called floating-point numbers F , more 
appropriately called the set of computer-representable numbers. There is no possibility of 
representing the continuum of real numbers in any detail. A “practical” solution is to represent a 
real number by the closest computer-representable number, thereby introducing the rounding 
error.  

It is well known that computers can perform certain arithmetic operations exactly if the 
operands are integers. Moreover there are many situations in practice when we work with 
integer input data. Processing of spectra (histograms) in nuclear physics can serve as a good 
example. When solving ill-conditioned problems during the analysis of spectra it is not 
reasonable to leave the world of exact integers and thus introduce instability. It motivated us to 
consider integer arithmetic as a mean of avoiding rounding errors in the hope that certain ill-
conditioned problems can be solved exactly. Residue number system is an example of a number 
system with which we can do exact arithmetic. The aim of the contribution is to present error-
free algorithms to solve ill-conditioned systems of linear equations. 

Let us summarize how we can proceed when the solution of ill-conditioned linear system 
of equations can be expressed as rational fractions of integers 

• we can increase the precision of floating point representation - however it does not need 
to guarantee the correct result 
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• we can work with long integers -  from algorithmic point of view it is many times very 
cumbersome 

• we can work with integers in finite rings using residue class or modulo arithmetic and at 
the end of the calculation to convert the modulo representation into real numbers. 

In the rest of the paper when speaking about modulo arithmetic we shall consider prime 
moduli. Let us now illustrate modulo representation of negative numbers and inverse numbers 
for modulus 17=M (see Table I and II). 

x  0 1 2 3 4 5 6 7 8 -8 -7 -6 -5 -4 -3 -2 -1 
x(mod M )  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table I. Modulo representation of numbers from the range 1 2 1 2− − −( M ) / ,( M ) /  for 

17=M   

x  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1x (mod M )−  0 1 9 6 13 7 3 5 15 2 12 14 10 4 11 8 16

Table II. Modulo inverse numbers for 17=M  
One can observe that the assignment between numbers and their negatives and inverses is prime 
moduli uniquely unique. By definition for 0 we have taken inverse number to be 0. 

2. Convolution systems 

In many applications the dynamic behavior of a linear system can be described by means 
of impulse response function h( n ) . The periodical convolution of finite sets x( n )  and h( n )  
is 

1

0
( ) ( ) ( ), 0,1, , 1,

N

m
y n h n m x m n N

−

=

= − = −∑ …      (3) 

where N  is the length of both vectors. Very frequently the advantageous property of 
factorization of the convolution of  two signals to the product of their Fourier coefficients is 
utilized [1], [2] 

[ ] [ ] [ ]( ) ( ) ( ) , 0,1, , 1.i i iF y n F h n F x n i N= ⋅ = −…      (4) 

Since the Fourier transform cannot be computed with absolute precision, the number theoretical 
transforms were defined with the aim to carry out the fast error-free convolution of data. These 
transforms are defined in the ring of integers using the operations carried out in modulo M  
arithmetic, where M  is prime. Direct and inverse Number Theoretical Transforms (NNT) can 
be defined 

1

0
( ) ( ) (mod ) 0,1, , 1,

N
kn

n
X k x n M k Nα

−

=

⎡ ⎤
= = −⎢ ⎥
⎣ ⎦
∑ …      (5) 

1
1

0
( ) ( ) (mod ) 0,1, , 1,

N
kn

k
x n N X k M n Nα

−
− −

=

⎡ ⎤
= = −⎢ ⎥
⎣ ⎦

∑ …     (6) 

where 
1. (mod ) 1,a N N M−⋅ =  
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. (mod ) 1,Nb Mα =  

and N  must divide 1−M . Among NTT the most famous are Merssene and Fermat transforms 
[2]. They are frequently used for error-free calculations of convolutions. However, the problem 
of precision is much more critical in the inverse operation, i.e., deconvolution. 

2.1 Precise deconvolution using the Fermat number transform [3] 

Convolution system (3) can be written in matrix form 

( )
( )

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

( )
( )

0 00 , 1 , 2 , 1
1 11 , 0 , 3 , 2

2 , 3 , 0 , 12 2
1 , 2 , 1 , 01 1

y xh h N h h
y xh h h h

h N h N h h Ny N x N
h N h N h hy N x N

⎡ ⎤ ⎡ ⎤⎡ ⎤−
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −− −⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥− −− −⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

i   (7) 

or 
Hy x.= ⋅           (8) 

The solution of any regular system of linear equations (8) can be expressed as 

0 1 2
0 1 2

1 m
mM M M M ,

D
x x x x x⎡ ⎤= + + +⎣ ⎦      (9) 

where D  is determinant of the matrix H , M  is chosen modulus (in our case Fermat number) 
and m  is a finite number. Substituting (9) into matrix equation (8) gives 

0 1
0 1

1 m
mM H M H M H

D
y x x x⎡ ⎤= ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅⎣ ⎦     (10) 

or after some modifications 

( )0 1
1 1 1

mD H H H
M M M

y x x x 0⎡ ⎤⎡ ⎤⋅ − ⋅ − ⋅ − ⋅ =⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
.    (11) 

From (11) we can define the vectors 

( ) ( )1 0 1
1 1 1 2j j jD H , H , j , , ,m.
M M

y y x y y x+= ⋅ − ⋅ = − ⋅ = …    (12) 

If the vector 1+y j  equals the zero vector the calculation can be finished. It can serve as an 

indication of the end of iterations. 
To calculate modulo solution of (8) we can utilize the Fermat number transform. For 

transformed values it holds 
( ) ( ) ( )1 0 1 1i i iR R R (mod M ) i , , ,N .x h y−= ⋅ = −…      (13) 

Using inverse Fermat transform we obtain modulo M  solution of the vector x  

MDD(mod M ) (mod M ) (mod M ),
D DM M Mx  x x x= = =     (14) 

where 

( )
1

0
0

N

M M M M
i

D k M D , D , D H i (mod M ).x x
−

=

⎡ ⎤
= ⋅ + = ⋅ = ⎢ ⎥

⎣ ⎦
∏    (15) 

Then 
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( )( )0 1 2 mD M M M .x x x x x= ⋅ − + +… …       (16) 

Substituting (16) to (12) yields 
( )1 1 2 mH M H M Hy x x x= ⋅ + ⋅ + ⋅ ⋅…        

or in general 
1 2j(mod M ) H , j , , ,m.jy x= ⋅ = …       (17) 

Hence to find particular solution x j  we can apply again Fermat transform. Then we can proceed 

to the next iteration step  

1
j j

j

H
.

M
y x

y +

− ⋅
=         (18) 

The final solution x  can be calculated using (9). 
In (9), (10), (11), (12), (14) we assumed we know the exact value of the determinant D  of 

the convolution matrix H . In what follows we introduce the algorithm to calculate it [3], [4].  
By employing the Fourier transform the determinant of the convolution matrix of the system (8) 
can be expressed 

( ) ( )( ) ( )( )
11 1 2 1 122

0 1 2 1
0

1
N

N N N kk k
N

k

D h hW h W h W
−

− − + −
−

=

= − ⋅ + + + +∏    (19) 

where 
( )2− ⋅

=
j

NW e
π

 and N  is a power of 2, i.e., the determinant of such a matrix can be 
expressed as the product of the coefficients of the Fourier transform of the response vector h . 
The Fourier transform is used only formally. For details we refer to [3]. 

