
P
o
S
(
G
M
C
8
)
0
0
2

Introduction to Gravitational Microlensing

Shude Mao∗

Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL, UK
E-mail: shude.mao@manchester.ac.uk

The basic concepts of gravitational microlensing are introduced. We start with the lens equation,

and then derive the image positions and magnifications. The statistical quantities of optical depth

and event rate are then described. We finish with a summary anda list of challenges and open

questions. A problem set is given for students to practice.

The Manchester Microlensing Conference: The 12th International Conference and ANGLES Microlensing
Workshop
January 21-25 2008
Manchester, UK

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
G
M
C
8
)
0
0
2

Introduction to Gravitational Microlensing Shude Mao

1. Introduction

Gravitational microlensing (in the local group) refers to the temporal brightening of a back-
ground star due to intervening objects. Einstein (1936) first examined (micro)lensing by a single
star, and concluded that “there is no great chance of observing this phenomenon.” Some important
works were performed in intervening years by [45] and [33], but the research topic was revitalised
by Paczýnski (1986) who proposed it as a method to detect compact darkmatter objects in the
Galactic halo.

The original goal is now out of favour, since we know with highprecision that most of the
dark matter must be non-baryonic, e.g. from observations ofmicrowave background radiation and
nucleosynthesis (at the time of his paper, this was, however, unclear). Nevertheless, gravitational
microlensing has turned into a powerful technique with diverse applications in astrophysics, includ-
ing the study of the structure of the Milky Way, stellar atmospheres and the detection of extrasolar
planets and stellar-mass black hole candidates. The field has made enormous progress in the last
two decades. There have been a number of reviews on this topic(e.g. [38, 35, 19, 51]), the most
recent highlight was given in [25]. This article gives an introduction to microlensing, aimed at a
level for a starting PhD student. Together with other talks in the workshop and proceedings1, one
can gain a thorough feeling about the state-of-the-art research in this field (as of 2008).

The reference list given here is seriously incomplete (and biased). For more complete refer-
ences and information about ongoing microlensing surveys,see the review papers mentioned above
and the web site:http://mlens.net/ (built by Szymon Kozłowski, Subo Dong and Lukasz
Wyrzykowski).

2. What is gravitational microlensing?

The light from a background source is deflected, distorted and (de)magnified by intervening
objects along the line of sight. If the lens, source and observer are sufficiently well aligned, then
strong gravitational lensing can occur. Depending on the lensing object, strong gravitational lensing
can be divided into three areas: microlensing by stars, multiple-images by galaxies, and giant arcs
and large-separation lenses by clusters of galaxies. For microlensing, the lensing object is a stellar-
mass compact object (e.g. normal stars, brown dwarfs or stellar remnants [white dwarfs, neutron
stars and black holes]); the image splitting in this case is usually too small (of the order of milli-
arcsecond in the local group) to be resolved by ground-basedtelescopes, thus we can only observe
the magnification change as a function of time.

The left panel in Fig. 1 illustrates the microlensing geometry. A stellar-mass lens moves
across the line of sight towards a background star. As the lens moves closer to the line of sight, its
gravitational focusing increases, and the background starbecomes brighter. As the source moves
away, the star falls back to its baseline brightness. If the motions of the lens, the observer and
the source can be approximately taken as linear, then the light curve is symmetric. Since the
lensing probability for microlensing in the local group is of the order of 10−6 (see section 5), the
microlensing variability usually should not repeat. Sincephotons of different wavelengths follow
the same propagation path (geodesics), the light curve (fora point source) should not depend on

1available athttp://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=54
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Figure 1: The left panel shows a side-on view of the geometry of microlensing where a lens moves across
the line of sight towards a background source. The right panel shows two light curves corresponding to two
dimensionless impact parameters,u0 = 0.1 and 0.3. The time on the horizontal axis is centred on the peak
time t0 and is normalised to the Einstein radius crossing timetE. The lower the value ofu0, the higher the
peak magnification. For the definitions ofu0 andtE see section 4.1.

the colour. The characteristic symmetric shape, non-repeatability, and achromaticity can be used
as criteria to separate microlensing from other types of variable stars (exceptions to these rules will
be discussed in section 4.2).

3. Lens equation, image positions and magnifications

To derive the characteristic light curve shape shown in the right panel of Fig. 1, we must look
closely at the lens equation, and the resulting image positions and magnifications for a point source.

3.1 Lens equation

The lens equation is straightforward to derive. Figure 2 illustrates a side-on view of the lensing
configuration. Simple geometry yields

~η + Dds~̂α = ~ξ · Ds

Dd
, (3.1)

whereDd, Ds andDds are the distance to the lens (deflector), distance to the source and distance
between the lens (deflector) and the source,~η is the source position (distance perpendicular to the
line connecting the observer and the lens),~ξ is the image position, and̂~α is the deflection angle. For
gravitational microlensing in the local group,Dds = Ds−Dd.2 Mathematically, the lens equation
provides a mapping between the source plane to the lens plane. The mapping is not necessarily
one-to-one.

