
P
o
S
(
N
I
C
 
X
)
1
8
7

Thermal properties of neutron stars in the
framework of density-dependent nuclear field theory

Rodrigo Negreiros ∗

Computational Science Research Center and Department of Physics, San Diego State University
E-mail: negreiro@sciences.sdsu.edu

Fridolin Weber †

Department of Physics, San Diego State University
E-mail: fweber@sciences.sdsu.edu

We investigate the composition, structure and thermal evolution of neutron stars for nuclear equa-

tions of state that are computed in the framework of an effective density-dependent nuclear field

theory. Special attention is paid to the hyperon populations of neutron star matter predicted by

such a theory. The results are compared with the outcome obtained from standard (non-density

dependent) nuclear field theory.

10th Symposium on Nuclei in the Cosmos
July 27–August 1, 2008
Mackinac Island, Michigan, USA

∗Speaker.
†Supported by the National Science Foundation under Grant PHY-0457329, and by the Research Corporation.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
N
I
C
 
X
)
1
8
7

Thermal properties of Neutron Stars Rodrigo Negreiros

1. Relativistic nuclear field-theoretical models for the EoS

Many relativistic nuclear field-theoretical studies of neutron star matter are performed for the
relativistic mean field (RMF), relativistic Hartree-Fock (RHF), and relativistic Brueckner-Hartree-
Fock (RBHF) approximations [1]. This is different in this paper, which treats neutron star matter
in the framework of a relativistic density-dependent (DD) nuclear field theory [2], based on the
Lagrangian [2, 3]

L = ∑
B

ψ̄B
(

iγµ∂ µ
−mB

)

ψB +
1
2 ∑

i=σ ,δ

(

∂µΦi∂ µΦi −m2
i Φ2

i

)

−
1
2 ∑

κ=ω ,ρ

(1
2

Fκ
µνFκµν

−m2
κAκ

µAκµ
)

+ψ̄BΓ̂σ (ψ̄B,ψB)ψBΦσ − ψ̄BΓ̂ω(ψ̄B,ψB)γµψAω µ + ψ̄BΓ̂δ (ψ̄B,ψB)τψBΦδ

−ψ̄BΓ̂ρ(ψ̄B,ψB)γµτψBAρµ + ∑
l=e,µ

ψ̄l
(

iγµ∂ µ
−ml

)

ψl , (1.1)

with Fκ
µν = ∂µAκ

ν − ∂νAκ
µ . This Lagrangian describes baryons (B = p,n,Σ,Ξ, . . .) interacting via

the exchange of mesons (σ ,ω ,ρ ,δ ). In RMF, RHF and RBHF the meson-baryon verticesΓ̂α

(α = σ ,ω ,δ ,ρ) are density-independent quantities given by expressionslike Γ̂σ = igσ in case of
the scalarσ meson, or bŷΓµ

ω = gωγµ +(i/2)( fω/2m)∂λ [γλ ,γµ ] in case ofω mesons [1]. This is
different for the DD framework where the meson-baryon verticesΓ̂α depend on the baryon field
operatorsψB [2]. We consider both types of vertices in this paper. Schematically, the nuclear field
equations that follow from (1.1) have the mathematical form

(iγµ∂µ −mB)ψB(x) = ∑
M=i,κ

M(x) Γ̂M ψB(x) , (∂ µ∂µ +m2
σ)σ(x) = ∑

B
ψ̄B(x) Γ̂σ ψB(x) , (1.2)

plus similar equations for the other mesons [1, 2]. Here, we consider solutions of the nuclear field
equations that are computed for the relativistic mean-field(Hartree) approximation and the rela-
tivistic density-dependent method described in [2]. The solutions are referred to as HV [1] and
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Figure 1: HV and Bonn EoS. The latter is computed for density dependentbaryon-meson vertices.

Bonn [4], respectively. The parameters of the Lagrangian are adjusted to the bulk properties of nu-
clear matter, which are: saturation energy,E/A=−16.0 MeV, symmetry energy,a4 =−32.5 MeV,
compressibility modulus,K = 200 to 300 MeV, and
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Figure 2: Sample neutron star matter compositions for HV and Bonn.
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Figure 3: Hyperon composition for a rotating neutron star in equatorial (left) and polar (right panel) direc-
tions.

effective nucleon mass,m∗ = 0.74 to 0.82, at saturation density ofρ0 = 0.16 fm−3. The
equations of state (EoS) computed from the field equations are plotted in Fig. 1, and the and the
respective particle populations for non-rotating as well as rotating stars [1] are shown in Fig. 2 and
3. One sees that the EoS obtained for the DD model differs onlyvery little from the standard EoS,
HV. This is not so for the respective particle populations, which are very different. In this paper the
variablesP, ε andρ represent pressure, energy density and number density respectively.

