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The purpose of this lecture is to introduce the basic methodology that enables massive high pre-
cision photometric monitoring of crowded fields in microlensing surveys. Some background is
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differencing approach in a variety of projects in optical astronomy requiring time-series photom-
etry. The effects of field crowding on photometry of individual sources and statistical properties
of surveys are summarized. The discussion of photometric techniques starts from Point Spread
Function (PSF) fitting in conventional crowded field codes, but the main focus is on difference
imaging. The Alard & Lupton algorithm for image subtraction and PSF matching based on con-
volution is the corner stone of photometric data pipelines in the current generation microlensing
surveys. The presentation covers a detailed description of the basic algorithm and its extension to
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isons are given to help implementers and users of the method.
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1. Introduction

Much of the motivation to develop numerical techniques and software that can handle object
crowding in astronomical images comes from the study of gravitational microlensing [23], typically
confined to extremely dense stellar fields in the Local Group. Within that context one is particularly
interested in detecting variability (mostly flux changes, but also motions). This naturally drove
the methodology of microlensing surveys toward relative measurements and ultimately pixel-by-
pixel image differencing. The relative emphasis has shifted away from treating the photometry of a
crowded image as a collection of individual object measurements toward a global decomposition of
the image flux into variable and constant parts, sometimes referred to as AC/DC. This approach—to
a large extent pioneered and developed into a useful tool by the microlensing community—is highly
relevant and increasingly popular in other astronomical applications. The obvious examples are the
spin-off projects of the microlensing surveys themselves such as investigations of stellar variability
in partially resolved populations, [29, 6], structure studies of the Milky Way and nearby galaxies
[30, 5], planet detection using microlensing anomalies [9, 17] and the transit method [16, 21], and
long term monitoring of microlensing in strongly lensed quasars [40, 39, 35]. Crowding is also
an intrinsic problem in photometry of explosive transients on cosmological scales (Supernovae,
Gamma-Ray Bursts) detected against a complicated (but essentially static) extended profile of the
host galaxy [10, 22].

The exercise set accompanying this lecture introduces a simple software package for Dif-
ference Image Analysis. It shows a complete example of how to build high S/N light curves of
crowded fields starting from a sequence of flat-fielded images. The input data utilized in these ex-
ercises are actual OGLE-II scans of the BUL_SC3 field1, one of the densest regions of the Galactic
bulge covered by the OGLE-II microlensing survey. The software presented here is my own im-
plementation of the Alard & Lupton algorithm for optimal image subtraction [1, 2] with several
supporting programs required for a real life project. A modified version of this package is currently
running in standard data pipelines of the OGLE project. Another modified version, the DIAPL
package2by Wojtek Pych provides many usability and algorithmic improvements on my original
code. It also comes with a fairly complete manual.

2. Astronomical image formation and pixel sampling

The main points that justify the numerical treatment are summarized without going into un-
necessary details. Starting from the “true” image O(x,y) that would be observed in the absence of
Earth’s atmosphere, the combined effect of the air turbulence, the imaging optics, and the telescope
tracking errors can be modeled as a convolution with seeing S(x,y):

O∗S(x,y)≡
∫

O(u,v)S(x−u,y− v)dudv (2.1)

The signal is then convolved with the pixel response function P(x,y) and sampled at regular inter-
vals, i.e. multiplied by a forest of equally spaced 2-D delta functions III2:

1All imaging data used in this lecture are part of the OGLE-II survey: courtesy of Prof. Andrzej Udalski from
Warsaw University Observatory.

2http://users.camk.edu.pl/pych/DIAPL
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III2(x,y)≡ ∑
m,n

δ2(x−m,y−n) = ∑
m,n

δ (x−m)δ (y−n). (2.2)

For a point source O(x,y) = δ2(x,y) = δ (x)δ (y) the result is the Point Spread Function (PSF):

S∗P(x,y) (2.3)

or

PSF(x,y)≡ ∑
m,n

S⊗P(m,n)δ2(x−m,y−n) (2.4)

after sampling. The properties of III2(x,y) allow switching back and forth between the integral
sign and summation over arrays of pixels, and similarly, between convolving continuous functions
∗ and pixel meshes ⊗.

A band-limited function is defined to have a Fourier transform that is zero everywhere except
inside a finite range of frequencies. In other words, very high frequencies are not present in the
signal. This is equivalent to the existence of a cutoff frequency fc such that the Fourier spectrum
is zero for | f | > fc. Band-limited functions have a remarkable property with respect to sampling.
The sampling theorem states that a function with the cutoff frequency fc is fully specified by its
values taken at equal intervals (samples), provided that the sampling rate is higher than 2 fc, or the
spacing between the samples is less than 1/(2 fc). For a strictly band-limited function F(x) it is
possible to find an interpolation formula that reproduces the exact value of F at any x, as long as
under-sampling is avoided.

Astronomical telescopes have a finite resolution and deliver approximately band-limited im-
ages. A useful rule of thumb for the marginal sampling rate is 2.5 pix/FWHM, where FWHM
is the Full Width at Half Maximum of the PSF. Under-sampling causes aliasing in the frequency
spectrum and complicates interpolation. With properly sampled images the exact shape of the pixel
response P(x,y) is not important (normally assumed to be a top hat), and there is little difference
between integrating over a pixel and taking the value at the center. The OGLE-II camera is a good
example of an efficient design with 0.4′′ pixels and 1.3′′ FWHM median seeing, rarely reaching
below 1.0′′.