2For cosmological microlensing in an expanding universe, the distances should be taken as angular diameter dis-
tances, and in generalDds 6= Ds−Dd. See the review by Wambsganss in these proceedings on cosmological microlens-
ing.
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Figure 2: Illustration of various distances and angles in the lens equation (eqs. 3.1 and 3.2).

Dividing both sides of eq. (3.1) byDs, we obtain the lens equation in angles

~β +~α = ~θ , (3.2)

where~β =~η/Ds, ~θ = ~ξ/Dd, and~α = ~̂α ×Dds/Ds is the scaled deflection angle. These angles are
illustrated in Fig. 2.

For an axis-symmetric mass distribution, due to symmetry, the source, observer and image
positions must lie in the same plane, and so we can drop the vector sign, and obtain a scalar lens
equation:

β + α = θ . (3.3)

3.2 Image positions for a point lens

For a point lens at the origin, the deflection angle is given by

~̂α =
4GM

c2

1
ξ 2

~ξ , (3.4)

and the value of the scaled deflection angle is

α =
Dds

Ds
|~̂α | = Dds

Ds

4GM
c2Ddθ

≡ θE
2

θ
, ξ = Ddθ . (3.5)

where we have defined the angular Einstein radius as

θE =
rE

Dd
≈ 0.55mas

√

1−Dd/Ds

Dd/Ds

(

Ds

8kpc

)−1/2( M
0.3M⊙

)1/2

. (3.6)

The lens equation for a point lens in angles is therefore

β +
θE

2

θ
= θ . (3.7)
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We can further simply by normalising all the angles byθE, rs≡ β/θE, r ≡ θ/θE, the above equation
becomes3

rs+
1
r

= r. (3.8)

For the special case when the lens, source and observer are perfectly aligned (rs = 0), due to axis-
symmetry along the line of sight, the images form a ring (“Einstein” ring) with its angular size
given by eq. (3.6).

For any other source positionrs 6= 0, there are always two images, their positions are given by

r± =
rs±

√

rs
2 +4

2
. (3.9)

The ‘+’ image is outside the Einstein radius (r+ ≥ 1) on the same side of the source, while the ‘−’
image is on the opposite side and inside the Einstein radius (r− < 0 and|r−| < 1). The angular
separation between the two images is

∆θ = θE(r+ − r−) = θE

√

4+ rs
2. (3.10)

The image separation is of the same order of the angular Einstein diameter whenrs . 1, and thus
will be in general too small to be observable given the typical seeing from the ground (∼ one
arcsecond); we can only observe lensing effects through magnification. One exception may be the
VLT interferometer (VLTI) which can potentially resolve the two images. This may be important
for discovering stellar-mass black holes since they have larger image separations due to their larger
masses than typical lenses with mass∼ 0.3M⊙ ([13, 42]).

The physical size of the Einstein radius in the lens plane is given by

rE = DdθE =

√

4GM
c2

DdDds

Ds
≈ 2.2AU

√

4× Dd

Ds

(

1− Dd

Ds

)(

Ds

8kpc

)1/2( M
0.3M⊙

)1/2

. (3.11)

So the size of the Einstein ring is roughly the scale of the solar system, which is a coincidence that
helps the discovery of extrasolar planets around lenses.

3.3 Image magnifications

Since gravitational lensing conserves surface brightness, the magnification of an image is sim-
ply given by the ratio of the image area and source area. For a very small source, we can consider
a thin source annulus with angle∆φ (see Fig. 3). For a point lens, this thin annulus will be mapped
into two annuli, one inside the Einstein ring and one outside.

The area of the source annulus is given by the product of the radial width and the tangential
lengthdrs× rs∆φ . Similarly, each image area isdr× r∆φ , and the magnification is given by4

µ =
dr× r∆φ

drs× rs∆φ
=

r
rs

dr
drs

. (3.12)

For the two images given in eq. (3.12), one finds

µ+ =
(rs+

√

rs
2 +4)2

4rs

√

rs
2 +4

, µ− = −(rs−
√

rs
2 +4)2

4rs

√

rs
2 +4

. (3.13)

3rs is not to be confused with the size of the star, which we denoteasr⋆.
4This is a special case of the determinant of the Jacobian in the lens mapping, see section 4.3.
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The magnification of the ‘+’ image is positive, while the ‘−’ image is negative. The former image
is said to have positive parity while the latter negative5. The total magnification is given by

µ = |µ+|+ |µ−| =
rs

2 +2

rs

√

rs
2 +4

, (3.14)

and the difference is identical to unity

|µ+|− |µ−| = 1. (3.15)

We make some remarks about the total magnification and image separations:

1. Whenrs = 1, µ = 3/
√

5≈ 1.342, corresponding to about 0.319 magnitude. Such a difference
is easily observable6, and so the area occupied by the Einstein ring is usually taken as the
lensing “cross-section.”

2. Whenrs → ∞, |µ+/µ−| → rs
4, µ → 1+ 2rs

−4. The angular image separation is given by
∆θ = (rs+2rs

−1)θE.