2. Stellar structure equations and thermal evolution

Solving Einstein’s equation of a spherically symmetric star [1], leads to the Tolman–Oppenheimer–
Volkoff equation, given by

dP
dr

= −
ε m
r2

(1+P/ε)
(

1+4πr3P/m
)

1−2m/r
, (2.1)

which describes the properties of neutron stars. We use units for which the gravitational constant
and velocity of light areG = c = 1 so that the mass of the sun isM⊙ = 1.47 km. The mass
contained in a sphere of radiusr is given bym= 4π

∫ r
0 r2εdr. Hence the total gravitational mass

of a neutron star follows asM ≡ m(R), whereR denotes the star’s radius. The masses of neutron
stars lie between about one and two solar masses, and their radii are around 10 km to 15 km. Thus,
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one estimates that 2M/R∼ 30−60% for neutron stars. Solutions of the TOV equation computed
for HV and Bonn are shown in Fig. 4. The horizontal line atM = 1.0± 0.2M⊙ refers to X-ray
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Figure 4: Mass-radius relationship (left panel) and neutron star mass versus central density (right panel) for
the EoS of this paper. The horizontal lines represent minimum and maximum observed neutron star masses.

binary 4U1538-52 [5] , while the upper limit 2.08± 0.19M⊙ denotes the mass of the potentially
very heavy neutron star in the globular cluster M5 [6]. The density-dependent model studied here
does not support a neutron star that massive.

The predominant cooling mechanism of hot, newly formed neutron stars immediately after for-
mation is neutrino emission, with an initial cooling time scale of seconds. Already a few minutes
after birth, the internal neutron star temperature drops toaround∼ 109 K. Photon emission over-
takes neutrino emission when the internal temperature has fallen to∼ 108 K, with a corresponding
surface temperature roughly two orders of magnitude smaller. Neutrino cooling dominates for at
least the first 103 years, and typically for much longer in standard cooling (modified Urca) calcula-
tions. The dominant neutrino emitting processes in neutronstar matter are summarized in [1, 7]. In
this work superfluidity is not considered. The general relativistic equations that govern the thermal
evolution of neutron stars are [1]

∂Lr

∂M
= −

Qν

ρ
√

1− 2M
r

−
Cv

ρ
√

1− 2M
r

∂T
∂ t

,
∂ lnT
∂M

= ∇
∂ lnP
∂M

, (2.2)

whereT is the stellar temperature,Cv is the specific heat at a constant volume, andQν is the
neutrino emissivity [8]. Figure 5 shows solutions of these equations for the two EoS studied in
this paper. The calculations are performed for neutron starmasses of 1.4M⊙ and 1.8M⊙, in order
to illustrate the influence of different neutron star compositions on the cooling history of neutron
stars. As can be seen from Fig. 5, standard neutron star cooling leads to good agreement with
observed cooling data for both stellar masses, while enhanced cooling via the direct URCA process
(among neutrons, protons, and hyperons) reduces the stellar temperature way too quickly, leading
to temperatures that are not in agreement with observed data. Another important feature of these
calculations is that we use consistent values for the effective masses of baryons, computed self-
consistently from the field equations (1.2), rather than a fixed value (usually∼ 0.7mn) throughout
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Figure 5: Cooling behavior of 1.4 and 1.8M⊙ neutron stars (left panel: enhanced cooling via direct URCA;
right panel: standard cooling). Observed data are from [9].

the star, which has important consequences for stellar cooling. Like the effective nucleon mass, the
specific heat and the thermal conductivity of the stellar matter were consistently computed from
the underlying population of baryons and leptons as well.

The next step in our research will bear on the exploration of the cooling behavior of rotating
neutron stars. In contrast to non-rotating neutron stars, whose particle compositions do not change
with time (that is, they are frozen in), rotating neutron stars can experience drastic density changes
during spin-down as isolated radio pulsars or during spin-up as X-ray accreters in LMXBs. Either
way, any such changes in rotational frequency are inevitably accompanied by the re-arrangement of
matter in the ultra-dense stellar cores of neutron stars andmay even lead to the creation respectively
destruction of novel states of ultra-dense neutron star matter, like quark matter, or a condensate of
K− bosons [1]. The thermal evolution of rotating neutron starsis therefore not determined by their
initial core compositions at birth, but needs to be computedself-consistently with a numerical,
general relativistic, rotation code coupled to a stellar cooling code.
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