Let us illustrate the algorithm by an example with 8=N . Applying  DFT  to vector h  we 
obtain the bit reversed vector 

0

1
2 2 2 2

2
2 2 2 2

3
2 3 2 3

4
2 3 2 3

5
3 2 3 2

6
3 2 3 2

7

0 1 2 3

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1
1 1
1 1
1 1
1 1

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− − − − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− − − −
⎢ ⎥⎢ ⎥

− − − − ⎢ ⎥⎢ ⎥ ⋅ =⎢ ⎥⎢ ⎥− − − − ⎢ ⎥⎢ ⎥
− − − − ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥− − − − ⎢ ⎥⎢ ⎥
⎢ ⎥− − − −⎢ ⎥⎣ ⎦ ⎣ ⎦

+ + + +

=

h
h
hW W W W
hW W W W
hW W W W W W

W W W W W W h
W W W W W W h
W W W W W W h

h h h h h

( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

4 5 6 7

0 1 2 3 4 5 6 7

0 2 4 6 1 3 5 7

0 2 4 6 1 3 5 7

2 3
0 4 1 5 2 6 3 7

2 3
0 4 1 5 2 6 3 7

3 2
0 4 1 5 2 6 3 7

3 2
0 4 1 5 2 6 3 7

+ + +⎡
⎢ − + − + − + −⎢
⎢ − + − + − + −
⎢

− + − − − + −⎢

− + − + − + −

− − − + − − −

− + − − − + −

− − − − − − −⎣

h h h
h h h h h h h h
h h h h h h h h W

h h h h h h h h W

h h h h W h h W h h W

h h h h W h h W h h W

h h h h W h h W h h W

h h h h W h h W h h W

}
}

0
0

0
1

2
0 1 2

2
0 1 3

2 3
40 1 2 3

2 3
50 1 2 3

3 2 3
60 1 2 3

3 2 3 7
0 1 2 3

1
2

3

⎤ ⎡ ⎤ ⎡ ⎤⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎢ ⎥+ ⎢ ⎥ ⎫⎥ ⎢ ⎥ ⎢ ⎥ ⎬⎥ ⎢ ⎥− ⎭⎢ ⎥⎢ ⎥ = =⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ − + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦− − −⎢ ⎥⎣ ⎦⎦

  group
  group

a .X
b .X
c c W X

.c c W X
Xd d W d W d W
Xd d W d W d W
Xd d W d W d W
Xd d W d W d W

4

⎫
⎪
⎪
⎬
⎪
⎪⎭

  group

  group.

  



P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč 

 
     6 

 
 

The numbers in the first and the second group are real. In the third group we multiply the 
numbers 2 3X ,X  and in the fourth group the numbers 4 5 6 7X , X , X , X . The fact that 4 1= −W  must 
be taken into account.  Then 

( )( )
( )( )
( ) ( )
( )( )
( ) ( )

2 2 2 2
2 3 0 1 0 1 0 1

2 3 2 3
4 5 0 1 2 3 0 1 2 3

2 2 2 2 2 2
0 1 3 2 1 0 2 3 0 1

3 2 3 2
6 7 0 1 2 3 0 1 2 3

2 2 2 2 2 2
0 1 3 2 1 0 2 3 0 2

4 5 6 7 0 1

2 2

2 2

X X c c W c c W c c

X X d d W d W d W d d W d W d W

d d d d d d d d W e eW

X X d d W d W d W d d W d W d W

d d d d d d d d W e e W

X X X X e eW

⋅ = + − = +

⋅ = + + + − + − =

= + − − + − = −

⋅ = + − + − − − =

= + − + + − = +

⋅ ⋅ ⋅ = −( )( )2 2 2 2
0 1 0 1e eW e e .+ = +

 

We see that both products are real numbers. 
Generally, let us have the vectors 0 1 2X X X …n n n, , , , where for Xk

n  and 1+ Xk
n  it holds 

( )

( )
( )

( )
( )

1

2

2 1

1

0

k
n

k
nk

n k
n

k
n

k
n

X j

X j /

X j /

X

X

X

−

=
−

( )
( )

( )
( )

( )
( )

1

0

1

2 1

2

2

1

k
n

k
n

k
nk

n k
n

k
n

k
n

X

X j

X j /
,

X j /

X

X

X+

−⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ +
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

20 1 log 1= −…n , , , N  is the number of reduction, 10 1 2 += … nk , , ,N /  is the number of cyclic shifts 

with a negative transition to the topmost position and 2= nj N / . Then for the reduced vector 
0

1+Xn  we get 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
2

2 2

1
0

1

1
20 0 2 0 2 0 0

1

1 0 2 2 1 1 1

1 0 2 2 1 1 1

j

k ik k k k
n n n n

i

n

j

i
n n n n

i

X X j / X i X j i

.

X X j / X i X j i

X

−

=

+

−

=

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥− − + − ⋅ + ⋅ − −⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥= ⎢ ⎥

⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥− − + − ⋅ + ⋅ − −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑

∑

 

Repeating the above described procedure until the length of the vector 0
1+Xn  is greater than 1, 

we can calculate the exact integer value of the product of the appropriate group. Multiplying the 
products of all groups we can get the determinant of the convolution matrix, which is used in 
the above outlined deconvolution algorithm. 

Illustrative example: 
Let us have the convolution system 
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( )
( )
( )
( )

0 33 0 0 2
12 3 0 0 5

0 2 3 0 32
0 0 2 3 03

x

x

x

x

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋅ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

,       (20) 

where the determinant 65=D .  We shall use the modulus 17=M , which is the Fermat 
number and 4=N .  Then the forward and inverse Fermat transform matrices are as follows 

1

1 1 1 1 1 1 1 1
1 4 16 13 1 13 16 4

13
1 16 1 16 1 16 1 16
1 13 16 4 1 4 16 13

T , T .−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

Then 

( ) ( )

3 51 1 1 1
1 4 16 13 2 11
1 16 1 16 0 1
1 13 16 4 0 12

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ = ⋅ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

th hT mod 17 mod 17 .  

Employing Euclidian algorithm we calculate vector of inverse modulo values 

( ) [ ]1 1 1 1 15 11 1 12 7 14 1 10
T T, , , mod 17 , , , .th − − − − −⎡ ⎤= =⎣ ⎦  

1-st iteration step 
We calculate the vector of the transformed output values 

( )

3 111 1 1 1
1 4 16 13 5 3
1 16 1 16 3 1
1 13 16 4 0 14

T mod 17 .m0 m0Y y

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ = ⋅ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Then due to factorization property of the Fermat number transform (13) we get 

0

911 7
3 14 8

17
1 1 1

14 10 4

(mod ) .X

⋅ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⋅ ⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥⋅
⎢ ⎥⎢ ⎥⋅⎣ ⎦ ⎣ ⎦

 

Applying the inverse Fermat transform we obtain 

0

9 14 14 14 91 1 1 1
1 13 16 4 8 15 15 15 6113 17 17
1 16 1 16 1 8 8 8 1065
1 4 16 13 4 6 6 6 16

MDD(mod ) (mod ) ,
D D

x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ ⋅ = = = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

where MD  was calculated using relation (15). Let us suppose that the positive numbers are 

represented in the range  ( )0 1 2, M /−  and the negative ones in the range ( )1 2 1 1M / ,M− + − . 

Then we obtain the negative values for numbers greater than ( )1 2M /−  by subtracting  the 

modulus 
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[ ]0
1 8 6 7 1
65

T, , , .x = − − −  

Further we calculate 

( )

0 0

1 0

3 0 0 2 8 26
2 3 0 0 6 21 1
0 2 3 0 7 965 65
0 0 2 3 1 17

195 26 13
325 2 191 1
195 9 1217

0 17 1

H ,

D ,
M m0

y x

y y y

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = ⋅ = ⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥′= ⋅ − = − =
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

[ ]17 13 2 12 1 T(mod ) , , , .m1 1y y= ==  

2-nd iteration step 
In the next iteration step we obtain 

[ ] [ ] [ ]117 11 5 5 14 11 7 5 14 5 1 14 10 17 9 2 5 4T T TT (mod ) , , , , , , , (mod ) , , , .m1 m1Y y X= ⋅ = = ⋅ ⋅ ⋅ ⋅ =  

Using the inverse Fermat transform we calculate the vector 

[ ]1
1 1 17 5 3 2 16 TT (mod ) , , , .x X−= ⋅ =  

Adjusting the elements greater than ( )1 2M /−  we obtain [ ]1 5 3 2 1 T, , , .x = − Then we calculate 

[ ] [ ] [ ] [ ]1 1
1 1 2

113 19 12 1 13 19 12 1 13 19 12 1 0 0 0 0
17

T T T TH , , , , , , , , , , , , , .
M

y yy x y
′−′ ⎡ ⎤= ⋅ = = = − =⎣ ⎦  

The zero vector 2y  indicates the end of calculation. The resulting vector is then obtained by 

[ ] [ ] [ ] [ ]0 1
1 1 117 8 6 7 1 17 5 3 2 1 77 57 27 18

65 65
T T T, , , , , , , , , .

