

Determination of astrophysical nuclear reaction rates using light neutron-rich RNBs

H. Ishiyama^{a,1}, T. Hashimoto^h, T. Ishikawa^a, K.Yamaguchi^g, Y.X. Watanabe^a, Y. Hirayama^a, N. Imai^a, H. Miyatake^{a,b}, M-H. Tanaka^a, N. Yoshikawa^a, S.C. Jeong^a, Y. Fuchi^a, T. Nomura^a, I. Katayama^a, H. Kawakami^a, S. Arai^a, M. Okada^a, M. Oyaizu^a, S. Mitsuoka^b, A. Osa^b, T.K. Sato^b, K. Nishio^b, M. Matsuda^b, S. Ichikawa^b, H. Ikezoe^b, Y. Mizoi^c, S.K. Das^c, T. Fukuda^c, T. Shimoda^d, K. Otsuki^e and T. Kajino^f ^aHigh Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801 Japan ^bJapan Atomic Energy Agency (JAEA), Tokai, Ibaraki, 319-1195 Japan ^cOsaka Electro-Communication University, Neyagawa, Osaka, 572-8530 Japan ^dOsaka University, Toyonaka, Osaka, 560-0043 Japan ^eGSI, Planckstrasse 1, 64291 Darmstadt, Germany ^fNational Astronomy Observatory (NAOJ), Mitaka, Tokyo, 181-8588 Japan ⁸University of Tsukuba, Ibaraki, 305-8577 Japan ^hTokyo University, Wako, Saitama, 113-0033 Japan E-mail: hironobu.ishiyama@kek.jp, .hashimoto@cnss.u-tokyo.ac.jp, tomoko@post.kek.jp, kanako@tac.tsukuba.ac.jp, yutaka.watanabe@kek.jp, yoshikazu.hirayama@kek.jp, nobuaki.imai@kek.jp, hiroari.miyatake@kek.jp, masa-hiko.tanaka@kek.jp, nobuaki.yoshikawa@kek.jp, sunchan.jeong@kek.jp, yoshihide.fuchi@kek.jp, toru.nomura@kek.jp, ichiro.katayama@kek.jp, hirokane.kawakami@kek.jp, shigeaki.arai@kek.jp,masahi.okada@kek.jp, michiharu.oyaizu@kek.jp, mitsuoka.shinichi@jaea.go.jp, osa.akihiko@jaea.go.jp, sato.tetsuya@jaea.go.jp, nishio.katuhisa@jaea.go.jp, matsuda.makoto@jaea.go.jp, ichikawa.shinichi@jaea.go.jp. Ikezoe.hiroshi@jaea.go.jp, mizoi@isc.osakac.ac.jp, suranjan@isc.osakac.ac.jp, fukuda@isc.osakac.ac.jp, tadashi.shimoda@ou.ac.jp, k.otsuki@gsi.de, kajino@nao.ac.jp

Excitation functions of ${}^{8}Li(\alpha, n)$, (d, t) and ${}^{12}B(\alpha, n)$ reactions were directly measured in the energy region of astrophysical interest using low-energy radioactive nuclear beams of ${}^{8}Li$ and ${}^{12}B$. Each measured excitation function is strongly affected by one or more resonances through a compound nucleus. The measured excitation functions are presented. Dominant r-process paths through ${}^{8}Li$ at various temperatures are discussed and our future experimental plan is also presented.

10th Symposium on Nuclei in the Cosmos Mackinac Island, Michigan, USA 27 July – 1 August, 2008

¹ Speaker

 $\textcircled{\sc b} Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.$

1. Introduction

It is pointed out that nuclear reactions on light neutron-rich radioactive nuclei play important roles to produce so called 'seed' nuclei and determine the ratio of 'seed' to neutrons at the preceding stage of the r-process. Especially, nuclear reactions through ⁸Li are thought to be important because of filling a gap of atomic mass number A = 8 [1]. A systematic study of astrophysical nuclear reaction rates on light neutron-rich nuclei using low-energy radioactive nuclear beams (RNB) is in progress at the tandem facility of Japan Atomic Energy Agency (JAEA). In this report, the measured excitation functions of ⁸Li(α , n), (d, t) and ¹²B(α , n) reactions are shown and dominant reaction paths through ⁸Li during the r-process are discussed. Our future experimental plan is also presented.