3. Effects of object crowding in microlensing surveys

The stellar fields monitored by microlensing surveys are extremely crowded (Figure 1). When
the surface number density reaches∼ 0.1/FWHM2, overlaps between the PSF profiles of individual
stars and flux blending are common. It is virtually impossible to describe all systematic effects
associated with PSF estimation, source detection, and photometry/astrometry in crowded fields.
The details depend on specific data sets and image processing tools. A comprehensive study of
blending related systematics can be found in [28]. A detailed discussion of parameter estimation
in automated analysis of crowded fields was published in [19]. Here, we only highlight the most
important factors that routinely occur in microlensing work.
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1. Magnitude bias near detection threshold

The detection threshold in severely crowded images is set by the confusion limit and changes
from one location to another in response to fluctuations in density. The background level is
set by merging PSF wings and faint cores. Even for relatively bright stars that still produce
a local peak of intensity, the information about the wings of the profile is scrambled and
parameter estimation is effectively based on the inner PSF core. A PSF model that systemat-
ically underpredicts the flux in stellar wings will result in overestimated background levels.
The same discrepancy in background subtraction that hardly affects bright stars can produce
a large magnitude offset in faint stars and introduce a strong apparent non-linearity in the
photometry near the detection threshold.

2. Imperfect deblending

The level of crowding typical for microlensing surveys will eventually overwhelm the ability
of the deblending algorithm to separate correctly very close and/or faint objects (cf. sec-
tion 4). A fraction of fainter stars effectively disappears within a combined PSF footprint of
brighter stars, making them appear even brighter and their profiles slightly wider. This hap-
pens across the magnitude range, but the details depend on the local slope of the Luminosity
Function (LF), the size of the seeing disk, and the number density of stars. The PSF fitting
codes also have a tendency to produce halos of spurious faint sources around bright stars due
to residuals left behind an imperfect modeling of stellar wings.

3. PSF modeling and Luminosity Function

The failure to deblend a fraction of stars causes an effective broadening of the PSF model
estimated from bright stars and changes the observed shape of the LF (Figure 2). The general
trend is a magnitude dependent shift toward the bright end of the distribution and a rapid
turn-over near the confusion limit.

4. Parameter degeneracy

Commonly used estimators of background, object centroid, and flux for individual sources
become very noisy and may be biased. This significantly worsens the impact of the well
known parameter degeneracy in microlensing light curve models [37, 18] that ultimately
propagates to uncertainties in event time-scales and optical depth measurements.

5. Centroid bias and centroid motion for variable objects

The mean centroid of light for a source at rs and a blend at rb representing the effective
influence of all contributing blends is:

r(t) =
rsFsA(t)+ rbFb

FsA(t)+Fb
, (3.1)

where Fs is the baseline flux of the source, Fb is the flux of the blend, and A(t) is the mag-
nification. The total baseline flux is F0 = Fs +Fb, and setting fs = Fs/F0, 1− fs = Fb/F0 we
have:
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r(t) =
rs fsA(t)+ rb(1− fs)

A(t) fs +(1− fs)
. (3.2)

The effective centroid at baseline is then:

r0 = rs fs + rb(1− fs) (3.3)

and the centroid offset from the baseline value is:

∆r =
rs fsA(t) fs + rb(1− fs)

fsA(t)+(1− fs)
− r0 = (rs− rb)

fs(1− fs)(A(t)−1)
fsA(t)+(1− fs)

(3.4)

Brightness changes in blended objects produce correlated centroid motions that may signif-
icantly affect the PSF photometry in fixed position mode. In a typical OGLE-II Galactic
bulge field (∼ 150 stars brighter than I = 17 mag per square arcmin and 1.3′′ FWHM seeing)
there will be about 30% of all detectable events and 10% of bright events with ∆r > 0.2′′,
corresponding to a centroid motion up to 1/2 pix. Out of 15 OGLE-I microlensing events, 7
showed a noticeable correlation between the light centroid and magnification [15].

6. Time scale bias in microlensing events

For a blended event with fs < 1, fitting a standard point mass, point source microlensing light
curve model that assumes no blending ( fs ≡ 1) overestimates the impact parameter u0 and,
more importantly, underestimates the time-scale tE (Figure 3). The time-scale distribution
derived that way is systematically shifted toward lower tE and develops a tail of events with
short apparent durations.

7. Systematics of microlensing optical depth

The most frequently used optical depth estimator is τ ∼ N−1
∑i tE,i/ε(tE,i), where N is the

total number of monitored stars and tE is the Einstein ring crossing time. If blending is
neglected, one might expect a large systematic bias in the optical depth from underestimated
time-scales. In practice, it turns out that for a magnitude limited event sample, the bias in tE
toward lower values is closely compensated by a corresponding underestimate in the number
of stars N (Figure 4).

8. Blending in bright stars

Strongly blended events are harder to detect because they are “diluted” by contributions to
the total light that are not magnified. It may seem intuitive that blending should not be a
significant factor for events that occur in apparently bright sources standing out in the LF. In
reality, blending in bright stars is common and for most purposes must be taken into account.
In the OGLE-II galactic bulge sample of events with baselines brighter than IRC ∼ 15.6 mag
designed to select Red Clump Giants, the fraction of sources actually below the magnitude
threshold is ∼ 38% [32].
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9. Negative blending

Occasionally, light curve models that account for blending turn out the best fit source fraction
fs > 1, i.e. the microlensed flux exceeds the total flux of the source and all contributing
blends. Negative blend contributions are clearly an artifact. Simulations of fully synthetic
images that approach the complexity of the actual CCD frames collected by the OGLE-II
survey [28] link the main cause of these anomalies to the performance limit of the deblending
routine in the presence of noise. Another explanation is over-subtracted background for a star
that coincides with a negative fluctuation in the number density of blends, and sits in a “hole”
in the background [24].

