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1. Introduction

The use of symbolic manipulation and computer algebra has been an invaluable tool for pro-
viding large loop order results in quantum field theory in general and in quantum chromodynamics
(QCD) in particular. The outstanding example is that of the full three loop anomalous dimensions
for flavour non-singlet and singlet unpolarized operators for deep inelastic scattering as an analytic
function of the operator moment n, [1, 2, 3, 4]. Also the Wilson coefficients have been provided
to the same precision. This large project, of the order of ten years, required not only the extensive
use of the symbolic manipulation programme FORM, [5], but also its own development to handle
the unforeseen complexity of the computation. An earlier approach, [6, 7], to this problem in deep
inelastic scattering was to determine results for fixed (even) moments using the MINCER algorithm,
[8], translated into FORM, [9]. For instance, the first few moments were given in [6, 7] and subse-
quently those for n � 12 and n � 16 appeared in [10, 11]. At that time the fixed moment expressions
were used to parametrize the full expressions but such an approach was clearly incomplete lacking
the correctness of a full evaluation. However, the results subsequently served as very important
independent checks on the final arbitrary n results. Now that the computational algorithm has been
established, in principle it can be applied to other operators underlying related phenomenology.
For example, the case of polarized Wilson operators will be relevant for spin physics. In addition
in the spin context there is interest in a similar operator called transversity, [12, 13, 14]. This cor-
responds to the probability of finding a quark in a transversely polarized nucleon polarized parallel
to the nucleon versus that of the nucleon in the antiparallel polarization. From a theoretical point
of view it is similar to the non-singlet unpolarized Wilson operator but experimentally it is not as
accessible since there is no direct coupling to quarks. Nevertheless there have been proposals to
study it at RHIC. Therefore, whilst in principle it is possible to calculate the arbitrary moment three
loop transversity operator anomalous dimensions in the MS scheme, it would be important to have
strong independent checks on any future full result. Akin to the 1990’s approach for the Wilson
operator there is therefore a need for fixed moment calculations. Aside from this motivation, there
is a secondary one.

One of the ingredients necessary to study the structure functions is the measurement of the
non-perturbative matrix elements. From the theory point of view, a tool which achieves this is lat-
tice regularization and various groups, such as QCDSF, have developed a substantial programme to
determine key matrix elements. (See, for instance, [15, 16, 17].) However, one technical aspect of
such work is ensuring that the results agree in the continuum with expectations from the ultraviolet
limit. One approach in this respect is for the lattice results to be matched onto the perturbative
expressions in the chiral limit, where to aid precision one would prefer the results to as high a loop
order as is calculationally feasible. This has been considered in a series of articles, [18, 19, 20], to
three loops. One technical issue is that to keep time (and money) to a minimum, the lattice com-
putations are performed in renormalization schemes known as regularization invariant (RI) and
its modification, RI

�

, [21, 22]. Unlike the MS scheme, they are mass dependent renormalization
schemes. Results in this scheme have then to be converted to the standard MS scheme. In the
continuum QCD has been renormalized at high loop order in both RI and RI

�

in [23, 18] and the
conversion functions established for various quantities of interest. Therefore to aid lattice compu-
tations of the matrix elements one requires the finite part of the analogous Green’s functions but

2



P
o
S
(
A
C
A
T
)
0
7
9

Three loop RI � operator anomalous dimensions J.A. Gracey

only for low moment since clear signals for higher moments information are hard to extract from
the numerical noise on the lattice. Given the need for such accurate results for a specific Green’s
function on the lattice, not only for the transversity operators but also for the Wilson operators, we
report the results of recent computations in this area, [20, 24]. One consequence of the Green’s
function considered is that the operator anomalous dimensions emerge as a corollary in the RI

�

and
MS schemes. In addition to the results already available, [18, 19, 20, 24], we will provide the RI

�

anomalous dimensions for the n � 5 and 6 Wilson operators in arbitrary covariant gauge. Although
the finite parts are required for lattice calculations for low moment, our computations have been
extended to high moment for the transversity operator but only to determine the anomalous dimen-
sions. At the appropriate point we will mention some of the computer algebra aspects of this and
previous work which without the power of FORM would have rendered the determination of any
result virtually impossible.

The paper is organised as follows. In section two we introduce our notation and computational
strategy in more detail before discussing the appropriate points of the RI

�

scheme in section three.
Section four details a simple low moment example, whilst the symbolic manipulation issues are
recorded in the context of the higher moment calculation in section five. The explicit anomalous
dimensions are given in section six with a few concluding remarks provided in the final section.