2. Experiment

There exists two kinds of RNB generators at the tandem facility; one is a recoil mass separator (RMS) as an in-flight secondary beam separator [2]. The other is an ISOL-based RNB facility, named Tokai Radioactive Ion Accelerator Complex (TRIAC) [3], which was constructed and is operated under a joint project of High Energy Accelerator Research Organization (KEK) and JAEA. Using the ⁸Li and ¹²B beams from the RMS with fixed energies of 14.6 MeV and 24 MeV, respectively, direct cross-section measurements of ⁸Li(α , n)¹¹B [4] and ¹²B(α , n)¹⁵N reactions were performed with a gas chamber surrounded by neutron detector arrays [5]. The gas chamber works not only as a gas counter, but also a He gas target [5]. Using the ⁸Li beam from the TRIAC with various energies of 0.18 – 0.75 MeV/u, direct measurement of the ⁸Li(d, t)⁷Li reaction was carried out using a CD₂ target and large-area position-sensitive silicon detectors [6]. For more detailed experimental technique, please see the cited references.

3. Excitation functions

The excitation function of the ⁸Li(α , n)¹¹B reaction was measured in center-of-mass energies (E_{cm}) from 0.7 to 2.6 MeV. The resultant cross sections were roughly two times smaller than previous measurements. A resonance-like structure was found at around E_{cm} = 0.85 MeV, corresponding to the excited state located at E_x = 10.9 MeV in ¹²B. For more detail, please see reference [4].

The excitation function of the ¹²B(α , n)¹⁵N reaction was measured in the energy region of $E_{cm} = 1.1 - 3.6$ MeV, as shown in Fig.1. It covered the Gamow peaks of $T_9 = 2 - 5$. The resultant cross sections were almost consistent with the theoretical estimation by Fowler and Hoyle [7]. At $E_{cm} = 1.4 - 1.5$ MeV, a resonance-like structure was observed and may correspond to one or more excited states located at $E_x = 11.61$, 11.70, 11.75 MeV in ¹⁶N. The cross section at $E_{cm} = 1.5$ MeV is about four times larger than the theoretical estimation. The astrophysical reaction rate is directly deduced from measured cross sections by applying the following formula:

$$N_A < \sigma_V >= N_A \left(\frac{8}{\pi\mu}\right)^{1/2} \frac{1}{kT^{3/2}} \int_0^\infty \sigma(E) E \exp\left(-\frac{E}{kT}\right) dE$$
(1)

Where $\sigma(E)$ is the cross section, N_A is Avogadro's number, m is the reduced mass, k is Boltzmann's constant, and T is the temperature. In the energy region below $E_{cm} = 1.1$ MeV and above 3.8 MeV, we used cross section data estimated by Fowler and Hoyle. The resultant reaction rate is roughly two times faster at around T₉ = 3 than the theoretical estimation [7].

Figure 1: Excitation function of the ${}^{12}B(\alpha, n){}^{15}N$ reaction. Black circles show present results. The solid line indicates the theoretical estimation by Fowler and Hoyle [7].

Figure 2: Excitation function of the ${}^{8}Li(d, t)^{7}Li$ reaction. Open circles show the present results. The open triangle shows our measurement using the ${}^{8}Li$ beam from the RMS. Black triangles indicate the previous results by Balbes et al. [8].

The excitation function of the ⁸Li(d, t)⁷Li reaction was measured in the energy region of $E_{cm} = 0.3 - 1.2$ MeV, as shown in Fig. 2. It covers the Gamow peaks of $T_9 = 1 - 3$. Previous measurement by Balbes et al. [8] was performed in higher energy region over $E_{cm} = 1.5$ MeV. At around $E_{cm} = 0.8$ MeV, a resonance-like structure was observed and its energy corresponds to the $E_x = 22.4$ MeV state in ¹⁰Be. The reaction rate was deduced from present data by applying the formula (1). In the energy region above 1.5 MeV, we used the cross section data in previous measurement [8]. The cross section below $E_{cm} = 0.3$ MeV were estimated by linear extrapolation from the present data point at $E_{cm} = 0.3$ MeV to 0.0 MeV. The resultant rate is higher by one order of magnitude at around $T_9 = 1$ than the previously reported values [8] due to the resonance-like structure around $E_{cm} = 0.8$ MeV.