4. Conventional PSF fitting

Photometric codes that reduce images into catalogs of sources must take care of a considerable
number of details. There is a trade-off between the level of sophistication and speed that is particu-
larly felt in massive surveys such as microlensing searches. Similarly, the expected accuracy must
be balanced against the range of applicability. In the generic case of arbitrary object profiles (e.g.
spiral galaxies) field crowding severely complicates image segmentation, i.e. estimating how many
objects are present and where. For the purpose of modeling the images of partially resolved stellar
populations, however, it is safe to assume that the signal consists of point sources (PSF profiles) su-
perimposed on a smooth background. Table 1 illustrates major issues involved in PSF photometry
of crowded fields and two possible ways of addressing them. There are many excellent photomet-
ric tools available to the astronomical community, each with their specific strengths [31, 27, 11].
Historically, the DOPHOT software [27] played a particularly important role in microlensing as the
basic number crunching tool adopted early on by the MACHO and OGLE surveys.

The number density of stars typical for microlensing work is so high that the actual number
of sources detected by the deblending algorithm becomes very sensitive to seeing. The standard
technique to control this and stabilize the photometry on a time series of images with variable see-
ing is to reduce the number of free parameters by fixing the number of objects and their centroids.
A hint to the algorithm about the approximate object magnitudes further accelerates and improves
convergence. In practice, the best prior information available for each field is the object catalog
obtained from a regular DOPHOT run on a single image with exceptionally good seeing, the so
called “template”. Using bright and relatively isolated stars the template positions and magnitudes
are transformed to the reference frame of each individual exposure and serve to prime the compu-
tation. The “warm start” and the fixed position mode turned out to be truly enabling features and
their introduction in DOPHOT was stimulated by microlensing searches.

The complexities of PSF fitting in crowded fields are greatly reduced if the perturbing influence
of the neighboring stars can be removed. Direct image differencing is a very productive approach
to time-series photometry of variable objects (Figure 5). Table 2 is intended to give a rough idea of
the development of concepts and implementations leading from classic PSF fitting codes to a wide
adoption of the image differencing method in microlensing searches and other sky monitoring
surveys.
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DAOPHOT DOPHOT

PSF model Empirical PSF (analytical model fit +
sub-sampled table of residuals)

Analytical PSF
(pseudo-Gaussian)

PSF gradient Originally fixed PSF shape, then 1st
order variation with a weighted sum
of 3 fixed PSFs, then ...

Originally fixed PSF shape, then 2-D
polynomial fit for each shape parame-
ter using an ensemble of stars

Background
estimator

Local background estimates based on
a large pixel annulus (mode)

Local sky level fitted for each object,
then a global model for the ensemble

Detection Convolves with a lowered Gaussian
filter and identifies local intensity
peaks

Finds local intensity peaks between
a pair of progressively fainter flux
thresholds

Pixel value Integrates PSF over square pixels Evaluates PSF at each pixel

Deblending Examines significance and flux con-
tributions of stars in PSF group

Classifies extendedness, goodness of
fit test with two-PSF model

Algorithm Simultaneous fitting of relatively iso-
lated and self-contained groups of
stars

Iterative fitting and subtraction of pro-
gressively fainter stars with parameter
refinement

Optimization Linearized least squares fit with non-
linear model

Non-linear least squares

Warm starts Sufficiently modular to enable warm
starts

Optional warm starts and fixed posi-
tion mode

Table 1: Comparison of two approaches to profile fitting photometry of point sources in crowded fields.

5. Image differencing based on PSF deconvolution with Fourier division

In principle, a PSF-matching kernel for a given pair of images can be calculated by deconvolv-
ing the PSF of one image from the other. Taking a Fourier transform maps the convolution in data
space into multiplication of transforms. If Pi(x,y) is the PSF of a program image, and Pr(x,y) is the
PSF of the reference image to be subtracted, we can write for the kernel K(x,y):

K = FT−1
(

FT (Pi)
FT (Pr)

)
, (5.1)
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1987 DAOPHOT (Stetson et al.) [31]
1992 OGLE and MACHO surveys, modified DOPHOT [34, 3]
1993 DOPHOT (Schechter, Mateo & Saha) [27]
1996 Pixel lensing with Fourier Division (Tomaney & Crotts) [33]

PEIDA software for EROS (Ansari) [7]
1998 Robust global subtraction algorithm (Alard & Lupton) [1]
1999 MACHO DIA analysis (Alcock et al.) [4]
2000 Extension of AL algorithm to variable kernels (Alard) [2]

ISIS package (Alard)
cdophot (Reid, Sullivan, & Dodd) [26]

2001 OGLE DIA package (Woźniak) [38]
2002 DIA based standard OGLE and MOA pipelines [36, 12]
2005 DIAPL extensions/modifications (Pych)
2008-? DIA pipelines in LSST, Pan-STARRS [20, 14]

Table 2: Approximate development timeline of techniques and tools for crowded field photometry.