3. High magnification events occur whenrs→ 0. The asymptotic behaviours areµ → rs
−1(1+

3rs
2/8), ∆θ → (2+ rs

2/4)θE, and dr/drs → 1/2. The last relation implies that, at high
magnification, the image is compressed by a factor of 2 in the radial direction (see Fig. 3).

Figure 3: Images of a thin annulus fromrs to rs+ drs by a point lens on the plane of the sky. The dashed
line is the Einstein ring.∆φ is the angle subtended by the thin annulus.

4. Light curve and microlensing degeneracy

Given a source trajectory, we can easily describe the standard light curve with a few parameters
which suffers from the microlensing degeneracy.

5Let us imagine two arrows for the thin annulus (see Fig. 3), one in the radial direction and one in the tangential
direction respectively. For the negative parity image, thecorresponding tangential arrow for the image is reversed with
respect to that in the source, while in the radial direction the arrow directions remain the same for the source and image.
For the positive parity image, the directions of the arrows are the same for the image and the source.

6For bright stars, the accuracy of photometry can reach a few milli-magnitudes.
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4.1 Standard light curve

For convenience, we put the lens at the origin, and let the source move across the line of sight
along thex-axis (see Fig. 4). The impact parameter in units of the Einstein radius is labelled asu0.
For convenience, we define the Einstein radius crossing time(or ‘timescale’) as

tE =
rE

vt
=

θE

µrel
, θE =

rE

Dd
, µrel ≡

vt

Dd
(4.1)

wherevt is the transverse velocity andµrel is the relative lens-source proper motion. Substituting
the expression for the Einstein radius into eq. (3.11), we find that

tE ≈ 19 day

√

4× Dd

Ds

(

1− Dd

Ds

)(

Ds

8kpc

)1/2( M
0.3M⊙

)1/2
( vt

200kms−1

)−1/2
. (4.2)

If the closest approach is achieved a timet = t0, then the dimensionless coordinates arexs = (t −
t0)/tE andys = u0, and the magnification as a function of time is given by

µ(t) =
rs

2(t)+2

rs(t)
√

rs
2(t)+4

, rs(t) =

√

u2
0 +

(

t − t0
tE

)2

. (4.3)

Two light curve examples are shown in the right panel of Fig. 1for u0 = 0.1 and 0.3.

Figure 4: Illustration for the lens position and source trajectory. The dimensionless impact parameter isu0,
(xs,ys) are the dimensionless source position along the trajectory, andrs is the distance between the lens and
source.

To model an observed light curve, three parameters are present in eq. (4.3): t0, tE, u0. In
practise, we need two additional parameters,m0, the baseline magnitude, andfs, a blending pa-
rameter. fs characterises the fraction of light contributed by the lensed source; in crowded stellar
fields, each observed ‘star’ may be a composite of the lensed star, other unrelated stars within the
seeing disk and the lens if it is luminous ([2, 31]). Blendingwill lower the observed magnification
and in generalfs depends on the wavelength, and so each filter requires a separate fs parameter.
Unfortunately, we can see from eq. (4.3) that there is only one physical parameter (tE) in the model
that relates to the lens properties.tE depends on the lens mass, distances to the lens and source,

7
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and the transverse velocityµrel. Therefore from an observed light curve well fitted by the standard
model, one cannot infer the lens distance and mass uniquely;this is the so-called microlensing
degeneracy. However, given a lens mass function and some kinematic model of the Milky Way, we
can infer the lens mass statistically.

4.2 Non-standard light curves

The standard model assumes the lensed source is point-like,both the lens and source are single
and all the motions are linear. The majority (∼ 90%) of microlensing events are well described by
this simple model. However, about 10% of the light curves arenon-standard (exotic), due to the
breakdown of one (or more) of the assumptions. We briefly listthese possibilities below (see the
talk by Dominik for more details.) These non-standard microlensing events allow us to derive extra
constraints, and partially lift the microlensing degeneracy. Because of this, they play a role far
greater than their numbers suggest.

(1) The lens may be in a binary or even a multiple system ([34]). The light curves for a binary
or multiple lensing system can be much more diverse (see 4.3). They offer an exciting way
to discover extrasolar planets ([34, 26, 8, 29, 41]).

(2) The source is in a binary. In this case, the light curve will be a simple, linear superposition
of the two sources (when the rotation can be neglected, see [28]).

(3) The finite size of the lensed star cannot be neglected. This occurs when the impact parameter
u0 is comparable to the stellar radius normalised to the Einstein radius,u0 ∼ r⋆/rE. In this
case, the light curve is significantly modified by the finite source size effect ([53, 22]). The
finite source size effect is most important for high magnification events.

(4) The standard light curve assumes all the motions are linear. However, the source and/or the
lens may be in a binary, furthermore, the Earth rotates around the Sun. All these motions
induce accelerations. The effect due to the Earth motion around the Sun is usually called
“parallax” (e.g. [21, 48, 39]), while that due to binary motion in the source plane is called
“xallarap” (“parallax” spelt backwards, [7, 1]). Parallaxor “xallarap” events usually have
long timescales. For a typical microlensing event with timescaletE ∼ 20day, the parallax
effect due to the Earth rotation around the Sun is often undetectable (unless the photometric
accuracy of the light curve is very high).