4. Reaction rates and dominant reaction paths via ⁸Li

In order to identify main flow paths through ⁸Li at various temperatures during the rprocess, relative reaction rates $(Y_x Y_{8Li} < \sigma v >)$ on ⁸Li were calculated, as shown in Fig. 3. The Y_x is fraction of each light element, proton (Y_p) , neutron (Y_n) , deuteron (Y_d) and alpha particle (Y_α) . Those values were deduced by a network calculation in the r-process using the exponential model [9]. Initial parameters of the network calculation were set at Ye (electron fraction) = 0.45, τ_{dye} (dynamic time scale) = 5 ms and s/k (entropy) = 250. Those values are typical ones to reproduce the r-process abundances under the neutrino-driven wind model in the Type II supernovae. The Y_{8Li} is fraction of ⁸Li and is set to unity. The reaction rates of ⁸Li(d, t) and ⁸Li(α , n) are deduced from present results. The ⁸Li(p, α) and the ⁸Li(n, γ) rates are from references [10] and [11], respectively.

Figure 3: Relative reaction rates $(Y_x Y_{8Li} < \sigma v >)$ on ⁸Li. The Y_x is fraction of light element and the Y_{8Li} is fraction of ⁸Li. For more detail, please see the text.

As can be seen in Fig. 3, at $T_9 > 3.7$, the ⁸Li(p, α) α n reaction is the fastest reaction, which destroys the ⁸Li. In $T_9 = 0.7 - 3.7$, the ⁸Li(α , n)¹¹B reaction becomes the main path from the ⁸Li. The ⁸Li(d, t)⁷Li rate is so slow that this reaction gives little effect to the r-process abundances.

The relative reaction rates on ¹¹B and ¹²B were calculated with the above mentioned procedure. As the result, dominant reaction paths through ⁸Li at various temperatures are identified as below;

$$\begin{split} T_9 &= 2.7 - 3.6 : {}^8\text{Li}(\alpha, n)^{11}\text{B}(p, \alpha)^8\text{Be}(2\alpha), \\ T_9 &= 1.7 - 2.7 : {}^8\text{Li}(\alpha, n)^{11}\text{B}(\alpha, n)^{14}\text{N}, \\ T_9 &= 0.5 - 1.7 : {}^8\text{Li}(\alpha, n)^{11}\text{B}(n, \gamma)^{12}\text{B}(n, \gamma)^{13}\text{B}. \end{split}$$

5. Future plan

The measured cross sections of the ⁸Li(α , n)¹¹B reaction have relatively large errors of 20-30 % [4] in the energy region below $E_{cm} = 1.0$ MeV, corresponding to $T_9 = 1 - 2$. To improve statistics and energy resolution of cross sections, we have a plan to measure the cross sections below $E_{cm} = 1.0$ MeV using the ⁸Li beam from the TRIAC with the intensity of 10⁵⁻⁶ pps and the energy resolution of 2 %. The present gas chamber, named MSTPC [5], works well up to 10⁴ pps injection-rate. Under higher injection rate, the gain instability occurs due to space charge gain limitation around anode wires. We therefore decided to exchange the anode wires for gas-electron-multiplier (GEM) foils for high-rate capability. For experimental requirement, gas multiplication of the GEM-MSTPC should be enough high (over 10³) with He + CO₂ (10%) gas and low gas pressure (about 100 Torr). A 400 µm thick GEM foil was selected and gave 10³ gas gain successfully. An off-line test of the GEM-MSTPC for higher rate capability is in progress.

References

- [1] T. Sasaqui, et al., Astrophys. J. 634(2005)1173.
- [2] H. Ishiyama, et al., Nucl. Instrum. Methods A560(2006)366.
- [3] H. Miyatake, et al., Nucl. Instrum. Methods B204(2003)746.
- [4] H. Ishiyama, et al., Phys. Lett. **B640**(2006)82.
- [5] T. Hashimoto, et al., Nucl. Instrum. Methods A556(2006)366.
- [6] T. Hashimoto, et al., AIP Conf. Proc. 1016(2008)313.
- [7] W.A. Fowler and F. Hoyle, Astrophys. J. Suppl. 91(1964)201.
- [8] M.J. Balbes, et al., Nucl. Phys. A584(1995)315.
- [9] K. Otsuku, et al., New Astronomy 8(2003)767
- [10] F.D. Becchetti, et al., Nucl. Phys. A550(1992)507.
- [11] Z.H. Liu, et al., Phys. Rev. C71(2005)052801.