where FT and FT−1 denote a Fourier transform and its inverse. Unfortunately, this simple formula
has several shortcomings: 1) in crowded fields PSF is ill defined 2) results rely on availability of
isolated stars and estimating the PSF of each image 3) the method requires very high S/N input
data 4) in the presence of noise, the algorithm is unstable and there is no good way to enforce
that the end result makes sense 5) noise dominates the PSF wings, where the game is 6) re-
sults are very sensitive to under-sampling and aliasing 7) handling spatially variable solutions and
finding enough clean information in the image is hard 8) sky backgrounds have to be matched
separately. The sensitivity to noise can be controlled using a smoothness constraint. One way to
accomplish this is to use the fact that the PSF of a typical astronomical image can be approximated
with a Gaussian and the Fourier transform of a Gaussian is also a Gaussian. The main idea is to
replace noisy wings of the Fourier transform with an analytical approximation [25]. After addi-
tional modifications, this approach has been successful applied in the regime of extreme blending
(pixel lensing) to search for microlensing events in the direction of M31 [33], and to analyze the
MACHO Galactic bulge microlensing data [4].

6. PSF matching with constant kernels

In typical astronomical crowded field applications we can safely assume that only a small frac-
tion of sources in the image change their brightness. Then, a vast majority of image pixels would
only vary due to accidental factors such as different sky background, transparency, and most im-
portantly due to PSF variations. These factors need to be “matched” and taken out of consideration
before a meaningful pixel-by-pixel difference image can be obtained, usually requiring some form
of interpolation applied to at least one of the images (see section 10). The main ideas behind the
Alard & Lupton algorithm [1] are: 1) avoid Fourier transforms and perform the calculation in
data space 2) insist on linear decomposition of the PSF-matching kernel 3) propose a particular
basis for the kernel that works with a wide range of images.
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Assuming that a program image I(x,y) is given on the same pixel grid as the reference image
R(x,y) to be subtracted, we can model the former as a convolution of the latter with a PSF-matching
kernel K(u,v). We have:

I(r) |= (K⊗R)(r)≡
∫

K(r− r′)R(r′)dr′, (6.1)

where r≡ (x,y) and r−r′ ≡ (u,v). The goal is to find the PSF-matching kernel that minimizes the
residuals between the quantities on both sides of equation 6.1, so the equality holds in the “least
squares sense”. For the moment we assume that the kernel K we are trying to find is constant across
the image, i.e. independent of x,y. A more fundamental assumption is that the kernel has the form
K(u,v) = ∑i aiKi(u,v), where Ki are fixed preselected shapes. In other words we only consider
solutions that are linear in coefficients ai. This greatly simplifies and accelerates the computation.
Furthermore, the impact of such constraints on the final result is insignificant as long as the adopted
set of Ki can absorb all detectable principal components of K.

The next step toward the solution is changing the order of integration over all image pixels and
summation over kernel components

K⊗R =

(
∑

i
ai Ki

)
⊗R = ∑

i
ai(Ki⊗R), (6.2)

that allows one to model a given program image as a linear combination of some other images Ci,
namely the convolutions of the reference image with individual components of the kernel. We have
I(x,y) = ∑i aiCi(x,y), where Ci ≡ Ki ⊗R. The simplest choice of the cost function to minimize
that leads to a closed form solution for ai is the familiar χ2 =

∫
(I−∑i aiCi)2/σ2 dxdy. In some

applications skipping the pixel variance weights 1/σ2 may improve the quality of the final result
by shifting the relative emphasis toward handling the systematics of bright stars, since σ(x,y) ∝√

I(x,y). With the above assumptions the problem of finding coefficients ai is reduced to solving
a linear equation:

Ma = V, (6.3)

where

Mi j =
∫ Ci(x,y)C j(x,y)

σ(x,y)2 dxdy (6.4)

Vi =
∫ I(x,y)Ci(x,y)

σ(x,y)2 dxdy (6.5)

The integrals are over all useful pixels of the image. Note that only the right hand side vector
depends on the program image I(x,y). The least squares matrix only depends on the reference
image R(x,y) and therefore can be evaluated once for a large set of images differenced with the
same template.

So far we have not addressed the issue of how to select the “kernelets” Ki, except for stating
that they have a fixed shape. The original formulation of the Alard & Lupton (1998) algorithm
advocates the use of a few (∼ 3) bivariate Gaussians, each warped with a low order 2-D polynomial:
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K(u,v) = ∑
n

e−(u2+v2)/2σ2
n ∑

0≤p+q≤Dn

apq up vq (6.6)

K(u,v) = ∑
n

∑
p,q

apq up vqe−(u2+v2)/2σ2
n (6.7)

0≤ p+q≤ Dn, and 0≤ p,q≤ Dn (6.8)

“Unrolling” the double loop over Gaussian components n and monomial terms pq we have

Ki(u,v) = upi vqie−(u2+v2)/2σ2
ni , (6.9)

where the flattened index is {n, pq} → i, and i = 1, . . . ,∑n(Dn +1)(Dn +2)/2 for a polynomial of
degree Dn. Indeed, after accounting for spatial variability of the kernel (to be discussed shortly),
this simple choice of basis functions is all that is needed to handle most PSF-matching problems
likely to occur in optical astronomy, including microlensing surveys. However, the Alard & Lupton
algorithm does not require any particular form of basis functions Ki. Such details can be completely
factored out of implementations and provide considerable flexibility to configure the model at run
time (section 10).