(5) Microlensing can “repeat”, in particular if the lens is awide binary ([14]) or the source is a
wide binary. In such cases, microlensing may manifest as twowell-separated peaks, i.e., as
a “repeating” event. A few percent of microlensing events are predicted to repeat, consistent
with the observations ([47]).

Notice that several violations may occur at the same time, which in some cases allow the microlens-
ing degeneracy to be completely removed (e.g. [4, 17, 20]).

8
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4.3 N-point lens gravitational microlensing

It is straightforward to derive the (dimensionless) lens equation forN-point lenses. We can
first cast eq. (3.8) in vector form and then rearrange

~rs =~r− 1
|~r|2~r. (4.4)

The above expression implicitly assumes that the lens is at the origin, and all the lengths have been
normalised to the Einstein radius corresponding to its mass(or equivalently, the lens mass has been
assumed to be unity).

Let us consider the general case where we haveN-point lenses, at~rk = (xk,yk) with massMk,
k = 1, · · ·,N. We normalise all the lengths with the Einstein radius corresponding to the total mass,
M = ∑N

k=1Mk. The generalised lens equation then reads

~rs =~r−
N

∑
k=1

mk
~r−~rk

|(~r−~rk)|2
, mk =

Mk

M
(4.5)

where∑N
k=1mk = 1. If there is only one lens (m1 = 1) and the lens is at the origin, then eq. (4.5)

reverts to the single lens equation (4.4).
Two-dimensional vectors and complex numbers are closely related, Witt (1990) first demon-

strated that the above equation can be cast into a complex form by direct substitutions of the vectors
by complex numbers:

zs = z−
N

∑
k=1

mk
z− zk

(z− zk)(z̄− z̄k)
= z−

N

∑
k=1

mk

z̄− z̄k
(4.6)

wherez = x+ yi, zk = xk + yk i, andzs = xs+ ysi (wherei is the imaginary unit).
We can take the conjugate of eq. (4.6) and obtain an expression for z̄. Substituting this back

into eq. (4.6), we obtain a complex polynomial of degreen2+1. This immediately shows that even
a binary lens equation cannot be solved analytically since it is a fifth-order polynomial7.

The magnification is related to the determinant of the Jacobian of the mapping from the source
plane to the lens plane:(xs,ys) → (x,y). In the complex form, this is ([52]):

µ = J−1, J =
∂ (xs,ys)

∂ (x,y)
= 1− ∂ zs

∂ z̄
∂ zs

∂ z̄
. (4.7)

Notice that the Jacobian can be equal to zero implying a (point) source will be infinitely magnified.
The image positions satisfyingJ = 0 form continuouscritical curves, which are mapped intocaus-
tics in the source plane. Of course, stars are not point-like, they have finite sizes. The finite source
size of a star smoothes out the singularity. As a result, the magnification remains finite.

ForN-point lenses, from the complex lens equation (4.6), we have

∂ zs

∂ z̄
=

N

∑
k=1

mk

(z̄− z̄k)2 , J = 1−
∣

∣

∣

N

∑
k=1

mk

(z̄− z̄k)2

∣

∣

∣

2
. (4.8)

7In classical mechanics, the two-body problem can be solved analytically, but not the three-body problem.
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Figure 5: Left panel: Caustics (red curves) and critical curves (green curves) for a binary lens. The lenses
(indicated by two ‘+’ signs) are located atz1 = (0.665,0) and z2 = (0.035,0) with massm1 = 0.95 and
andm2 = 1−m1 = 0.05 respectively. The green line shows the trajectory for three source sizes,rs/rE =

0,0.05,0.3, indicated by the cyan and blue circles and a dot (for a pointsource). The trajectory starts at
(−2,−1) with a slope of 0.7.Right panel: Corresponding light curves for the three source sizes along
the trajectory in the left panel. The time is normalised to the Einstein radius crossing time,tE, andt = 0
corresponds to the starting position. Notice that as the source size increases, the lensing magnification
amplitude decreases.

It follows that the critical curves are given by

∣

∣

∣

N

∑
k=1

mk

(z̄− z̄k)2

∣

∣

∣

2
= 1. (4.9)

The sum in the above equation must be on a unit circle, and the solution can be cast in a parametric
form

N

∑
k=1

mk

(z− zk)2 = eiΦ, (4.10)

where 0≤ Φ < 2π is a parameter. The above equation is a complex polynomial ofdegree of 2N
with respect toz. For eachΦ, there are at most 2N distinct solutions. As we varyΦ continuously,
the solutions trace out at most 2N continuous critical curves (critical curves of different solutions
may join with each other smoothly). In practise, we can solvethe equation for oneΦ value, and
then use the Newton-Raphson method to find the solutions for other values ofΦ.