2. Background

The two basic classes of operators we will consider are the non-singlet Wilson operators

� ν1 � � � νn

W
��� ψ̄ iγν1Dν2 ����� Dνnψ j (2.1)

and the transversity operators

� µν1 � � � νn

T
��� ψ̄ iσ µν1Dν2 ����� Dνnψ j (2.2)

where ψ i is the quark field, 1 � i � Nf for Nf quark flavours, Dµ is the covariant derivative and
σ µν

�
1
2

�
γµ 	 γν 
 . The operation of totally symmetrizing with respect to the Lorentz indices � νi � and

ensuring the operator is traceless is denoted by � where the respective but different tracelessness
conditions are given by

ηνiν j

� ν1 � � � νi � � � ν j � � � νn

W
� 0 (2.3)

and, [25],

ηµνi

� µν1 � � � νi � � � νn

T
� 0  i � 2 � 	 ηνiν j

� µν1 � � � νi � � � ν j � � � νn

T
� 0 � (2.4)

For (2.2) the anomalous dimensions are available for all moments n at one and two loops in the MS
scheme in [26, 27, 28, 25, 29]. At three loops fixed moment results are available for moments up to
n � 8 for MS and n � 7 for RI

�

, [19, 20, 24]. The specific Green’s functions relevant for the lattice
matching are

Gν1 � � � νn

W
 p � ��� ψ �� p � � ν1 � � � νn

W
 0 � ψ̄  p ���

Gµν1 � � � νn

T
 p � ��� ψ �� p � � µν1 � � � νn

T
 0 � ψ̄  p ��� (2.5)
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where the operator is inserted at zero momentum. This allows for the application of the MINCER

algorithm, [8, 9], which determines the finite part of scalar massless two point functions using
dimensional regularization in d � 4 � 2ε dimensions to three loops. Unlike earlier approaches
to extract anomalous dimensions we do not contract the free Lorentz indices with a null vector.
Whilst such a contraction has the effect of excluding the trace terms in the operator itself or the
Green’s function decomposition, the main reason why we cannot follow that route here is that the
lattice makes measurements in different directions of the momentum components. This allows for
the extraction of the values of each of the individual amplitudes into which the Green’s functions
are decomposed.

From the form of the operators there will be n n-point Feynman rules for both the Wilson and
transversity operators, each with two quark legs. However, at the three loop order we will work at,
only the Feynman rules up to and including three gluon legs will be necessary. Hence, there are 3
one loop, 37 two loop and 684 three loop Feynman diagrams contributing to each Green’s function.
These are generated electronically using the QGRAF package, [30], before being converted into
FORM input notation to allow for the application of the FORM version of the MINCER package,
[8, 9]. As the MINCER algorithm is only applicable to scalar Feynman integrals, for each moment n
the Green’s functions, (2.5), need to be decomposed into invariant amplitudes and Lorentz tensors
which respect all symmetry structures. Whilst we will discuss more details later, it suffices to note
at this point that for Wilson operators there will be two independent amplitudes but three for the
transversity case.

Although the lattice computations are ultimately performed in the Landau gauge, we will
compute in an arbitrary linear covariant gauge. The associated gauge parameter will act as an
internal checking parameter since, for instance, in the MS scheme the anomalous dimension of
gauge invariant operators are independent of the gauge parameter, [31, 32]. As the computations
are clearly automatic we employ the procedure of [33] where all the diagrams are computed for bare
coupling, go, and gauge parameter αo. To extract the anomalous dimension the renormalization
constant is fixed (either in the MS or RI

�

schemes) by rescaling these variables by the known
coupling constant and gauge parameter renormalization constants

go � Zgg 	 αo � Z �
1

α ZAα (2.6)

in our conventions, where ZA is the gluon wave function renormalization constant. The remaining
divergence for each of the Green’s function is absorbed into the operator renormalization constant
together with a specified finite part in the case of the RI

�

scheme to leave the finite parts for the
lattice matching. In practice the results are determined in the MS scheme first, primarily due to
more consistency checks being available before extracting the RI

�

expressions.