7. Handling differential background

The minimum level of complication that any realistic image subtraction algorithm must han-
dle is the presence of a smooth background that varies from one location to another within a single
image and changes from one exposure to another. This is particularly important in microlens-
ing surveys, where background estimates for individual images are highly uncertain due to severe
crowding. The model now includes the background difference B(x,y) between the images being
subtracted:

I |= B+K⊗R, (7.1)

Provided that the background component is a linear combination of fixed functions that can be
evaluated at every pixel, the modification amounts to adding more vectors (images) to the global
linear fit in equations 6.1 and 6.2. The only practical constraint is that one expects B(x,y) to be
smooth, and a 2-D polynomial dependence in image coordinates is a reasonable default:

B(x,y) = ∑
i

aiBi(x,y) = ∑
p,q

apq xp yq (7.2)

0≤ p+q≤ DB, and 0≤ p,q≤ DB (7.3)

For the background polynomial of order DB, the set of vectors Ci(x,y) in the global fit to I(x,y)
now contains NB = (DB +1)(DB +2)/2 smooth images Bi(x,y) that do not depend on the reference
image R(x,y). Assuming the canonical Alard & Lupton basis from section 6, the remaining NK =
∑n(Dn +1)(Dn +2)/2 vectors belong to Gaussians enumerated by n, each having a fixed width and
warped with a polynomial of order Dn. This information is summarized as:

10
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Ci(x,y) =

{
Bi ≡ xpi yqi i = 1 . . . NB

R⊗Ki i = 1+NB . . . NK +NB
(7.4)

8. Spatially variable kernels

In most real world astronomical images the PSF shape changes depending on the location
within the image, and the pattern of this variability will also change with time. As a result, for
a generic pair of images the PSF-matching kernel will have a non-negligible gradient across the
full image format. This is certainly the case for medium- to wide-field images characteristic of
microlensing surveys. To some degree the problem can be addressed using frame subdivision, but
the results are likely to be sub-optimal. The size of the subframe that can be subtracted assuming a
constant kernel tends to become prohibitively small, especially for data sets collected in drift-scan
mode. This section describes an extension of the original Alard & Lupton algorithm that explicitly
treats variable kernels [2].

The basic idea is to allow the kernel coefficients to vary across the image format. As be-
fore, in situations of practical importance the change in ai(x,y) can be parameterized as a linear
combination of constant functions such as 2-D polynomials:

ai → ai(x,y) = ∑
r,s

ars
i xr ys (8.1)

The PSF-matching kernel becomes

K(u,v,x,y) = ∑
i

ai(x,y)Ki(u,v), (8.2)

and the new least square vectors are

C̃rs
i = xrys(Ki⊗R) = xrysCi (8.3)

One can think of this new model in terms of the original vectors Ci ≡ Ki⊗R from section 6 taken
with weights that are themselves (smooth) images constructed using a recipy analogous to the one
used in section 7 for the background:

{rs
i }→ n (8.4)

Cn = Kin ⊗R = Cin (8.5)

Pn = xrnysn (8.6)

Index n covers a triple loop over r,s, i with rn,sn, in repeating for more than one value of n. It
is straightforward to write down the matrix elements and the right hand side vector for the new
extended problem:
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M̃nm =
∫ C̃n C̃m

σ2 dxdy (8.7)

M̃nm =
∫ CnPnCmPm

σ2 dxdy =
∫ CnCm PnPm

σ2 dxdy (8.8)

However, the new least square matrix M̃ has N2 times the number of elements in M, the old least
square matrix for a constant kernel (Equation 6.4), where N is the number of spatial basis vectors.
The default model of spatial variability is a 2-D polynomial of order Ds with N = (Ds + 1)(Ds +
2)/2 vectors. The number of operations required to directly evaluate all elements as integrals
over all useful pixels in the image is starting to grow substantially and the computational cost
is becoming impractical. The solution is suggested by the observation that, unless something is
seriously wrong with the optics, the functions ai(x,y) should not have high frequency components.
Rather, one expects the spatial dependence of the kernel shape to be slow, certainly much slower
than the spatial scale of the kernel itself (a few FWHMs). The quantity under the integral sign is
a product of high and low frequency components. The trick is to consider the integral over a pixel
region (domain) small enough to ignore the change in Pn(x,y) over its extent. Then, the full image
area Ω is broken into domains (usually squares or rectangles), and so is the corresponding 2-D
integral. ∫

Ω

dxdy→∑
k

∫
Ωk

dxdy (8.9)

Ωk ⊂Ω k = 1, . . . ,NΩ (8.10)

The value of the low frequency component for the entire domain is very close to the value at the
central pixel of the domain Pn(x,y) ' Pn(xk,yk) and can be pushed in front of the integral sign.
What is left of the integral, is exactly one of the matrix elements for the constant kernel problem
in section 6, so the new matrix elements for a small pixel domain (∼ 10×10 FWHM2) are very
well approximated as products of the old matrix elements with the value of the position dependent
weight at the domain center. An equivalent description is that, within a single domain, each old
matrix element generates many elements of the new matrix through products with spatially variable
weights evaluated only once for the middle pixel. The final step is to sum contributions from all
domains for every element of the new expanded matrix.