D
x x x ⎡ ⎤= + ⋅ = − − − + ⋅ − = −⎣ ⎦  

This is the exact solution of our illustrative example (20). 
The  periodical  k-dimensional  convolution  of the  finite  sets 1 2 kx( n ,n , ,n )…  and 

1 2 kh( n ,n , ,n )…  is defined by  

( ) ( ) ( )
1 2

1 1 1

1 2 1 2 1 1 2 2
0 0 0

, ,..., ... , ,... , ,..., .
k

N N N

k k k k
m m m

y n n n x m m m h n m n m n m
− − −

= = =

= ⋅ − − −∑ ∑ ∑  

Analogously to one-dimensional case in [5] we have derived the error-free algorithm of 
multidimensional deconvolution as well as algorithm to calculate the determinant of the 
multidimensional convolution matrix. 

2.2 Error-free deconvolution using polynomial algebra concept [6], [7] 

Polynomial algebra plays an important role in digital signal processing because 
convolutions can be expressed in terms of operations on polynomials [2]. Polynomial algebra is 
the basis of one group of fast and error-free one- and multidimensional convolution algorithms.  
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Let us suppose the elements of ( ) ( )h m , x l  to be coefficients of the polynomials ( )H z  and 

( )X z of the degree 1N − . Hence we have 

( ) ( ) ( ) ( )
1 1

0 0

N N
m l

m l
H z h m z , X z x l z .

− −

= =

= =∑ ∑       (21) 

If we multiply ( )H z  by ( )X z  , the resulting polynomial will be of degree 2 2N − . Thus 

( ) ( ) ( ) ( )
2 2

0

N
n

n
Y z H z X z y n z .

−

=

= ⋅ = ∑       (22) 

This means that the convolution of two sequences can be treated as the product of two 
polynomials. 

If the one-dimensional convolution defined by (1) is cyclic the indices n,m,l  are 

calculated modulo N . This implies that 1Nz (mod N ) =  and therefore the cyclic convolution can 
be considered as the multiplication of two polynomials 

( ) ( )Y( z ) H z X z ,= ⋅         (23) 

where the powers of the polynomial variable z  are calculated modulo N  or by 

( ) ( ) ( ) ( )1NY z H z X z mod z .= ⋅ −        (24) 

Let us proceed to multidimensional case of convolution. The k-dimensional cyclic 
convolution of the discrete input signal x  and the response signal h  is defined 

( ) ( ) ( )
1

1

11

1 1 1 1
0 0

k

k

NN

k k k k
m m

y n , n , , h m , m x n m , ,n m ,
−−

= =

= − −∑ ∑… … … …    (25) 

where 1 1 2 20 1 0 1 0 1k kn ,N , n ,N , , n ,N∈ − ∈ − ∈ −…  and indices 1 1n m− , are calculated 

modulo 1N , indices 2 2n m−  are calculated modulo 2N , etc. By considerations analogous to 

those of the one-dimensional case the polynomial expression of the k-dimensional convolution 
is obtained 

( ) ( ) ( )1 2 1 2 1 2k k kY z ,z , ,z H z ,z , ,z X z ,z , ,z ,= ⋅… … …      (26) 

where the powers of the variable 1z  are calculated modulo 1N  and the powers of the variable 

kz  are calculated modulo kN . In the case of deconvolution, i.e. when we know the output 

signal y  and the response signal h ,  the input signal can be formally expressed in polynomial 
form 

( ) ( ) ( )1X z Y z H z ,−= ⋅         (27) 

and 
( ) ( ) ( )1

1 2 1 2 1 2k k kX z ,z , ,z Y z ,z , ,z H z ,z , ,z ,−= ⋅… … …     (28) 

for one-, and k-dimensional deconvolution, respectively. Let us illustrate the algorithm of 
calculation of (27) and (28) by the following examples. 
 

Illustrative example for one-dimensional deconvolution: 
 
Let the vectors of output signal and impulse response be 
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[ ] [ ]3 1 2 1 1 4 2 0T Ty , , , , h , , , .= =  

According to (23) it holds 

( ) ( ) ( )2 3 23 2 1 4 2z z z z z X z .+ + + = + + ⋅  

Formally we can express the sought 

( )
2 3

2

3 2
1 4 2

z z zX z .
z z

+ + +
=

+ +
 

Multiplying the numerator and the denominator by the polynomial ( ) 1NH z (mod z )− −  we obtain 

( ) ( )( )
( )( )

( )
( )

2 3 2 2 3

2 2 2

3 2 1 4 2 3 9 4 5

1 4 2 1 4 2 5 12

z z z z z z z z
X z .

z z z z z

+ + + − + − + −
= =

+ + − + −
 

In the following sections of the paper the product ( ) ( )H z H z⋅ −  will be called the reduction of 

the polynomial ( )H z  with respect to the variable z . If we multiply the numerator and the 

denominator by the polynomial 25 12z ,+  the resulting polynomial is 

( ) ( )( )
( )( )

2 3 2 2 3

2 2

3 9 4 5 5 12 63 105 56 133
1195 12 5 12

z z z z z z zX z .
z z

− + − + − + −
= =

−− +
 

The coefficients of the polynomial X( z )  represent exact solution of the example. 
 

Illustrative example for two-dimensional deconvolution: 
 
Let the matrices of two-dimensional output signal and two-dimensional impulse response 

be 
3 2 2 3
1 4 1 3

, ,
y , h .

, ,
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

Using (26) for  k = 2  we have 

( ) ( ) ( ) ( ) ( )1 1 2 1 1 2 1 23 2 4 2 3 3z z z z z z X z ,z⎡ + + + ⋅ ⎤ = ⎡ + + + ⋅ ⎤ ⋅⎣ ⎦ ⎣ ⎦  

or 

( )
( ) ( )
( ) ( )

1 1 2
1 2

1 1 2

3 2 4
2 3 3

z z z
X z ,z .

z z z
⎡ + + + ⋅ ⎤⎣ ⎦=
⎡ + + + ⋅ ⎤⎣ ⎦

 

By multiplying the numerator and the denominator by the polynomial ( )1 2H z , z− , , i.e., by its 

reduction with respect to the variable 2z , we get 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )1 1 2 1 1 2 1 1 2
1 2

11 1 2 1 1 2

3 2 4 2 3 3 11 13 4 2
13 142 3 3 2 3 3

z z z z z z z z z
X z ,z .

zz z z z z z
⎡ + + + ⋅ ⎤ ⎡ + − + ⋅ ⎤ + + +⎣ ⎦ ⎣ ⎦= =

+⎡ + + + ⋅ ⎤ ⎡ + − + ⋅ ⎤⎣ ⎦ ⎣ ⎦
 

Now we multiply this result by the polynomial 113 14z−  

( )
( ) ( ) ( )

( )( )
( ) ( )1 1 2 1 1 1 2

1 2
1 1

11 13 4 2 13 14 39 15 24 30
13 14 13 14 27
z z z z z z z

X z ,z .
z z

⎡ + + + ⎤ − − + − +⎣ ⎦= =
+ −

 

The resulting matrix is 
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39 241
15 3027

,
x .