3. RI
�

scheme

We briefly review the parts of the RI
�

scheme needed for the computations discussed here.
Originally the scheme was invented in the context of the lattice, [21, 22], but it is not restricted
to a discrete spacetime. The continuum analogue has been studied to three and four loop order in
[23, 18]. In general terms it is a mass dependent renormalization scheme where the renormalization
of the quark field is chosen to be non-minimal in a way which is appropriate for lattice analyses.
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The coupling constant (and thus vertex) renormalization is performed in an MS way and so in some
sense the RI set of schemes sits between MS and MOM type schemes. To reduce time (and cost),
since taking a derivative on the lattice requires significant computation, the quark 2-point function,
Σψ  p � , is renormalized according to the RI

�

prescription, [21, 22],

lim
ε � 0

�
Z

�

ψΣψ  p �������� p2 � µ2

� p� (3.1)

where µ2 is the renormalization point. In other words there are no O  g2 � corrections to Σψ  p �
after renormalization at p2

� µ2 as these finite parts are absorbed into the quark wave function
renormalization constant, Z

�

ψ . We use the notation throughout that a
�

on a quantity indicates
that renormalization has been performed in the RI

�

scheme. Otherwise the scheme is MS. For
completeness the RI scheme, which is not of interest to us here, involves taking a momentum
derivative of Σψ  p � first before choosing the result to be the tree value at the renormalization point,
[21, 22]. As an extension of the RI

�

scheme in the continuum, the gluon and Faddeev-Popov 2-
point functions are renormalized analogous to (3.1). However, as most interest in general is in
quark 2-point Green’s functions, there is no real need to pursue this route, unless one was perhaps
intending to consider supersymmetric theories. Similar to the lattice we are ultimately interested
in converting results from RI

�

to MS and therefore the variables in each scheme need to be related.
Using the standard conversion definitions

α
�

�
ZA

Z
�

A

α 	 a
�

�

�
Zg

Z
�

g 	 2

a (3.2)

where a � g2 �  16π2 � , we have the one loop relations, [23, 18],

a
�

� a 
 O  a5 �
α

�

��� 1 
����� 9α2 � 18α � 97 � CA 
 80TF Nf � a
36 � α 
 O  a2 � � (3.3)

The explicit expressions to three loops are available in [18]. Though it is worth noting that the
Landau gauge is preserved in changing between RI

�

and MS. To illustrate the effect the schemes
have on the basic anomalous dimensions, we note

γψ  a � � αCF a 
 1
4
�  α2 
 8α 
 25 � CACF � 6C2

F � 8CF TF Nf � a2 
 O  a3 � (3.4)

γ
�

ψ  a � � αCF a 
 � � 9α3 
 45α2 
 223α 
 225 � CA � 54CF �  80α 
 72 � TF Nf � CF a2

36

 O  a3 �

where the group theoretic quantities are defined by

Tr  T aT b � � TF δ ab 	 T aT a
� CF I 	 f acd f bcd

� CAδ ab (3.5)

for a colour group with generators T a and structure functions f abc. Clearly the difference in the
numerical structure in (3.5) only appears at two and higher loops.

For the flavour non-singlet operators we are interested in here, we follow a similar route to
(3.1) for defining the operator renormalization constant in the RI

�

scheme. Writing Σ � T ��  p � as the
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amplitude in the Lorentz decomposition of (2.5) which contains the tree,  T � , part of the operator,
we set

lim
ε � 0

� Z �

ψ Z
�� Σ � T ��  p � � ���� p2 � µ2

��� (3.6)

where � is the value of the tree term of amplitude, which may not necessarily be unity given the
specific (non-unique) way of carrying out the decomposition.

4. Simple example

We now illustrate the preceeding remarks by discussing the case of the n � 2 transversity
operator in more detail, [19]. First, given the symmetry properties (2.4) the explicit traceless sym-
metrized operator is

� ψ̄σ µνDρψ � ψ̄σ µνDρψ 
 ψ̄σ µρDν ψ � 2
 d � 1 � ηνρ ψ̄σ µλ Dλ ψ
 1

 d � 1 �  ηµν ψ̄σ ρλ Dλ ψ 
 ηµρ ψ̄σ νλ Dλ ψ � (4.1)

in d-dimensions. Inserting (4.1) into the Green’s function Gµνρ
T

 p � , it is decomposed into the three
invariant amplitudes as

Gµνρ
T  p � � Σ � 1 �T

 p �
�

σ µν pρ 
 σ µρ pν �  d 
 2 �
p2 σ µλ pν pρ pλ 
 ηνρ σ µλ pλ �
 Σ � 2 �T  p �  ηµν σ ρλ pλ 
 ηµρσ νλ pλ �  d 
 1 � ηνρσ µλ pλ
  d � 1 �  d 
 2 �

p2 σ µλ pν pρ pλ �
 Σ � 3 �T  p �  σ νλ pµ pρ pλ 
 σ ρλ pµ pν pλ 
 dσ µλ pν pρ pλ � ηνρσ µλ pλ p2 � (4.2)

in d-dimensions. It is worth noting that this and other decompositions are not unique since one
can always take a linear combination of the three (independent) tensor structures consistent with
the symmetry and traceless properties to form another set of independent amplitudes. However,
with this choice one can algebraically form a scalar object which is computed via MINCER. For
instance, [19],