For a single point lens, if we takez1 = 0, andm1 = 1, we find that the critical curve is the
Einstein ring (|z| = 1), which is mapped into a degenerate caustic point at the origin (zs = 0).
However, for binary or multiple lenses, the critical curvesand caustics are much more complex.
The left panel in Fig. 5 illustrates the critical curves and caustics for a binary lens withm1 = 0.95
andm2 = 0.05 and separation of 0.7 (in units of the Einstein radius for the total mass). In this case,
there are three separate, continuous critical curves whichare mapped into three caustics.

For a point source, the complex polynomial can be easily solved numerically (e.g. using the
zroots routine in [40]). However, for a source with finite size, the existence of singularities

10
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makes the integration time-consuming (see section 6). The right panel in Fig. 5 shows the light
curves for three source sizes along the trajectory indicated by the green straight line. As the source
size increases, the lensing magnification amplitude decreases, and the number of peaks differ for
different source sizes.

5. Optical depth and event rates

So far we have derived the lens equation and light curve for microlensing by a single star.
In reality, hundreds of millions of stars are monitored, and≈ 800 unique microlensing events
are discovered each year. Clearly we need some statistical quantities to describe microlensing
experiments. For this, we need two key concepts: optical depth and event rate.

5.1 Optical depth

The optical depth (lensing probability) is the probabilitythat a given source falls into the
Einstein radius of any lensing star along the line of sight. Thus the optical depth can be expressed
as

τ =
∫ Ds

0
n(Dd)

(

πrE
2)dDd, (5.1)

which is an integral of the product of the number density of lenses, the lensing cross-section (=

πrE
2) and the differential path (dDd).

Alternatively, the optical depth can be viewed as the fraction of sky covered by the angular
areas of all the lenses, which yields another expression

τ =
1

4π

∫ Ds

0

[

n(Dd)4πDd
2dDd

](

πθE
2) , (5.2)

where the term in the [ ] gives the numbers of lenses in a spherical shell with radiusDd to Dd+dDd,
πθE

2 is the angular area covered by a single lens, and the term in the denominator is the total solid
angle over all the sky (4π).

If all the lenses have the same massM, thenn(Dd) = ρ(Dd)/M, πrE
2 ∝ M, and the lens mass

drops out inn(Dd)πrE
2. Therefore the optical depth depends on the total mass density along the

line of sight, but not on the mass function.

Let us consider a simple model where the density is constant along the line of sight,ρ(Dd) =

ρ0. Integrating along the line of sight one finds

τ =
2πG
3c2 Ds

2 =
1

2c2

Gρ04πDs
3/3

Ds
=

1
2c2

GM(< Ds)

Ds
=

V 2

2c2 , (5.3)

whereM(< Ds) is the total mass enclosed within the sphere of radiusDs and the circular velocity
is given byV 2 = GM(< Ds)/Ds.

For the Milky Way,V ≈ 200kms−1, τ ≈ 5×10−7. The low optical depth means millions of
stars have to be monitored to have a realistic yield of microlensing events, and thus one needs to
observe dense stellar fields, which in turn means accurate crowded field photometry is essential
(see the talk by P. Wozniak on difference image analysis).
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5.2 Event rate

The optical depth indicates the probability of a given star that is within the Einstein radii of
the lensesat any given instant. As such, the optical depth is a static concept. We are obviously
interested in knowing the event rate (a dynamic concept), i.e., the number of (new) microlensing
events per unit time for a given number of monitored stars,N⋆.

To calculate the event rate, it is easier to imagine the lenses are moving in a static stellar source
background. For simplicity, let us assume all the lens move with the same velocity ofvt. The new
area swept out by each lens in the time intervaldt is equal to the product of the diameter of the
Einstein ring and the distance travelledvt dt, dA = 2rE× vtdt = 2rE

2dt/tE. The probability of a
source becoming a new microlensing event is given by

dτ =

∫ Ds

0
n(Dd)dAdDd =

∫ Ds

0
n(Dd)

(

2rE
2

tE

)

dtdDd (5.4)

The total number of new events isN⋆dτ , and thus the event rate is given by

Γ =
d(N⋆τ)

dt
= N⋆

∫ Ds

0
n(Dd)

(

2
πtE

·πrE
2
)

dDd =
2N⋆

π

∫ Ds

0

dτ
tE

. (5.5)

If, for simplicity, we assume all the Einstein radius crossing times are identical, then we have

Γ ≈ 2N⋆

π
τ
tE

. (5.6)

We make several remarks about the event rate:

(1) If we taketE = 19day (roughly equal to the median of the observed timescales), then we
have

Γ ≈ 2N⋆

π
τ
tE

= 1200yr−1 N⋆

108

τ
10−6

(

tE
19day

)−1

(5.7)

For OGLE-III, about 2× 108 stars are monitored (see Udalski’s contribution), so the total
number of events lenses we expect per year isΓ ∼ 2400 ifτ ∼ 10−6, which is a factor of four
of the observed rate (indicating the detection efficiency may be of the order of 30%).