M̃nm = ∑
k

Pn(xk,yk)Pm(xk,yk)
∫

Ωk

CnCm

σ2 dxdy (8.11)

M̃nm = ∑
k

Pn(xk,yk)Pm(xk,yk)Qk
nm (8.12)

Qk
nm =

∫
Ωk

Cin(x,y)C jm(x,y)
σ2 dxdy = Mk

in jm (8.13)

Ṽn = ∑
k

Pn(xk,yk)Qk
n (8.14)
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Qk
n =

∫
Ωk

I(x,y)Cin(x,y)
σ2 dxdy = V k

in (8.15)

To summarize, the final prescription for evaluating the extended matrix and the right hand side
vector to solve the least squares problem for the spatially variable kernel is:

• Divide the image into a number of pixel domains.

• For each domain calculate the least squares matrix and right hand side vector for the constant
kernel problem.

• Assemble the least squares matrix and right hand side vector for the full variable kernel
problem by combining the contributions from all domains with spatial weights evaluated at
the center of each domain.

The same prescription captured in a corresponding equation reads:

M̃nm = ∑
k

Pn(xk,yk)Pm(xk,yk)Mk
in jm (8.16)

Ṽn = ∑
k

Pn(xk,yk)V k
in (8.17)

Note that it is acceptable for domains to overlap slightly or cover only a fraction of the total area.
It is important, however, to secure a good sampling of the area over which we are seeking the
solution. In very crowded fields both uniformly spacing domains or centering them on bright stars
works well. The latter method is usually better in less crowded regions because it naturally avoids
fitting large areas of flat background that increase the noise but do not contribute any signal. It
becomes a necessity in cases of severe but very localized crowding in the middle of a sparse field
that tends to happen in strongly lensed quasars with multiple images [40, 39, 35].

9. Flux conservation

The PSF-matching kernel given by equation 8.3 has a norm that is generally free to change
with the global image coordinates (x,y). When applied to an image, a kernel with a drifting norm
can effectively redistribute the flux over large distances and introduce photometric gradients. This
could be potentially of use for correcting a relative transparency gradient or a large scale flat field
problem. Apart from such unusual cases, however, it is safest to enforce a constant norm over the
entire image, i.e.

∫
K(u,v,x,y)dudv = const. Fixing the norm of the kernel can be accomplished

by rearranging the basis vectors. Many terms of the type given in equation 6.6 do not contribute
to the kernel norm at all, because they are anti-symmetric and have vanishing integrals over the
(infinite) 2-D surface, in practice over a suitably centered pixel mesh. The symmetric terms can
always be normalized to 1, and then all but one “neutralized” by subtracting a single term that will
carry the full norm of the entire linear combination. We have:

∫
K̃i(u,v)dudv =

{
1, i = 0
0, i > 0

(9.1)
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and by simply removing the (x,y) dependence of the coefficient in front of K0 (here reducing the
a0 polynomial to a single number), we obtain a kernel model

K(u,v,x,y) = a0K0(u,v) + ∑
i>0

ai(x,y)[Ki(u,v)−K0(u,v)] (9.2)

with a constant norm ∫
K(u,v,x,y)dudv =

∫
∑

i
ai(x,y)K̃i(u,v)dudv = a0 (9.3)

10. From images to light curves

1. Preprocessing: Taking a difference of two images implies that one of them must be interpo-
lated to the pixel grid of the other. In this process one obtains a sequence of registered and
resampled images in which there are no systematic offsets between centroids of the same
stars. The input images are normally assumed to have no significant rotation, but crude
pointing shifts up to ∼ 100 pix are expected with additional higher order distortions induced
by the optics, correlated atmospheric turbulence and imperfect tracking (especially in drift
scan mode). A single image with good seeing, well behaved PSF and low background serves
as the astrometric template that defines the pixel grid for all subsequent calculations. Op-
timally, the pointing of the template should fall near the middle of the pointing distribution
for the entire data set. Typical steps performed at this stage are: 1) find crude pixel off-
sets between all program images and the astrometric template 2) pan program images to
cover approximately the same area of the sky 3) obtain a list of object positions to be cross-
identified between each program image and the template 4) cross-identify the same objects
in each program image and the template 5) fit a 2-D coordinate transform (e.g. a pair of
2-D polynomials) to register each image on the template reference coordinate system 6)
resample images using transformed pixel locations.

2. Constructing templates: The reference image (a.k.a. the template) to be subtracted pixel-
by-pixel from each program image is typically a co-added stack of selected images with
the best overall quality. This is motivated primarily by S/N considerations (Figure 6). In
case of uncorrelated noise the variance of the difference of two images is the sum of the
variances of individual images (a

√
2 loss of S/N for two identical exposures of the same

field). Subtracting a mean of ∼ 20 independent images from a single program image will
only decrease the S/N of the result by a few percent. Automated selection of images suitable
for template construction is generally tricky. The problems to avoid include: 1) bad tracking
2) bad seeing 3) high background 4) low transparency e.g. due to high airmass 5) under-
sampling 6) bimodal PSF and other mishaps.