Σ � 1 �
T
 p � � � 1

8  d � 1 �  d � 2 � tr �
�

σµν pρ 
 σµρ pν �  d 
 2 �
p2 σµλ pν pρ pλ


 ηνρ σµλ pλ � Gµνρ
T  p � �

� 1
8  d � 1 �  d � 2 � p2 tr �  σνλ pµ pρ pλ 
 σρλ pµ pν pλ


 dσµλ pν pρ pλ � ηνρσµλ pλ p2 � Gµνρ
T  p � � � (4.3)

This together with Σ � i �
T
 p � , i � 2 and 3, are the objects of interest for the lattice matching and have

been determined to O  a3 � , [19]. For this specific example, we note that the construction of the
tensor basis as well as the amplitude decomposition can easily be carried out by hand. This is
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primarily due to the small number of free Lorentz indices present. Clearly for the extraction of the
anomalous dimensions and amplitudes for the higher moment operators, such a procedure would
be unacceptably time consuming by hand. Moreover, it would be prone to elementary algebraic
errors.

5. Higher moment issues

To extract the anomalous dimensions for the higher moment operators, it is clear that one has
to proceed with a computer algebra construction to determine the basis for the independent ampli-
tudes and hence the projections. We discuss the issues in relation to the n � 8 transversity operator
as an example, [24]. For this case there are initially seventeen potential tensors into which the
Green’s function (2.5) can be decomposed. These are built from the relevant vectors and tensors
of the operator in question, which for transversity are pµ , ηµν and σ µν . The only constraint being
that the Green’s function has nine independent indices. Given these seventeen tensors then within
FORM it is straightforward to construct the seventeen tensors which have the correct symmetry, but
not traceless, properties. Taking a linear combination of these new objects with as yet unrelated
coefficients, the relationship between these are fixed by imposing the remaining traceless criterion.
In practical terms we take successive pairs of free indices and contract them. The coefficients of
the resulting tensors produce constraints on the seventeen initial coefficients which can be solved.
Whilst there are more contractions than coefficients there is redundancy in the system of linear
equations which determine the coefficients. This is due to the symmetry of the operator itself.
However, there is no unique solution and three coefficients remain unrelated producing three inde-
pendent amplitudes. (For the Wilson operator the corresponding number is two.) For the higher
moments, as we are ultimately interested in the anomalous dimensions, the specific linear combina-
tion one uses is not a major issue. The only constraint is to choose that projector of the three which
leads to the lowest computation time when MINCER is applied. The test for this is to compare the
run times for each projector to do the full two loop calculation in an arbitrary linear covariant gauge
before generating the results for the three loop diagrams.

The other main computer algebra issue is the construction of the Feynman rules for each
operator. Given that the Green’s function has free indices one in principle has to construct the
full symmetrized and traceless operator before applying the FORM routine to generate the explicit
Feynman rules for the operator. However, given that the Green’s function will be multiplied by
a projector which is traceless, that part of the operator containing ηµν tensors will automatically
give zero upon contracting with the projector. Therefore there is no need to have an operator which
is traceless; only an operator which is symmetrized will suffice. This will reduce computation
time since otherwise with a traceless operator there will be an internal intermediate expression
swell which will be sorted by FORM to produce the equivalent scalar expression as ignoring the
traceless part. For instance, for the n � 8 transversity operator the expression swell would have
been substantial. Finally, in relation to the Feynman rules, only the part of the operator up to and
including two quark and three gluon leg insertions are required for the full three loop computation.
To illustrate the size of our higher moment calculation the FORM module containing the operator
Feynman rule was 36 Mbytes for n � 7 transversity and 300 Mbytes for n � 8 transversity, [24].
Indeed the latter calculation could only be performed in the Feynman gauge rather than the full
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linear covariant or Landau gauges. Even then it took of the order of 40 days on a dual opteron 64
bit SMP 2GHz machine. Hence, only the MS result was determined with the RI

�

scheme anomalous
dimension yet to be established.