(2) While the optical depth does not depend on the mass function, the event rate does because of
tE(∝ M1/2) in the denominator of eq. (5.6). The timescale distributioncan be used to probe
the kinematics and mass function of lenses in the Milky Way.

(3) The lenses and sources have velocity distributions, onemust account for them when realistic
event rates are needed. Furthermore, the source distance isunknown, and so in general we
need to average over the source distance (for example calculations, see [27, 30]).

6. Summary

In this introduction, we derived the lens equation, and obtained the image positions and magni-
fications for a point lens. We also discussed the statisticalmeasures for microlensing experiments,
and estimated the order of magnitudes for various quantities. An interested reader should now be
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armed with a basic knowledge of microlensing and be preparedto read the review articles and start
to do research on gravitational microlensing (or even try tosolve the problem set below).

Since the discovery of first microlensing events in the early1990’s, enormous achievements
have been made in the field. However, challenges and opportunities remain.

(1) Undoubtedly the highlight of gravitational microlensing in the last few years has been the
discovery of extrasolar planets ([11, 50, 5, 23, 10]). Microlensing has much to offer in this
area since it probes a different part of the parameter space,and provides an important test
of the core accretion theory of planet formation. Several White Papers ([24, 9, 16, 6]) set
out strategies with ambitious milestones in the next fifteenyears, from improvement of the
current survey plus followup mode of discovery (with an automated algorithm to identify
the “anomalies” in real-time) in the near term, to a wide-field network from the ground in
the next 5-10 years, and eventually a telescope in space in the next 10-15 years. Combined
with the stellar transit missionKepler (to be launched in 2009), microlensing will be able to
provide the complete census of Earth-mass (and lower) planets at virtually all the separations.

Technically, it is still challenging to calculate the lightcurves for sources with finite size
since we need to integrate over the singularities of caustics. This is particularly important
for the discovery of extrasolar planets when a source transits the small caustics induced by
the planet(s). The problem becomes even worse with the discovery of multiple planets ([20])
due to the higher complexity of the lens equation and the increased number of parameters:
how do we search the high dimensional parameter space efficiently?

Are there hidden multiple planetary light curves in the database that are not yet identified
due to their complex shapes?

(2) Microlensing surveys over the last fifteen years have accumulated tens of TB of data. This
tremendous database has not been exploited to its fullest potential.

For example, the surveys yielded many high-quality colour-magnitude diagrams of stellar
popular populations, proper motions of millions of stars, and in the future the optical depth
maps. All these can be used to provide important and independent probes of the structure of
the Milky Way.

Despite promising earlier attempts (e.g. [36]; [43, 44]; [30, 55]), microlensing has under-
delivered in this area. For example, while we have discovered several thousands of mi-
crolensing events over the last 15 years, only a small fraction has been used for statistical
analyses of optical depths. We need to remedy the situation urgently.

(3) High-magnification events are great targets-of-opportunity for high signal-to-noise ratio spec-
troscopic observations to study stellar atmospheres for bulge stars. Attempts so far already
yielded interesting results (e.g. [32, 49, 12]). We need to explore this more systematically.

(4) For mathematically-gifted students (or mathematicians), gravitational microlensing provides
an interesting problem. While the binary lens equation is nolonger analytical, there is, nev-
ertheless, an analytical relation on the minimum magnification for five-image configurations
([54, 46]). There is also a degeneracy found by Dominik (1999) between close and wide
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separation binaries, which was later explored in much greater detail by An (2005). Are there
any other symmetries, perhaps even for multiple lens systems?

The number of critical curves forN-point lenses cannot exceed 2N (see section 4.3). The
upper bound of the number of images forN-point lenses also has linear dependence onN
(see Problem 1). Are these two related in some geometric way?

References

[1] Alcock C. et al. 2001, ApJ, 552, 259

[2] Alcock C. et al. 2001, Nature, 414, 617

[3] An J. H. 2005, MNRAS, 356, 1409

[4] An J. H. et al. 2002, ApJ, 572, 521

[5] Beaulieu J. P. et al. 2006, Nature, 439, 437

[6] Beaulieu J. P., Kerins E., Mao, S. et al. 2008, arXiv:0808.0005 (White Paper Submitted ESA’s
Exo-Planet Roadmap Advisory Team)

[7] Bennett D. P. 1998, Physics Reports, 307, 97

[8] Bennett D. P., Rhie, S. H. 1996, ApJ, 472, 660

[9] Bennett D. P., Anderson J. Beaulieu J. P. et al. 2007, arXiv:0704.0454 (White Paper Submitted to the
NASA/NSF Exoplanet Task Force)

[10] Bennett D. P. et al. 2008, arXiv0806.0025

[11] Bond I. A. et al. 2004, ApJ, 606, L155

[12] Cohen J. G., Huang W. J., Udalski A., Gould A. Johnson, J.A. 2008, ApJ, 682, 1029

[13] Delplancke F., Górski K. M., Richichi A. 2001, A&A, 375,701

[14] di Stefano R., Mao S. 1996, ApJ, 457, 93

[15] Dominik M. 1999, A&A, 349, 108

[16] Dominik M. et al. 2008, arXiv:0808.0004 (White Paper Submitted ESA’s Exo-Planet Roadmap
Advisory Team)