3. Computing difference images: At this stage the Alard & Lupton algorithm is used to subtract
the reference image from all program images. The result is a sequence of difference images
suitable for extraction of variable objects and PSF and/or aperture photometry. One typically
begins by tuning the width and shape of the kernel without any spatial variability (Figure
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7). The first objective is to account for PSF changes from image to image (seeing changes,
focus etc.). The solution is further optimized by tuning spatial variability of the kernel and
removing correlated residuals (Figure 8). To find an acceptable fit, one typically needs to:
1) adjust the size of the kernel mesh 2) adjust the size and arrangement of kernel fitting
domains 3) provide enough fixed width components to the kernel so that all characteristic
frequencies are represented 4) experiment with Gaussian sigmas and polynomial orders
5) experiment with the order of the polynomial modeling the (x,y) dependence of the kernel
6) iteratively adjust remaining parameters. Note that in drif-scan data taking mode (e.g.
OGLE-II) temporal variability contributes to spatial variability.

4. Assembling light curves: Performing actual photometric measurements on difference images
and assembling them in light curves of individual objects can be accomplished in a number of
ways. Here we will describe a particular approach to emphasize several important differences
between working with images interpolated to the same pixel grid, and a more traditional case
of photometry on unregistered images. Before we can compute DIA light curves, we need
to be able to evaluate the PSF profile at any location within the reference image. This im-
plies fitting some sort of global model of the image PSF = PSF(x,y). Then, knowing the local
shape of the PSF matching kernel (from the DIA solution), we can evaluate the PSF model for
any object in any image by directly convolving two small pixel meshes. Once the difference
images have been obtained, we are free to place circular apertures and filter pixels through
PSF models anywhere in the frame. But of course it is most efficient to perform measure-
ments only at locations covered by PSFs of variable objects. In many cases it is productive to
obtain the DIA measurements of constant objects as well. Blending additionally complicates
AC/DC flux assignment between objects. Note that for any variable object, regardless of its
amplitude, there may be difference images with pixel counts buried in noise. This happens
when the single image flux is very close to the reference image flux. One possible approach
to selecting objects of interest and measuring their centroids for subsequent photometry is to
combine a sequence of difference images into a single "variability image" and locate clusters
of variable pixels. This can be done using single pixel light curves on which some measure of
variability is computed and stored as the pixel value of the variability image. Statistics that
have been utilized include: cumulative absolute deviation (optionally weighted by noise),
cumulative variance, or special filters sensitive to transient variability.

Aperture photometry is of some use in selected DIA applications. However, in very crowded
fields such as the Galactic bulge one normally works with profile photometry, since the vari-
able signal can itself be moderately crowded. Using each input object centroid prepares a
local PSF model (for a given x and y within the entire frame), shifts the model to a proper
fractional pixel and dumps it onto a pixel mesh. A statistical estimator of the object flux is
evaluated using a circular area of pixels around the centroid and the model mesh. In order
to minimize the variance of the final measurement, all model parameters are fixed at known
values except the PSF amplitude. This reduces the problem to a linear least squares fit with
a single free parameter that can be written down in closed form (and takes little time to com-
pute). Figure 9 demonstrates the ability of the DIA algorithm to improve the S/N ratio of
light curves over conventional PSF fitting.
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5. Estimating reference fluxes: Placing the light curve on a magnitude scale requires the knowl-
edge of the object flux on the reference image (Figure 10 and 11). There are several possible
approaches to this problem, each with their specific pros and cons depending on the appli-
cation. We will only enumerate the possibilities and show the effects of underestimating
and overestimating the reference flux. Note that in crowded fields source confusion and flux
blending conceal true baseline levels of variable and constant objects independently of the ap-
plied photometric technique. We have: f (ti) = fref + fDIA(ti), and m = const−2.5× log10 f .
Options to consider are: 1) measuring fref on the reference image using the same photo-
metric code that was applied to difference images (if the mag zero point for the field was
obtained with a conventional PSF code such as DOPHOT, we need to convert the flux units,
usually by comparing relatively isolated stars) 2) comparing each DIA light curve to its
calibrated conventional counterpart i.e. fit fref in mi = const−2.5× log10(∆ fi + fref) 3) us-
ing external information such as blending fractions and reference fluxes from Hubble Space
Telescope (HST) observations 4) in case of transient objects, ensuring the reference flux
fref = 0 with a proper choice of the template.

6. Other details:

(a) Note that it is not necessary to know the PSF of either image to find the PSF-matching
kernel. The method actually turns crowding into an advantage by using all information
in the image. In a crowded image of a stellar field, every pixel contains information
about the PSF.

(b) The method is reasonably robust against slight under-sampling

(c) The light centroid of variable objects in correctly subtracted images is unbiased.

(d) Kernel components with “dipole” shapes similar to Gaussian derivatives have a flux
shifting property. They can be used to remove residual image mis-registration or to
detect subtle motions [13].

(e) If the approximate light curve of a particular variable object is known (e.g. from a
preliminary reduction of the same data), it is possible to find a linear combination of
images in a given sequence that cancels the contribution of non-variable objects [16].
This way one can construct an image of the lensed light free of blends.

(f) When preparing reference images, it is important to keep in mind that optimal image
co-addition in the most general case is an unsolved problem.

(g) The effective PSF of variable stars is slightly different than that of constant stars in
case of a large spread of the PSF shape between the individual images stacked during
template preparation.

(h) Good interpolation techniques matter. The plain old linear interpolation is biased (it
cannot produce a value larger than either interpolated sample).

(i) Pixels inside the PSF footprint of variable stars must be clipped out of the fit (e.g. using
iterative sigma clipping), and image regions dominated by defects or flat background
must be masked.
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(j) To get the variance of the convolved image, convolve the variance image with the square
of the kernel.

