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Detailed knowledge of the Gamow-Teller strength distribution in medium-heavy nuclei is im-

portant for accurately estimating weak transition rates inthermonuclear and core-collapse super-

novae. Charge-exchange reactions are an excellent tool to provide empirical information about

Gamow-Teller strengths. A secondary, 115 MeV/nucleon triton beam has been developed at

NSCL for use in (t,3He) charge-exchange reaction studies. Work is ongoing to extract Gamow-

Teller strength distributions, particularly inp f -shell nuclei. We briefly overview the procedure

with the64Zn(t,3He)64Cu reaction as an example.
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1. Motivation

Electron-captures (EC) play a significant role in core-collapse (Type II) [1] and thermonuclear
(Type Ia) supernovae [2] where the Fermi energy of degenerate electrons lifts Q-value restrictions
on the reaction (see e.g. Ref.[3] for a review). Fuller, Fowler and Newman (FFN), treating valence
nucleons in an independent-particle model (IPM), showed that in such environments most EC is
on nuclei [4], not free protons. EC rates on intermediate-mass and Fe-group nuclei in white-dwarf
Type Ia events can be used, in conjection with observed light curves andejecta spectra, to constrain
important modeling parameters of the explosion [5]. In Type II supernovae, EC onp f - andsdg-
shell nuclei strongly affects pre-collapse dynamics and properties of the core of the collapsing star
[6].

Ground state EC proceeds by a Gamow-Teller (GT) type transition, with nuclear quantum
numbers∆L = 0, ∆S = 1. The reverse process ofβ -decay, which can be GT or Fermi (F) type
(∆L = 0, ∆S = 0) can also be an important consideration in supernovae. Theoretical determination
of the Fermi strength (B(F)) is trivial. ResidualNN-interactions make determination of the Gamow-
Teller strength (B(GT)) more challenging however, as they move the B(GT)centroid and spread
the total strength over many more daughter states than anticipated by the IPM used by FFN [7].
Work with modern shell-model techniques have produced more detailed B(GT+) distributions in
EC daughters [8] and associated EC rates [9] which, when used in supernova simulations, lead to
significant differences in pre-explosion evolution when compared to useof FFN rates [2, 10].

Measured B(GT+) distributions are needed to vet theoretical parameterizations of EC rates.
The (n,p) charge-exchange (CE) reaction was first used to extract the full B(GT+) response in
nuclei [11]. Subsequently, extraction of B(GT+) with (n,p)-like composite probes such as (d,2He)
[14] and (t,3He) [15] has also been used, with the advantage of improved resolution (∼130 keV
and∼200 keV (FWHM) respectively) compared to (n,p) measurements (∼1 MeV). It is important
to note that this is the best-case resolution and, since the resolution is mass-dependent, becomes
poorer with increasing target mass due to kinematic broadening. Here we discuss the extraction
of B(GT+) in 64Cu from the64Zn(t,3He) CE reaction, adding to B(GT+) distributions inp f -shell
nuclei determined previously with this probe [16].

2. Method

At the National Superconducting Cyclotron Laboratory’s (NSCL) Coupled Cyclotron Facility
(CCF) [17] secondary tritons are produced by fast-fragmentation of a150 MeV/nucleon16O pri-
mary beam on a thick (3500 mg/cm3) natBe production target [15]. The A1900 Fragment Separator
[18] is used to momentum-select 115 MeV/nucleon secondary tritons with a 0.84% energy spread
(∼3 MeV). The beam purity was 85% and the triton intensity was 3x106s−1. The triton beam is
transported to the target of the S800 Spectrograph [19]. The spectrometer is set at the 0◦ position
relative to the beam axis and the beam line is operated in dispersion-matching mode [20].

In dispersion-matching mode, the contribution from triton energy spread to3He energy res-
olution as measured in the S800 Focal Plane [21] is minimized. The focal planecontains two
planar, position-sensitive tracking detectors and a series of plastic scintillators. Time-of-flight be-
tween the RF-signal of the cyclotrons and the timing signal of the scintillators is combined with
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Figure 1: (a) Doubly differential cross section of64Zn(t,3He)64Cu CE reaction, plotted as a function of
Ex(64Cu) and including events withΘlab(3He) < 4.0◦. (b) The spectrum gated on forward angles. (c) The
spectrum gated around 3◦. (d) Differential cross section of the state seen in Fig.1(b) at∼3.1 MeV, displayed
as a function ofΘc.m.(3He).