,
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

Now let us generalize the algorithm for k-dimensional data. Let us assume that the 
dimensions of the convolution system 1 2 kN ,N , ,N…  are powers of  2.  Then the algorithm of 

inversion of the polynomial ( )1 2 kH z ,z , ,z…  and its simultaneous multiplication by the 

polynomial ( )1 2 kY z ,z , ,z…  can be expressed as successive reductions of the response function 

(autoconvolutions) and convolutions of ( )1 2 kY z ,z , ,z…  with reduced response 

(crossconvolutions). 
The 1( p ) th+ −  reduction of the response in the direction k  (autoconvolution) is 

( ) ( ) ( ) ( )
11

1 1

1
11 2

1 1
1 1 1 1 1 1

0 0 0

2 2 1

k
p

k
k

k k

N
NN

ip p p p p
k k k k k k k k k

i i i

h l , ,l , l h i , ,i , i , h m , ,m ,m ,
−

−

⎛ ⎞−⎜ ⎟−− ⎝ ⎠
+ +

− − −
= = =

⋅ = ⋅ ⋅ −∑ ∑ ∑… … … … (29) 

where 

( ) ( ) ( )1
1 1 1 1 1 1 1 1 2 2p p

k k k k k k k km l i mod N , ,m l i mod N ,m l i mod N ,+
− − − −= − = − = ⋅ − ⋅  

1 1 1 1 10 1 0 1 0 1
2

k
k k k p

Nl ,N , ,l ,N , l , ,− − +

⎛ ⎞∈ − ∈ − ∈ −⎜ ⎟
⎝ ⎠

…  

and the number of the reduction 2 10 1 log kp , , , N .−= …  
Next we derive the algorithm of crossconvolution. Let 

( ) ( )0
1 2 1 2k k kn i ,i , ,i y i ,i , ,i ,=… …  

where 

1 1 2 20 1 0 1 0 1k ki ,N , i ,N , ,i ,N .∈ − ∈ − ∈ −…  

Then the calculation of the 1( p ) th+ −  reduction of the signal kn in the direction k  is 

( ) ( ) ( ) ( )
11

1 1

1
11 2

1
1 1 1 1 1 1

0 0 0

2 1

k
p

k
k

k k

N
NN

ip p p p
k k k k k k k k k

i i i

n l , ,l ,l n i , ,i , i , h m , ,m ,m ,
−

−

⎛ ⎞−⎜ ⎟−− ⎝ ⎠
+

− − −
= = =

= ⋅ ⋅ −∑ ∑ ∑… … … …  (30) 

where 

( ) ( ) ( )1 1 1 1 1 1 1 1 2 p
k k k k k k k km l i mod N , ,m l i mod N ,m l i mod N ,− − − −= − = − = − ⋅  

1 1 1 10 1 0 1 0 1k k k kl ,N , ,l ,N , l ,N ,− −∈ − ∈ − ∈ −…  

and the number of the reduction 2 10 1 log kp , , , N .−= …  
We repeat the algorithm (29), (30) until the number of reductions is 2 1log kN .−  Then we 

continue with the reductions of the response and the signal kn  in the direction 1k −  (again 

using formulas (29), (30)). We proceed in this way until all the reductions of the response in all 
the directions are carried out, i.e., until the  k-dimensional discrete signal of the response is 
reduced to the only non-zero element. It represents the value of the determinant of the system 
matrix kh , hence 

( )0 0 0r
kD h , , , ,= …  
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where 

2
1

log
k

i
i

r N .
=

=∑  

The final solution is k
k .

D
nx =  

 

3. Special linear systems 

3.1 Error-free algorithm to solve integer Toeplitz system [8] 

In this section we propose an algorithm to solve integer nonsymmetrical Toeplitz system, 
which is based on Levinson algorithm [9].  It removes rounding off errors. Their accumulation 
can, when using classic algorithms, deteriorate or destroy the solution. Toeplitz system of linear 
equations is defined 

0 1 2 1 1 1

1 0 1 2 2 2

1 2 3 0

N

N

N N N N N

a , a , a , , a x y
a , a , a , , a x y

a , a , a , , a x y

− − − +

− − +

− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

…
…

…

     (32) 

or 

1
1 2

N

i j j i
j

a x y , i , , ,N−
=

= =∑ … .       (33) 

For integer regular Toeplitz system one can write 

1
1 2

N
j

i j i
j N

x
a y , i , , ,N .

D−
=

= =∑ …        (34) 

In [8] we derived the algorithm for fast solution of integer Toeplitz system (34) using recursive 
procedure solving in each iteration step the system 

1
1 2 1 2

( M )M
j

i j i
j M

v
a y , i , , ,M ; M , , ,N .

D−
=

= = =∑ … …      (35) 

To determine quantities with the index 1M +  we get 

1 0
1

1 1
11

1

0 1 1
1

1

1
1 1 1

1

1
1 1 1

1

M
( M )

M M j j
j

M
( M )

M M M j j
j( M )

M M
( M )

M M j M j
j

M
M

( M ) ( M )
M M M M j j

j

M
( M ) ( M )
M M M j M j

j

D D a a b ,

y D a v
v ,

a D a b

D

c a D a c ,

b a D a b .

+
=

+ + −
=+

+

+ − + −
=

+

+
+ + + −

=

+
+ − − − −

=

= ⋅ −

−
=

−

= −

= −

∑

∑

∑

∑

∑

       (36) 
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To determine remaining components of the vectors v, b, c  we have 

1 1
1 1 1

1 1
1 1 1

1 1
1 1 1

1

1

1 1 2

( M ) ( M ) ( M ) ( M )
j j M M M j

M

( M ) ( M ) ( M ) ( M )
j j M M M j

M

( M ) ( M ) ( M ) ( M )
j j M M M j

M

v v D v b ,
D

c c D c b ,
D

b b D b c , j , , ,M ,
D

+ +
+ + + −

+ +
+ + + −

+ +
+ + + −

⎡ ⎤= −⎣ ⎦

⎡ ⎤= −⎣ ⎦

⎡ ⎤= − =⎣ ⎦ …

    (37) 

with initial values 
1 1 1

1 0 1 1 1 1 1 1
( ) ( ) ( )D a ,v y ,c a ,b a .−= = = =       (38) 

From the above given formulas, one can see that all quantities are integers. After some iteration 
steps, however, their magnitudes increase rapidly, which complicates the realization of the 
calculation. To overcome this problem we can carry out the calculation in modulo arithmetic in 
different prime modulo classes 1 2im , i , , ,r= , so that it holds [10] 

1 2 rP m m m= … ,         (39) 

where P  must satisfy the condition 

{ }2 1 2 12 1 y

1 1 1

N / N ( N ) / N

i j

P max N M( A ) ,N( N ) M( A ) M( ) ,

M( A ) max a , i N ,N , M( y ) max y , j ,N .

− −> ⋅ ⋅ − ⋅ ⋅

= ∈ − + − = ∈
  (40) 

The calculation in the given modulo class is independent of other modulo classes and thus this 
model of implementation is well suited for parallel computing. By inverse conversion from 
residual representation, employing Chinese theorem [2], [9], one can calculate resulting vector 
x  and determinant D . 
 

Illustrative example: 
 
Let us find the exact solution of the Toeplitz system 

1

2

3

1 1 2 1
3 1 1 3
2 3 1 1

, , x
, , x .
, , x

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

First we initialize the vectors and variables 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]

p 1 2 n 1 2a 0 3 2 0 , a 0 1 2 0 , y 1 3 1

b 1 c 3 , v 1 1

T T T T T
,

T T T

a ,a , , a ,a , , , , ,

, , , , , , , , D .

− −= = = = − = −⎡ ⎤⎣ ⎦

= − − − = − − = − − − =
 

With respect to (39) and (40) we choose the moduli 1 2 35 7 11m , m , m .= = =  Carrying out 

the first iteration step yields 

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

b 5 3 1 b 7 0 1 b 11 4 1

c 5 0 3 c 7 5 0 c 11 5 4

v 5 2 1 v 7 2 6 v 11 2 6
5 4 7 4 11 4

T T T

T T T

T T T

(mod ) , , ; (mod ) , , ; (mod ) , , ;

(mod ) , , ; (mod ) , , ; (mod ) , , ;

(mod ) , , ; (mod ) , , ; (mod ) , , ;
D(mod ) ; D(mod ) ; D(mod ) .