[17] Dong S. B. et al. 2008, 2008arXiv0804.1354

[18] Einstein A. 1936, Science, 84, 506

[19] Evans N. W. 2003, in “Gravitational Lensing: A Unique Tool For Cosmology", eds D. Valls-Gabaud,
J.-P. Kneib (arXiv:astro-ph/0304252v2)

[20] Gaudi S. et al. 2008, Science, 319, 927

[21] Gould A. 1992, ApJ, 392, 442

[22] Gould A. 1994, ApJ, 421, L71

[23] Gould A. et al. 2006, ApJ, 644, L37

[24] Gould A., Gaudi B. S., Bennett D. P., et al. 2007, arXiv:0704.0767 (White Paper Submitted to the
NASA/NSF Exoplanet Task Force)

14



P
o
S
(
G
M
C
8
)
0
0
2

Introduction to Gravitational Microlensing Shude Mao

[25] Gould A. 2008a, in the “The Variable Universe: A Celebration of Bohdan Paczynski”,
arXiv:0803.4324

[26] Gould A., Loeb A. 1992, ApJ, 396, 104

[27] Griest K. 1991, ApJ, 366, 412

[28] Griest K., Hu W. 1992, ApJ, 397, 362

[29] Griest K., Safizadeh N. 1998, ApJ, 500, 37
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Problems

1. a) There areN-point lenses in a lens plane. For a source very far away from all the lenses,
how many images are there? What are their parities?

b) What is the achievable maximum number of images forN-point lenses and an arbitrary
source position?

2. A uniform source star is perfectly aligned with an observer and a point lens. Its physical
radius normalised to the Einstein radius isρ⋆.

a) What is the resulting image configuration?

b) What is the magnification for the finite source?

c) Estimate the maximum magnification that can be achieved for a source star in the Galac-
tic bulge.

d) Derive the expression for magnification when the source isnot perfectly aligned with
the lens.

3. Show that the total magnification for a point lens is alwayslarger than one. How can this be
reconciled with energy conservation? (see Jaroszyński & Paczynski 1996, AcA, 46, 361).

4. The density distribution in the plane of the Galactic diskcan be modelled as an exponential

ρ(R) = ρ0 exp(−(R−R0)/Rd),

whereρ0 is the density in the solar neighbourhood,R0 is the distance to the Galactic centre,
Rd is the disk scale length, andR is the distance from the Galactic centre.

a) Find the optical depthτ for a source at the Galactic centre (R = 0).

b) If ρ0 = 0.1M⊙pc−3, R0 = 8 kpc,Rd = 3 kpc, what is the value ofτ?

5. Consider a simple model: all lensing objects have the samemassM, the same three-dimensional
velocity V , and their velocity vector directions have an isotropic distribution. The source
located at the distance is stationary, and the number density of lensing objects is uniform
between the observer and the source. Derive the timescale probability distribution.

Now assume the lenses follow a Maxwellian distribution witha one-dimensional velocity
dispersionσ . Derive the timescale probability distribution. Show thatit follows a power-law
behaviour for both very short and very long timescales.

6. A distance source is lensed by a point deflector with massM. The light signals emitted by
the source will be received by an observer at different timesfor the two images due to the
difference in the trajectory and gravitational potential experienced. The time delay is of the
order ofrsch/c, wherersch is the Schwarzschild radius. Is this observable for aM = 1M⊙
lens?

7. A background star stationary at the origin is microlensedby a lens moving from−∞ to ∞.
Show that the centre of light of the two images traces out an ellipse.
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8. Show that

a) In the complex notation, the Jacobian is given by eq. (4.8).

b) For any positive-parity image produced byN-point lenses, the magnification is always
larger than or equal to one.

c) Find the number and positions of images where their magnifications are identical to
unity for a binary lens.

d) What is the maximum number images with unity magnificationfor N-point lenses?
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Solutions

1. a) There areN + 1 images, one bright image close to the source, andN fainter images
with one image close to each lens. The image close to the source has positive parity, all
the others have negative parities.

b) 5(N − 1) for N ≥ 2. This is a difficult problem. See Rhie S. H. 2003, arXiv:astro-
ph/0305166; Khavinson, D. and Neumann G. 2006, ProceedingsOf the American
Mathematical Society, 134, 1077 (arXiv:math/04011088).