As with all large computations carried out symbolically, it is worth detailing the various checks
we used in order to be confident that our results are credible. First, for the case of the Wilson
operators the three loop MS anomalous dimensions are known, [1, 2, 3, 4], and our anomalous
dimensions must therefore agree before extracting any finite parts for lattice matching. Moreover,
for both Wilson and transversity operators the MS expressions have been shown to be independent
of the linear covariant gauge fixing parameter. For the transversity case we have the checks that the
two loop anomalous dimensions must agree with [26, 27, 28, 25, 29] for the various n we consider.
At three loops the only substantial check is that the residues of the poles in 1 � ε 2 and 1 � ε3 have
to agree with the renormalization group consistency check. In other words these are predicted
from the one and two loop parts of the anomalous dimensions. In addition for the RI

�

scheme,
one can compute the anomalous dimensions either directly from the renormalization constants
deduced from the Green’s function itself, or from the conversion functions, C �  a 	 α � , based on the
renormalization group. This is defined by

C �  a 	 α � �
Z

��
Z � (5.1)

where the renormalization constants are both expressed in terms of the variables defined in the
same scheme. Then the RI

�

anomalous dimension is given by

γ
�� � a � � � γ �  a � � β  a � ∂

∂ a
lnC �  a 	 α � � αγα  a � ∂

∂ α
lnC �  a 	 α � � (5.2)

(See, for example, [34].) Therefore, the expression on the left side will agree with the direct
renormalization. For all the results presented in the next section we note that they all pass the
checks discussed here.

6. Results

First, we record the explicit values for the anomalous dimensions of the Wilson operators n � 5
and 6 in RI

�

for arbitrary α , which are new. The notation is that the numerical subscript denotes the
moment whilst the superscript, W or T , corresponds to either the Wilson or transversity operator
respectively. We find

γ
�
W

5  a � �
91
15

CF a 
 � � 33525α2 
 100575α 
 1729270 � CA � 156114CF � 673880TFNf � CF a2

27000
 � � 30172500α4 
 289359000α3 � 97200000ζ3α2 
 1409428125α2

� 1004400000ζ3α 
 4758071625α � 5142528000ζ3 
 52067172425 � C2
A
 � 23726250α3 
 30956400α2 � 415630950α
 102384000ζ3 � 9145680720 � CACF 
 6023484800T 2

F N2
f

� � 268200000α2 � 259200000ζ3α 
 1582173000α
 2514240000ζ3 
 36792205400 � CATF Nf

8
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 � 107259600α 
 3680640000ζ3 � 3053173120 � CF TF Nf
 � 1832544000ζ3 � 829297168 � C2
F � CF a3

48600000

 O  a4 � (6.1)

and

γ
�
W

6  a � �
709
105

CF a 
 � � 12116475α2 
 36349425α 
 670295290 � CA

� 57119598CF � 263443880TFNf � CF a2

9261000
 � � 534336547500α4 
 5228103069000α3 � 1750329000000ζ3α2
 25439835416625α2 � 18086733000000ζ3α 
 86004002776125α
� 92121315552000ζ3 
 988839358918775 � C2

A
 � 355203339750α3 
 158333464800α2 � 9375191062650α
� 5509035504000ζ3 � 172078530172080 � CACF

� � 4749658200000α2 � 4667544000000ζ3α 
 28468726629000α
 49102562880000ζ3 
 704961641573000 � CATF Nf
 � 2419404145200α 
 73311557760000ζ3 � 59288998908160 � CF TF Nf
 � 31055615136000ζ3 � 13674447985168 � C2
F
 117065906115200T 2

F N2
f � CF a3

816820200000

 O  a4 � (6.2)

where ζn is the Riemann zeta function. As the Landau gauge is of particular interest, we record
that the previous two expressions when α � 0 are

γ
�
W

5  a � �� α � 0 �
91CF

15
a 
 �

864635CA � 78057CF � 336940TFNf

 CF a2

13500
 �  52067172425 � 5142528000ζ3 � C2
A 
  102384000ζ3 � 9145680720 � CACF

�  2514240000ζ3 
 36792205400 � CATF Nf 
 6023484800T 2
F N2

f
  1832544000ζ3 � 829297168 � C2
F
  3680640000ζ3 � 3053173120 � CFTF Nf � CF a3