= − = − = −

= − = − = −

= − = − = −

= = =
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After the second iteration step 1 2( M N )= − =  the calculation in this example is finished. The 
resulting values of vectors and determinant are then as follows 

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

b 5 3 1 0 b 7 0 1 1 b 11 4 1 4

c 5 0 3 4 c 7 5 0 4 c 11 5 4 0

v 5 1 3 2 v 7 2 3 3 v 11 5 3 4
5 3 7 2 11 1

T T T

T T T

T T T

(mod ) , , ; (mod ) , , ; (mod ) , , ;

(mod ) , , ; (mod ) , , ; (mod ) , , ;

(mod ) , , ; (mod ) , , ; (mod ) , , ;
D(mod ) ; D(mod ) ; D(mod ) .

= = =

= = =

= = =

= = =

 

By conversion of the vector v  and the determinant D  from residue class code one obtains 

[ ]16 3 367 23T, , , D .= =v  

Positive numbers are represented in the range ( )0 1 2, P /−  and negative ones in the range 

( )1 2 1 1P / ,P− + − . Then the negative values are calculated by subtracting P . Then the final 

solution is 

[ ]1 16 3 18
23

T, , .= −x  

3.2 An algorithm to solve Hilbert system of linear equations exactly [11] 

Typical example of extremely ill-conditioned matrices are Hilbert matrices. In literature 
one can find the examples of Hilbert matrices with the elements 

1 1
1i , ja ; i, j ,N .

i j
= ∈

+ −
 

We shall consider more general Hilbert systems with elements 

1

1 1i , j
i j

a ; i, j ,N .
d + −

= ∈  

Then for 3N =  we can write 

1 2 3
1 1

2 2
2 3 4

3 3

3 4 5

1 1 1

1 1 1

1 1 1

, ,
b b b

x y
, , x y

b b b
x y

, ,
b b b

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

or after exchanging the elements of the vector x  

3 2 1 0 1 2
3 1 0 1 2 1

2 2 1 0 1 2
4 3 2 1 0 1

1 3 2 1 0 3

5 4 3 2 1 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

, , , ,
b b b s s s

x z R , R , R z
, , x , , z R , R , R z .

b b b s s s
x z R , R , R z

, , , ,
b b b s s s

− −
− −

−
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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However this represents Toeplitz system of linear equations. Assuming that all quantities are 
integers the determinant of the matrix can be written in the form of rational fraction. For 3N =  
one obtains 

3 2 2 1 2 3 2 1
0 2 1 1 2 2 0 2 1 0 1 2 1 0 1 2

1 1 1 1 2 C C

D

D DD ,
s s s s s s s s s s s s s s s s D− − − − − −

= + + − − = =  

where left upper index C  denotes numerator and D  denominator. Without being interested in 
the numerator for the denominator of the determinant in general case one can write 

1 2 1 1 2 1
1 2 1 0 1 2 1

D N N N
N N N ND s s s s s s s− −

− + − + − − −= … . 
We introduce pairs of expressions of all quantities for both numerator and denominator, 
respectively. First let us determine quantities with the index 1M +  

1
1 11 1 1

1 1 1
11 1 1

1
1 11 1 1

1 1 1
11 1 1

1
1

C ( M )CM M
jM iD ( M ) C ( M ) D ( M ) M

M i M M D D ( M )
ji M M M j M j

C ( M )CM M
jM iD ( M ) C ( M ) D ( M ) M

M i M M D D ( M )
ji M M M M j j

D ( M
M

bDb s ; b b ;
s D s b

cDc s ; c c ;
s D s c

v

−
+ − ++ + +

+ + +
==− − − − − −

+
+ − −+ + +

+ + +
==− + + + −

+
+

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

= = −⎢ ⎥
⎢ ⎥⎣ ⎦

∑∏

∑∏
1

1 1 11 1
1 1 11

11 1

1

1
1 1 1

10 1

M
D

C ( M )i C C M
j) D ( M ) C ( M ) D ( M )i M M

M M MM D D D ( M )
jM M M j j

i
i

C ( M )CM M
jM iD C D M

M i M M D D ( M )
ji M M M j j

y vy Dc ; v v ;
y D s vs

bDD s ; D D .
s D s b

+

+ + += +
+ + ++

=+ + −

=

+ −
+ + +

==− + −

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦

∏
∑

∏

∑∏

 

Then we determine remaining components of the vectors b, c, v  
1

1 11
1 1 11 10

1 1 1
1 1 1

0

1

11
11 10

1 1

0

j

D ( M ) D C C ( M ) C ( M ) C ( M )M i
j M M j M M jD ( M ) D C ( M )i

j M jj C D D ( M ) D ( M ) D ( M )
M M j M M j

i
i

j

D ( M ) D C CM i
j M MD ( M ) D C ( M )i

j M jj C
M

i
i

s b D D b b c
b D ; b ;

D D b b cs

s c D D
c D ; c

Ds

−

+ +− − +
+ + + −+ +=

+ − +
+ + + −

=

−

++ −
++ +=

+ −

−
=

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦

= =

∏

∏

∏

∏

1
1 1

1
1 1 1

1 11
1 1 11 1 11

1 1
1 1 1 1

( M ) C ( M ) C ( M )
j M M j

D D ( M ) D ( M ) D ( M )
M j M M j

D ( M ) D C C ( M ) C ( M ) C ( M )D ( M )
j M M j M M jD ( M ) D ( M ) C ( M )M

j j jD ( M ) C D D ( M ) D ( M ) D ( M )
M M M j M M j

c c b
;

D c c b

v D D v v bvv c ; b .
c D D v v b

+
+ + −
+

+ + + −

+ ++
+ + + −+ + ++

+ +
+ + + + −

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦

 

The initial values were set 
1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 11 1 1D C D ( ) D C ( ) C D ( ) C ( ) D ( ) C ( )D s ; D ; v y ; v y ; b s ; b ; c s ; c .−= = = = = = = =  

3.3 Error-free algorithm to solve Vandermonde system of linear equations [12] 

Let us have Vandermonde system 
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1 1

2 1 2 3 2
2 2 2 2

3 1 2 3 3

1 1 1 1
1 2 3

1 1 1 1

N

N

N N N N
N N N

y x
y a a a a x
y a a a a x A

y a a a a x− − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⋅
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x.      (41) 

It is well known that the determinant of the system matrix is 
1

1 1

N N

i j
j i j

D ( a a )
−

= = +

= −∏∏         (42) 

and the elements of inverse matrix can be expressed using polynomial coefficients [12] 

1

11

N N
ki

j j ,k
ki ,i j j i

x aP ( x ) B x .
a a

−

== ≠

−
= =

− ∑∏        (43) 

Analogously to the algorithm given in [13] we determine coefficients of the polynomial 

1
2 1

1

N
N N

i N
i

P( x ) ( x a )(mod M ) x c x c x c (mod M ).−

=

= − = + + + +∏    (44) 

Polynomials from (43) modulo M  can be expressed 

1

1

1 1

1

N
k

j ,k
k

j N N
j

j i j i
i ,i j i ,i j

z x
P( x )P ( x ) (mod M ) (mod M ).

( x a ) ( a a ) ( a a )

−

=

= ≠ = ≠

= ⋅ =
− − −

∑

∏ ∏
  (45) 

Then one can derive 

1

1 1

1

1 1 1

j ,N

j ,N N j ,N j

j ,N i N i j ,N i j

z ,

z ( c z a )(mod M ),

z ( c z a )(mod M )

i ,N , j ,N .

−

− − + − +

=

= + ⋅

= + ⋅

∈ − ∈

      (46) 

Resulting inverse matrix modulo M  is 
1

1 1 1 2 11

2 1 2 2 221

1 2

0 0
0 0

0 0

, , ,N

, , ,N
M

N , N , N ,NN

z z zd
z z zd

A (mod M ) (mod M ) B ,

z z zd

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

  (47) 

where 

1

N

j j i
i ,i j

d ( a a )(mod M ).
= ≠

= −∏  

We can employ iterative scheme of error-free solution of linear equation system from the 
section 2.1. 