the energy loss information in the scintillator stack to unambiguously indentify3He ions. The fo-
cal plane tracking detectors are used to determine the hit location and angle of 3He particles. A
ray-trace matrix is used to determine momentum and angles of the3He particle at the target. This
information is used to reconstruct the excitation energy in64Cu in a missing-mass procedure. The
excitation-energy resolution achieved in this procedure is 280 keV and theΘ(3He) resolution in
the c.m. frame is 10 mrad. The12C(t,3He) reaction is also measured for calibration purposes. A
transition of known absolute cross section, that to the 1+ ground state in12B, is used to normalize
the64Cu spectrum, giving absolute differential cross sections of states populated in64Cu.

Extracting the B(GT) from cross section measurments requires that one distinguish between
∆L = 0 and all other transitions via Multipole Decomposition Analysis (MDA). A basic demon-
stration of the technique is given in Figure 1. Figure 1(a) shows the64Cu spectrum forΘlab(3He)<
4.0◦. The spectrum gated on forward angles in Figure 1(b) reveals states that peak near 0◦, the sig-
nature of GT-transitions (∆L = 0), such as the state seen at∼3.1 MeV. In contrast, dipole transtions
(∆L = 1) peak around 3◦, such as the state at∼9.9 MeV seen in Figure 1(c). However, the experi-
mental resolution is often larger than the density of states. Though the signature of a specific value
for ∆L may be strong, as with the two example states mentioned above, individual transitions in
general can not be separated. Therefore, angular distributions of3He ions are calculated for∆L = 0
and several other possible∆L values in the distorted-wave Born approximation (DWBA). These
angular distributions are used to fit the data, using each distribution’s overall normalization as the
free parameters for the fit. The combination of∆L distributions that minimize theχ2 of the fit are
taken as the best description. Figure 1(d) shows an example result of thisprocedure for the 3.1
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MeV state already mentioned. The angular cross section of this state is well-described as having
strong∆L = 0 and a weak∆L = 1 component. These distributions respectively correspond to tran-
sitions from theJπ = 0+ 64Zn g.s. to 1+ and 2− states in64Cu, both of which have been observed
in the64Cu spectrum in this excitation-energy interval [22].

Extraction of B(GT) for GT-states in the residue is accomplished by exploitingan empirical
proportionality [11] between B(GT) and differential cross section in the limitof zero momentum
transfer(q). This limit is nearly realized by extrapolating the cross section toΘc.m.(3He)= 0◦. For-
mally, one must also extrapolate the cross section to reactionQ-value= 0. However, it constitutes
a small correction, so for brevity we neglect its treatment here (see Ref.[16] for details). For the
(t,3He) reaction, this proportionality is:

dσ(∆L = 0)

dΩ

∣

∣

∣

∣

∣

q→0

= σ̂GTB(GT+) (2.1)

where the proportionality constantσ̂GT, called the “unit cross section”, has the simple formσ̂GT =

109A−0.65 for a target of massA [23]. From this proportionality, we obtain B(GT+) upon knowing
the extrapolated 0◦ cross section for a∆L = 0 state. For example, in Figure 1(d) the 0◦ cross section
for the∆L = 0 partial cross section for the 3.1 MeV state seen in64Cu is∼2.3 mb/sr. Therefore;

B(GT+ :64 Cu 1+@3.1MeV ) = 0.32 (2.2)

3. Conclusions

We have briefly overviewed the procedure for extracting B(GT+) in nuclei using the (t,3He)
CE reaction measured at forward angles, due to its importance in the treatmentof stellar EC in
supernova modeling. We have examined the64Zn(t,3He) reaction to determine B(GT+) for the
64Cu 1+ state at∼3.1 MeV as an example. From the B(GT+) for this state, the EC logf t value can
be determined as:

log( f tEC) = log

(

K/g2
V

(gA/gV )2B(GT+)

)

= 4.08 (3.1)

wheregV andgA are the vector and axial vector coupling constants, with convenient ratios|gA/gV |=

1.2695±0.0029 andK/g2
V = 6146±6 [24]. Analysis is ongoing to extract B(GT+) for all low-

lying states in64Cu and build an EC logf t table for these states. This table will then be used as
input for calculation of EC rates on64Zn, parameterized as a function of stellar temperature and
density, using the method of Ref.[25]. Detailed comparisons with modern shell-model calculations
will also be made, as in Ref.[16]. The authors look forward to presenting the completed analysis
in an upcoming publication.
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