48600000

 O  a4 � (6.3)

and

γ
�
W

6  a � �� α � 0 �
709CF

105
a 
 �

335147645CA � 28559799CF � 131721940TFNf

 CF a2

4630500
 �  988839358918775 � 92121315552000ζ3 � C2
A

�  5509035504000ζ3 � 172078530172080 � CACF

�  49102562880000ζ3 
 704961641573000 � CATF Nf
  31055615136000ζ3 � 13674447985168 � C2
F
  73311557760000ζ3 � 59288998908160 � CFTF Nf
 117065906115200T 2

F N2
f � CF a3

816820200000

 O  a4 � � (6.4)
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For further comparison between the schemes the MS and RI
�

expressions for n � 5 transversity are,
[20],

γT
5  a � �

92
15

CF a 
 � 189515CA � 41674CF � 79810TFNf � CF a2

6750
 � � 190836000ζ3 
 1975309075 � C2
A � � 572508000ζ3 
 325464235 � CACF

� � 1192320000ζ3 
 511395100 � CATF Nf 
 � 381672000ζ3 � 254723696 � C2
F
 � 1192320000ζ3 � 989903260 � CF TF Nf � 83718800T 2

F N2
f � CF a3

12150000
 O  a4 � (6.5)

and

γ
�
T

5  a � �
92
15

CF a 
 � � 30825α2 
 92475α 
 1740690 � CA � 166696CF � 676560TFNf � CF a2

27000
 � � 194197500α4 
 1854279000α3 � 583200000ζ3α2 
 8993896875α2

� 6026400000ζ3α 
 30074295375α � 37353312000ζ3
 356401468700 � C2
A 
 � 91239750α3 � 209956950α2

� 4997987400α 
 1076976000ζ3 � 60979980560 � CACF

� � 1726200000α2 � 1555200000ζ3α 
 10041363000α
 17858880000ζ3 
 253330505600 � CATF Nf 
 41629683200T 2
F N2

f
 � 1289803200α 
 27164160000ζ3 � 22363266560 � CF TF Nf
 � 10686816000ζ3 � 7132263488 � C2
F � CF a3

340200000

 O  a4 � � (6.6)

For completeness we record the next MS anomalous dimensions in the sequence are, [20],

γT
6  a � �

34
5

CF a 
 � 204770CA � 42129CF � 88810TF Nf � CF a2

6750
 � � 707616000ζ3 
 7527909825 � C2
A � � 2122848000ζ3 
 1373507730 � CACF

� � 4626720000ζ3 
 1841332000 � CATF Nf 
 � 1415232000ζ3 � 684744816 � C2
F
 � 4626720000ζ3 � 3910683210 � CF TF Nf � 320975800T 2

F N2
f � CF a3

42525000
 O  a4 � (6.7)

and

γT
7  a � �

258
35

CF a 
 � 75266555CA � 15484767CF � 33149830TFNf � CF a2

2315250
 � � 3517994592000ζ3 
 38365845513450 � C2
A

� � 10553983776000ζ3 
 5978407701105 � CACF

� � 24084527040000ζ3 
 9039144860900 � CATF Nf
 � 7035989184000ζ3 � 4192441946262 � C2
F
 � 24084527040000ζ3 � 20698675427220 � CF TF Nf

� 1651311191600T 2
F N2

f � CF a3

204205050000

 O  a4 � � (6.8)
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The complete set of three loop transversity anomalous dimensions in MS and RI
�

are given in
[18, 19, 20, 24].

7. Conclusions

We conclude with a few brief remarks. First, the three loop anomalous dimensions are avail-
able for the transversity operator for each moment up to n � 8 in the MS scheme and n � 7 for the
lattice motivated RI

�

scheme. The former in particular will provide important independent checks
for future explicit arbitrary moment evaluations of the three loop anomalous dimensions. A by-
product of the overall project, [18, 19, 20], has been the provision of the finite parts of a Green’s
function which are necessary for lattice measurements of matrix elements. The three loop pertur-
bative information is essential to obtaining more precise numerical estimates. In addition we have
given the (new) RI

�

anomalous dimensions for the n � 5 and 6 Wilson operators at three loops.
Whilst it is in principle possible to continue with the computation of the transversity higher mo-
ments to n � 9 and beyond, the present method has become too tedious. This is primarily due to
the increase in the number of free Lorentz indices on the operator which was originally required
for the lattice comparison. Moreover, the actual computation time as indicated for n � 8 in the
Feynman gauge has already become unacceptably long. An explicit arbitrary n calculation exploit-
ing the algorithm of [1, 2, 3, 4] would achieve all moment information during one run, at possibly
a computation time which is not too dissimilar from that for one high moment.
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