 
Illustrative example: 
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Let us have the Vandermonde system 

1

2

3

4

1 1 1 1 0
1 3 5 4 1
1 9 25 16 2
1 27 125 64 0

x, , ,
x, , ,
x, , ,

, , , x

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

 . 

The determinant of the matrix, according to (42), is -48. We shall use modulus 5M = . Then 
2MD = . Using the  relations (45), (46), (47) yields inverse matrix in modulo class 5 

24 0 0 0 60 47 12 1 0 2 3 1
0 4 0 0 20 29 10 1 0 1 0 4

5
0 0 8 0 12 19 8 1 1 3 4 2
0 0 0 3 15 23 9 1 0 4 3 3

M

, , , , , , , , ,
, , , , , , , , ,

B (mod ) .
, , , , , , , , ,
, , , , , , , , ,

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Then the procedure to calculate the exact solution is as follows 

[ ]

[ ] [ ]

0 2 3 1 0 3
0 1 0 4 1 1

0 1 2 0 5 5
1 3 4 2 2 1
0 4 3 3 0 0

2 3 1 1 0 5 1 2 2 0

M

M

, , ,
, , ,

, , , B (mod ) (mod )
, , ,
, , ,

D , , , (mod ) , , , .

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=

T
0 M 0

T T
0 M

ym = y = ; x = ym ;

x = x =

 

Next we calculate vectors 

[ ]

0

1,1, 1, 1 1 5 0 5 1
1, 3, 5, 4 2 17 48 17 131; ;
1, 9, 25, 16 2 69 96 69 335
1, 27,125, 64 0 305 0 305 61

4,2,2,4

A

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = = − =
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

0 1

1

y = x y =

ym = T

 

1-st iteration step 
 

0, 2, 3,1 4 4
0,1, 0, 4 2 3

.
1, 3, 4, 2 2 1
0, 4 ,3, 3 4 1

MB (mod 5) (mod 5)

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1x = ym  

Again let us suppose that the positive numbers are represented in the range ( )0 1 2, M /−  and 

the negative ones in the range ( )1 2 1 1M / ,M− + − . Then we obtain the negative values for 

numbers greater than ( )1 2M /−  by subtracting  the modulus 

[ ]T1, 2,1,1 .− −1x =  

Further we calculate vectors 

[ ] [ ] [ ]1
1 2 21,2,22,134 ; 5 0,3, 11, 39 ; 0,2,4,1 .T T TA −′ = − = − − =1y = x y ym  

 



P
o
S
(
A
C
A
T
)
0
7
3

Error-Free Algorithms Miroslav Morháč 

 
     18 

 
 

2-nd iteration step 
We continue in calculations with 

[ ]2,1,3,4 .T
MB (mod 5) =2 2x = ym  

After adjustment of elements greater than ( )1 2M /−  we have 

[ ]T2,1, 1, 2 .− −2x =  

Again we calculate vectors 

[ ] [ ] [ ]2 3 30, 8, 46, 224 ; 0,1,7,37 ; 0,1,2,2 .T T TA′ = − − − = =2y = x y ym  

3-rd iteration step 
Finally we calculate 

[ ]0, 1,0,1 .T
MB (mod 5) = −3 3x = ym  

We calculate vectors 

[ ] [ ]3 40,1,7,37 ; 0,0,0,0 .T TA′ = =3y = x y  

The zero vector 4y  indicates the end of iterations. The result is 

2 3

1 1 2 0 46
2 2 1 1 1081 1= 5 5 5 .
2 1 1 0 18-48 -48
0 1 2 1 80

⎧ ⎫−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ ⋅ + ⋅ + ⋅ =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

x  

4. General linear systems 

4.1 Parallel error-free algorithm [14, 15] 

Let us have system of linear equations, where all the elements of the matrix A  and vector 
y are integers 

1
1 2

N

m
y( n ) a( n,m )x( m ), n , , ,N

=

= =∑  

or 

1 1 1 2 1 3 1 1 1

2 1 2 2 2 3 2 2 2

1 2 3

, , , ,N

, , , ,N

N , N , N , N ,N N N

a , a , a , , a x y
a , a , a , , a x y

A

a , a , a , , a x y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

x=y

…
…

…

. 

Let us split the calculation into several residue classes satisfying conditions (39), (40). Then in 
each residue class we can carry out separately the calculations 

1iA (mod m ) , i ,r .∈x =y  

Calculations in residue classes can be carried out in parallel. Gauss-Jordan elimination in 
residue class m  can be described by the following procedure. Let 

( ) { } { }0
, , ( ); 1,2, , , 1,2, , 1 .i j i ja a mod m i n j n⎡ ⎤= ∈ ∈ +⎣ ⎦ … …  

For 1,2, ,k n= …  ( k denotes elimination step) do: 
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1. search for such ( )fi c f k≠ <  that ,1 0, ,i ka c i≠ =  

2. ( ) ( ) ( )( ) { }
11 1

, , 1 ,1 ( ), 1,2, , 1 ,k k k
i j i j ia a a mod m j n k

−− −
+

⎡ ⎤= ⋅ ∈ + −⎢ ⎥⎣ ⎦
…    (49) 

3. for 1,2, ,l n= …  and l i≠  do: 
( ) ( ) ( ) ( ) { }1 1
, , 1 ,1 ,1 ( ), 1,2, , 1 .k k k k

l j l j l ia a a a mod m j n k− −
+

⎡ ⎤= − ⋅ ∈ + −⎣ ⎦ …   (50) 

The determinant in the residue class m  is obtained as the modulo product of the elements ( )1
,1
k

ia −  

(see (49)) 

( ) ( )1
,1

1

( ) 1 ( ),
n

J k
m k

k

D mod m D a mod m−

=

⎡ ⎤⎡ ⎤
= = −⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦
∏      (51) 

where J  is the total number of exchanges of the elements. Then,  the sought solution of  (48) in 
the residue class m is given by 

[ ]1(  ) (  ) (  ).m
Dmod m mod m D mod m
D D
⎡ ⎤= = = ⋅⎢ ⎥⎣ ⎦

m m mx x x x     (52) 

After the calculation of the solution of a linear equations set in the modular arithmetic is 
finished we have 1n +  element vectors 

( )1(  ), (  ), , (  ) , 1,2, , .k k n kD mod m x mod m x mod m k r=… …     (53) 

The resulting integer values 1 2, , , , nD x x x…  can be obtained by the inverse conversion of the 
vectors (53) from the residue class code. Since we use the known algorithm (given e.g. in [16]) 
we describe it very briefly  from  algorithm point of view. We suppose we have a vector of 
moduli 

( )0 1 2, , , rm m mβ = …         (54) 

and a vector of the residue representation of the integer jx  

( ),1 1 2(  ), (  ), , (  ) .j j j j rt x mod m x mod m x mod m= …      (55) 

Further let us denote 
( )

( ) ( ) ( )( )
( )

1 2

, , , ,

, , ,

, , ,

, 1 , ,

( )(  ), , ( )(  ) .

k k k r

j k j k j k j k

j k j k k j k r

m m m

t t k t k t r

d t k mod m t k mod m

β + +=

= +

=

…

…

…

 

If we define the vector , 1j kt +  to be 

( ) 1
, 1 , , (  ),j k j k j k k kt t d m mod β−
+

⎡ ⎤= − ⋅⎣ ⎦  

then the resulting sought number is 
( ) ( ) ( ) ( )( ),1 1 ,2 2 ,3 1 ,1 2 3 .j j j j r j rx t m t m t m t r−⎡ ⎤= + + + + ⋅⎣ ⎦     (56) 

4.2 Sequential algorithm to solve general system of linear equations [17] 

So far we have mentioned two basic algorithm classes to solve linear equations exactly 
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• iterative algorithm (applied in section 2.1 – Fermat transform, section 3.3 – 
Vandermonde system) 

• parallel algorithm (applied in section 3.1 – Toeplitz system, section 4.1 – general 
system of linear equations) 

In this section we want to demonstrate that sequential iterative algorithm can be applied also for 
general systems of linear integer equations. Let us define the following algorithm: 
 
Algorithm A 
 

a. Let .=m0y y  

b. Calculate vector ( )1
M A mod M .−= m0x y  

c. It holds ( )M MD mod M .=0x x  

d. Let 0 .=x x  
e. Calculate vectors  

( ) ( )0 1 1
1A , D , mod M .
M

= = ⋅ − =' '
0 m0 0 m1y x y y y y y    (57) 

f. 1j .=  

g. Calculate ( )1
j A mod M .−= m1x y       (58) 

h. For 0 1 1i , , ,N= −…  ( N is the size of vectors x, y ) calculate  

( ) ( ) ( ) j
jx i x i x i M .= +  

i. Calculate vectors  

( )A , , mod M .
M
−

= = =
'

j j'
j j j+1 m,j+1 j+1

y y
y x y y y  

j. If for all ( )10 1 1 0ji , , ,N , y i ,+= − =…  finish the calculation. If not, increment j  and 

repeat the algorithm from point  g.  on. 