2. a) The image configuration is an annulus. The inner radius is given by ther2 = (
√

ρ2
⋆ +4+

ρ⋆)/2 while the outer radius is given byr1 = (
√

ρ2
⋆ +4−ρ⋆)/2.

b) The area covered by the image isA = π(r2
2 − r2

1) = πρ⋆

√

ρ2
⋆ +4. Thus the magnifica-

tion is A/(πρ2
⋆ ) =

√

ρ2
⋆ +4/ρ⋆. In particular, whenρ⋆ → 0, A → 2/ρ⋆.

c) For a solar mass lens in the Galactic centre (Ds = 8AU), the maximum Einstein radius
is achieved whenDd = Ds/2, rE = 6.0× 1013cm. The faintest and smallest stars we
can see in the bulge have radii similar to a solar-type star,r⋆ ≈ R⊙ = 7×1010cm,ρ⋆ =

r⋆/rE = 1.2×10−3. The maximum magnification is of the order of≈ 2/ρ⋆ ≈ 1700.

d) See Witt & Mao 1994, ApJ, 430, 505

3. Clearlyµ > 1. See Jaroszyński & Paczynski 1996, AcA, 46, 361 for discussions about the
energy conservation.

4. The optical depth is given by

τ =
∫ Ds

0
n(Dd)

(

πrE
2) dDd =

∫ Ds

0

ρ(Dd)

M
4πGM

c2

DdDds

Ds
dDd. (6.1)

For microlensing in the Galactic plane,Dds = R,Ds = R0,Dd = R0−R, and thus we have

τ =

∫ R0

0
ρ0 eDd/Rd

4πG
c2

Dd(R0−Dd)

R0
dDd (6.2)

Performing the above integral, we find that

τ =
4Gπρ0R2

0

c2 y−3[2+ y+ey(−2+ y)], y = R0/Rd (6.3)

For the given numbers, we find 4πGρ0R2
0/c2 = 3.86×10−6, andy = R0/Rd = 2.67, we have

τ ≈ 2.9×10−6. (6.4)

5. For step by step derivations, see Ma & Paczyński, 1996, ApJ, 473, 57. Notice that the
observed event timescale distribution does not follow the power-laws due to detection effi-
ciency.

6. The time delay is of the order of tens of micro-seconds for asolar mass lens, and is very
difficult to observe.
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7. See Hog et al. (1995, A&A, 294, 287), Miyamoto & Yoshi (1995, AJ, 110, 1427), Walker
(1995, ApJ, 453, 37)

8. a) Using complex notation, we havex = 1
2(z+ z̄),y = 1

2i(z− z̄). Thus

∂ zs

∂ z
=

∂ zs

∂x
∂x
∂ z

+
∂ zs

∂y
∂y
∂ z

=
1
2

(

∂ zs

∂x
− i

∂ zs

∂y

)

=
1
2

(

∂xs

∂x
+ i

∂ys

∂x
− i

∂xs

∂y
+

∂ys

∂y

)

. (6.5)

Similarly

∂ zs

∂ z̄
=

∂ zs

∂x
∂x
∂ z̄

+
∂ zs

∂y
∂y
∂ z̄

=
1
2

(

∂ zs

∂x
+ i

∂ zs

∂y

)

=
1
2

(

∂xs

∂x
+ i

∂ys

∂x
+ i

∂xs

∂y
− ∂ys

∂y

)

. (6.6)

However, from the lens equation (4.6),∂ zs/∂ z = 1, and thus comparing the real and
imaginary parts in eq. (6.5), we have

∂xs

∂x
+

∂ys

∂y
= 1,

∂xs

∂y
=

∂ys

∂x
. (6.7)

Substituting the second expression into eq. (6.6), we find

∂ zs

∂ z̄
=

1
2

(

∂xs

∂x
− ∂ys

∂y

)

+ i
∂ys

∂x
. (6.8)

Combined with
∂ zs

∂ z
=

1
2

(

∂xs

∂x
+

∂ys

∂y

)

= 1 (6.9)

we find

∂xs

∂x
= 1+

1
2

(

∂ zs

∂ z̄
+

∂ zs

∂ z̄

)

,
∂ys

∂y
= 1− 1

2

(

∂ zs

∂ z̄
+

∂ zs

∂ z̄

)

,
∂ys

∂x
=

1
2i

(

∂ zs

∂ z̄
− ∂ zs

∂ z̄

)

.

(6.10)
Substituting the above equations into the Jacobian

J =
∂xs

∂x
∂ys

∂y
− ∂ys

∂x
∂xs

∂y
, (6.11)

we recover the required expression.

b) Since

J = 1−
∣

∣

∣

N

∑
k=1

mk

(z̄− z̄k)2

∣

∣

∣

2
. (6.12)

For a positive parity image, we must have 1≥ J > 0, it follows thatµ = J−1 ≥ 1. The
magnification is unity when the sum is equal to zero.

c) Without losing generality, we put the lenses on thex-axis, at(z0,0) and(−z0,0), with
massesm1 andm2 (m1 ≥ m2), and we havem1 + m2 = 1, z0 > 0. From part b), the
condition for unity magnification is

m1

(z̄+ z0)2 +
m2

(z̄− z0)2 = 0. (6.13)
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This simplifies into a quadratic equation

z̄2 +2(m1−m2)z0z̄+ z2
0 = 0. (6.14)

Clearly we have two solutions

z̄+,− = z0

(

(m2−m1)± i
√

1− (m1−m2)2

)

. (6.15)

These two are, as expected, symmetric with respect to thex-axis.

d) 2(N −1).
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