(k) Caching the matrix for the least squares problem, and reusing it for entire sequence
of images to be subtracted, is what makes the Alard & Lupton method sufficiently
fast to use in microlensing surveys. This means that the weights of individual pixel
contributions to the matrix can only depend on the reference image, implying that the
“variance weighting” can only be approximate.

(l) Separable kernels of the form Ki(x,y) = f (x)g(y) are much faster to compute (2×N
ops versus N2, where N is the size of the kernel mesh).

(m) There is still much room for experimenting with new choices of the basis functions:
shapelets, orthonormal polynomials, axially symmetric functions, etc. For some prob-
lems fitting each pixel of the kernel mesh as a separate parameter may be the way to go.
In the latter case the function Ki takes the form of a pixel mesh with one of the pixels
set to 1 and the rest to 0.
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Figure 1: Field crowding in images collected by microlensing surveys poses significant challenges for
photometric algorithms. The first image in this series of progressively smaller chunks of the BUL_SC3 field
monitored by the OGLE-II survey covers the full 2K×8K pix scan, and the size of the last one is a mere
50×50 pix.
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Figure 2: Deblending performance of DOPHOT based on full image simulations of one of the OGLE-II
Galactic bulge fields using a realistic deep LF from HST observations (from [32]). The plot shows the
recovery of magnitudes (top), and the corresponding distribution of source fractions in random microlensing
events (bottom).
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Figure 3: Time-scale bias in magnitude limited samples of microlensing events introduced by the assump-
tion of negligible blending (from [28]). The mean efficiency corrected time-scale resulting from four-
parameter fits (green symbols) is compared to that obtained from five-parameter fits (blue symbols).
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Figure 4: Systematics of microlensing optical depth τ in full image level simulations of several survey
scenarios (from [28]). The estimates using an incorrect assumption of negligible blending (green symbols)
are compared to estimates based on five-parameter model fits and unbiased time-scales (blue symbols).
Assuming fs ≡ 1 in a magnitude limited sample attributes all observed events to a much smaller population
of sources than effectively monitored. The near cancellation of bias in the microlensing time-scale with
the overestimated number of events holds over a large range of field densities and seeing. The alternative
approach is using the fitted fs values to reject events with source magnitudes below the sample threshold
and utilize unbiased time-scales. However, for extremely crowded fields observed under poor seeing the
“correct” estimator may actually be more biased, because of a net increase in the number of stars above the
magnitude threshold due to blending.
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Figure 5: The power of difference imaging. By subtracting from a single program image (left) a high S/N
reference image convolved with the PSF-matching kernel (middle), we obtain a difference image with the
constant part of the signal removed (right). The PSF photometry of variable objects based on the difference
image is largely free of the complexities associated with severe crowding. The errors in the difference flux
are typically within 20% of the photon noise limit.

Figure 6: Typical S/N improvement between a single OGLE-II image (left) and a reference image combin-
ing 20 individual frames (right). High quality templates are critical to obtaining good difference images and
optimizing the final photometric accuracy of DIA light curves.
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Figure 7: Tuning the local shape parameters of the PSF-matching kernel. In this example showing a pair
of 512×512 pix difference images, the model with two relatively broad Gaussian components (σ =1.5 and
4.5 pix) and 2-nd order polynomials fails to represent high spatial frequencies dominating the inner core.
The tension between the core and the wings produces characteristic ringing effect (left). The model with
three Gaussians (σ =0.75, 1.35, and 2.43 pix) and 3-rd order polynomials provides a much better fit with
residuals close to the photon noise limit (right). Saturated stars are masked by white squares.

Figure 8: Fitting PSF-matching kernels with strong gradients. The frame used in this example shows a
particularly strong PSF variation from top to bottom caused by a fluctuation in tracking rate during a drift-
scan. A constant PSF-matching kernel provides a very poor fit to this data and produces characteristic
dipole-like residuals with correlated orientations (left). Allowing the shape of the kernel to change across
the image dramatically improves the final result (right). Here, a 3-rd order polynomial was used to model
the gradient in kernel coefficients. Saturated stars are masked by white squares.
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Figure 9: Comparison of photometry obtained using a conventional PSF fitting code (left) and difference
imaging (right). The plotted microlensing light curve is for OGLE-BLG-2000-43, a parallax event discov-
ered by the OGLE-II survey. The measurements based on the DIA technique have 4–5 times better S/N ratio.
In this particular case the improvement is somewhat extreme due to the presence of a tight blend. A factor
1.5–2.0 decrease in the error bar is more typical for the OGLE-II data.
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Figure 10: DIA light curve of OGLE-BLG-2000-38, a binary microlensing event discovered by the OGLE-
II survey. In order to convert the linear DIA units to magnitudes, the light curve must be shifted by the
total flux of the object in the reference image (the reference flux). Note that the reference flux is above the
baseline level for microlensing sources that are effectively magnified in the reference image.
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Figure 11: Influence of the reference flux errors on the DIA light curves. Using an incorrect value of the
object flux to convert between the linear DIA flux units and magnitudes results in magnitude dependent
offsets and affects the shape of the light curve.
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Figure 12: Processing time required to subtract the same template image (512×512 pix) from a sequence
of program images. The first difference image is by far the most expensive to compute, because the least
squares matrix only depends on the reference image and can be reused in the remaining calculations (left).
The processing time increases rapidly with the number of basis vectors in the least squares fit (right). The
tests were performed on a commodity dual processor 32-bit Intel Xeon (3.6 GHz) machine.
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