The resulting solution of system (48) is simply calculated as .
D

=
xx  Then determinant of the 

system of linear equations can be calculated using the formula 

( ) ( ) ( )
11

01

jN

j
ij

D a j, j a j,i k i ,
−−

==

⎡ ⎤
= − ⋅⎢ ⎥

⎣ ⎦
∑∏       (59) 

where the coefficient vectors jk  are calculated by exact solution of sets 

1 1 2 1j , j j ,A A j , , ,N ,⋅ = = −jk …        (60) 

using the Algorithm A. 
Next problem in the algorithm A is calculation of the inverse matrix in modulo arithmetic. 

Let us define iterative procedure where 

( )
1 1

1 11
1 1

1 1 1 1 1 1
j , j

j , j j , j , j j ,
j , j

, j , , j ,

A A B B
A , A mod M .

A A B B+ +

−
+ +

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

    (61) 

Then one can derive 
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( )
( )
( )

( )

11
1 1 11 1 1

1
1 1 1 1

1
1 1 1 1

1 1
1 1 1 1

, , , j j , j j ,

j , j , j j , ,

, j , , j j , j

j , j j , j j , , , j

B A A A A mod M ,

B A A B mod M ,

B B A A mod M ,

B A B B B mod M .

−−

−

−

− −

⎡ ⎤= − ⋅ ⋅⎣ ⎦
= − ⋅ ⋅

= − ⋅ ⋅

= + ⋅ ⋅

      (62) 

4.3 Sequential error-free algorithm to solve system of polynomial equations [18] 

Sequential iterative algorithm can be successively applied also for polynomial systems of 
linear integer equations 

( ) ( ) ( )
( ) ( )1 1 1 1 0 1 1 1 1 0p p p p

i , j i , j i , j i , j i i i i

A s s s ,

a s a s a s a , y s y s y s y .− − − −

⋅ =

= ⋅ + + ⋅ + = ⋅ + + ⋅ +

x y
 (63) 

Assuming the coefficients being integers, the solution of the system given by  (63) can be 
expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1

0 1
1 1 1 1

kp p p
ks s s s s s s ,

D s
⎡ ⎤= ⋅ − ⋅ + − ⋅ + + − ⋅⎢ ⎥⎣ ⎦

x x x x   (64) 

and vectors 

( ) ( ) ( ) ( )0 1
0 1

m
i i ims M s M s M s ,⎡ ⎤= ⋅ + ⋅ + + ⋅⎣ ⎦ix x x x     (65) 

where M  is a prime modulus D  is determinant of the matrix A  and ,m k  are finite integers. 
Let us suppose for the moment that the determinant ( )D s  (polynomial) is known. We denote 
polynomial modulus as  

( ) 1pP s s .= −  

The algorithms for the determinant and inverse matrix of polynomial system can be derived 
analogously to relations (59-62). For details we refer to [18]. New problem is the calculation of 
inverse polynomial. In what follows we outline briefly this algorithm. 

We have to find polynomial ( )b s  to polynomial ( )a s  so that 

( ) ( ) ( )( ) 1a s b s mod P s (mod M ) .⋅ ⋅ =       (66) 

According to [2], the cyclic convolution using polynomial algebra concept is 
1

0

p

l i l i
i

c a b ,
−

−
=

= ⋅∑          (67) 

where indices l i−  are calculated modulo p . From what is given above, it follows that solution 
of equation (66) represents the solution of linear system 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

00 1 1 1
1 0 2 1 0

1 2 0 01

ba , a p , a
a , a , a b

(mod M ) ,

a p , a p , a b p

⎡ ⎤⎡ − ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ − ⎣ ⎦⎣ ⎦ ⎣ ⎦

   (68) 

in residual class M . Inverse polynomial ( )b s  can be obtained by successive reductions of 
polynomial ( )a s  or vector a . For 1r st+ −  reduction it holds 
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( ) ( ) ( ) ( )
( )2 1

1 1

0

2 2 1
rN /

ir r r r r

i

a l a i a m (mod M ),
−

+ +

=

⋅ = ⋅ ⋅ ⋅ −∑  

where 

( )1
12 2 0 1

2
r r

r

Nm l i (mod N ); l , ,+
+

⎛ ⎞= ⋅ − ⋅ ∈ −⎜ ⎟
⎝ ⎠

 

and number of reduction 20 1r , , ,log N= … . Let [ ]0 1 0 0 T, , , ,=n  and 

( ) ( ) ( ) ( )
( )2 1

1

0
2 1 (

rN /
ir r r r

i
n l n i a m mod M ),

−
+

=

= ⋅ ⋅ ⋅ −∑  

where 

( )2 0 1rm l i (mod N ); l ,n ,= − ⋅ ∈ −  

and number of reduction 20 1 log 1r , , , N .= −…  The resulting solution of polynomial inversion is 

( )0

t

t (mod M ),
a

= ⋅
nb  

where 2logt N .=  
 

Illustrative example: 
 

Let us have linear system consisting of polynomials 

( )
2

2

1 3 1
2 1 2

s , s s
s .

s, s
+ ⎡ ⎤+⎡ ⎤

⋅ = ⎢ ⎥⎢ ⎥+⎣ ⎦ ⎣ ⎦
x  

We shall use polynomial modulus ( ) 3 1P s s= −  and numerical modulus 5M = . Further we 

shall assume that we know the determinant ( ) 3 25 1D s s s s ,= − + +  the determinant in the 

residue class ( )P s  and the residue class M  

( ) ( ) ( )( )( )3 1 5 2Dpm s D s mod s mod s= − = + ,     (69) 

and the inverse matrix in the residue class ( )P s  and the residue class M  

( ) ( ) ( )( )( )
2

1 3
2 2

3 4 2 3
1 5

3 2 3
s , s s

B s A s mod s mod .
s s , s s

− ⎡ ⎤+ + +
= ⋅ − = ⎢ ⎥+ + +⎣ ⎦

 

We calculate 

( ) ( )( ) ( )
2 2 2

3
2 2

3 4 2 3 1
1 5

3 2 3 2 0p
s , s s s s

s mod s mod .
s s , s s

⎡ ⎤ ⎡ ⎤⎡ ⎤+ + + +
= ⋅ ⋅ − ⋅ =⎢ ⎥ ⎢ ⎥⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  

Using ( )Dpm s  from (69) we get 

( ) ( ) ( )( )( )
2 2

3
00

2
1 5

0 0
s s

s Dpm s mod s mod .
⎡ ⎤ ⎡ ⎤

= ⋅ − =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x  

We initialize vectors and control variables 
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( ) ( ) ( ) ( )

( )

5 4 3 22
3 2

3 2

2

5 2 4 11
5 1

2 2 10 2 2

2 1
0 0

0

s s s s ss
s s D s s s s ,

s s s

s
j ,k , s .

⎡ ⎤− + − + +⎡ ⎤+
= ⋅ = ⋅ − + + = ⎢ ⎥⎢ ⎥

− + +⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤+

= = = ⎢ ⎥
⎣ ⎦

T y

x

 

We calculate vectors 

( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( )( )

( ) ( )( )

3 22

00 2 3

5 4 2
0

3 2

3 2 2

2 2

2

1 3 2 2 12 1
2 1 0 4 2

5 6
2 10 2

1 5 51
5 5 10 2

4 4
5

3

s , s s s ss
s A s s ,

s, s s s

s s s
s s s M ,

s s

s mod s s s s s
s ,

s s

s s
s s mod

s

⎡ ⎤+ + + +⎡ ⎤+⎡ ⎤
= ⋅ = ⋅ = ⎢ ⎥⎢ ⎥⎢ ⎥+ +⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤− −
= − ⋅ = ⎢ ⎥

− − +⎢ ⎥⎣ ⎦

− ⎡ ⎤ ⎡ ⎤− − − −
= = ⋅ =⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+
= =

'
00

'
00

01

p,01 01

y x

T T y

T
y

y y
2

.
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The vector ( ) 0s ,≠01y  thus we set 1k =  

( ) ( ) ( ) ( )( )( )

( )( )( ) ( )

3

22
3

2 2 2

1 5

4 4 43 4 2 3
1 5 5

0 03 2 3 3

s B s s mod s mod

s s s ss , s s
mod s mod mod .

s s , s s s

= ⋅ − =

⎡ ⎤+ −⎡ ⎤+ + + ⎡ ⎤ ⎡ ⎤
= ⋅ − == =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

01 p,01x y

 

If any coefficient of the solution is greater than ( )1 2M /−  , it is considered negative and 

according to the rules of modulo arithmetic its negative value is calculated by subtracting 
modulus M . We update intermediate result 

( )
2 2

12 1 2 5 1
5

00 0
ss s s

s .
−⎡ ⎤ ⎡ ⎤+ − +⎡ ⎤

= + ⋅ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

x  

Further, we calculate appropriate vectors 

( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( )( )

( )

2

2 2

5 4 2
1

3

3

1 3
2 1 0 2

5 5
5

2 2

1

5

s , s s s s
s a s s ,

s, s s

s s s s
s s s ,

s

s mod s
s , s .

⎡ ⎤+ − − −⎡ ⎤⎡ ⎤
= ⋅ = ⋅ = ⎢ ⎥⎢ ⎥⎢ ⎥+ −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤− − +
= − ⋅ = ⎢ ⎥

− +⎢ ⎥⎣ ⎦

−
= = =

'
01 01

'
01

02 p,02

y x

T T y

T
y 0 y 0

 

The vectors ( ) ( ) 0s s= ≠p,02y 0, T . Therefore we set control variables 1 0j , k= = . Then we 

calculate 

( ) ( ) ( ) ( )( )
2 2

3

5
5

1 2 3
s s s s

s , s s mod .
s

⎡ ⎤ ⎡ ⎤−
= = = =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

p,10

T
T y T  

Further we calculate next particular solution 
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( ) ( ) ( )( ) ( )
2 2

3
2 2

3 4 2 3
1 5 5

3 23 2 3 3
s ss s s s

s mod s mod mod ,
s s s s

⎡ ⎤⎡ ⎤+ + + ⎡ ⎤ ⎡ ⎤
= ⋅ ⋅ − ⋅ = ⋅ =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−+ + + ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

10x  

which we add to intermediate result 

( ) ( )
4 22

3
3

2 6 12 5 1
1

20 2 2
s s s ss s

s s .
s

⎡ ⎤+ − +⎡ ⎤− + ⎡ ⎤
= + ⋅ − = ⎢ ⎥⎢ ⎥ ⎢ ⎥− − +⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

x  

Again  we repeat and calculate 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2

0

1 3 5
2 1 2 2

5

s , s s s s
s A s s ,

s, s

s s s , s , s

+ ⎡ ⎤−⎡ ⎤⎡ ⎤
= ⋅ = ⋅ = ⎢ ⎥⎢ ⎥⎢ ⎥+ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= − ⋅ = = =

'
10 10

'
10 11 p,11

y x

T T y 0 y 0 y 0.

 

Both vectors ( )s11y  and ( )sT  equal the zero vectors. It means that we finish the calculation. 

The resulting solution is 

( ) ( ) ( )
4 2

3 2 3

2 6 11 1
5 1 2 2

s s s
s s .

D s s s s s

⎡ ⎤+ − +
= ⋅ = ⋅ ⎢ ⎥

− + + − +⎢ ⎥⎣ ⎦
x x  

5. Volterra systems 

Direct generalization of convolution systems for nonlinear systems are Volterra systems 

1 1 2

1 1 1

1 1 1 2 1 2 1 2
0 0 0

1 2

( ) ( ) ( ) ( , ) ( ) ( )

( ) ( ) , 0,1, , 1.

N N N

l l l
y j h l x j l h l l x j l x j l

y j y j j N

− − −

= = =

= − + − −

= + + = −

∑ ∑∑
…

    (70) 

Problems connected with Volterra systems can be divided into several items 
• determination of Volterra kernels [19] 
• calculation of the output of the nonlinear Volterra filter [20] 
• determination of inverse kernels to the given nonlinear Volterra system [21]. 

We shall focus on determination of Volterra kernels. Let us again employ polynomial algebra 
and express the input signal and i th−  Volterra kernel 

1 2

1 2

1 1 1 1

1 2 1 2 1 2
0 0 0

i

i

N N N N
ll ll

i i i i i
l l l l

X ( z ) x( l )z , H ( z ,z , ,z ) h ( z ,z , ,z )z z z .
− − − −

= = =

= =∑ ∑∑ ∑  

According to [19] for the Volterra kernel of the i th−  degree we can write 

1 2 1 2
1 2

1 2

p
i i i i

i i
i

Y ( z z z ) Y ( z ,z , ,z )H ( z ,z , ,z ) .
X ( z )X ( z ) X ( z ) D

= =    (71) 

We can again employ the algorithm based on successive reductions of the denominator of (71) 
(see section 2.2).  The algorithm consists in autoconvolutions and crossconvolutions. Let us 
demonstrate the algorithm using simple example. 
 

Illustrative example: 
 

Let 2, 2N i= =  and 
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[ ] [ ]3 4 1 2T T, , , .=2y x=  

Then according to (71) and after the reductions we have 

1 2 1 2 1 2
2 1 2

1 2 1 1 2 2

1 2 1 2 1 2 1 2
2 2 2

3 4 3 4 1 2 1 2
1 2 1 2 1 2 1 2 1 2 1 2

19 14 14 16 19 14 14 16
1 2 9

z z ( z z )( z )( z )H ( z ,z )
( z )( z ) ( z )( z )( z )( z )

z z z z z z z z .
( )

+ + − −
= = =

+ + + − + −
− − + − − +

=
−

 

Hence the resulting kernel of the second degree is 

2

19 141
14 169

h .
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

 

6. Conclusions 

In the contribution we have presented several error-free algorithms to solve one- and 
multidimensional convolution systems based on Fermat number theoretical transform. The main 
significance of the use of modulo arithmetic is eliminating rounding-off and truncation errors. 

In the contribution we have derived the error-free algorithm to solve convolution systems 
that is based on polynomial algebra concept. This form of k -dimensional deconvolution 
algorithm permits to express it as a sequence of k -dimensional “autoconvolutions” of the 
response signal and “crossconvolutions” of the response and the output signal. 

Further in the contribution we have extended the error-free algorithms to special linear 
systems, e.g. Toeplitz, Hilbert, Vandermonde systems. We continued with general systems of 
linear equations. In principle the algorithms proposed in the contribution can be divided into 
two groups 

• iterative (using one modulus – one residue class) 
• parallel (using several moduli – several residue classes and Chinese theorem). 
The parallel algorithm is well suited for the implementation on parallel computers that 

allows the increase of the calculation speed. 
We have extended the iterative algorithm also for the linear system of polynomial 

equations. At the end of the contribution we outlined the possible extension of the application of 
error-free algorithms for nonlinear Volterra systems. 
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