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Ray shooting is a powerful but numerically costly means d¥iag the lens equation. Unlike
pure numerical root finding techniques, ray shooting caoraatically address the problem of
finite size effects by defining the target area and, if necgsseighting rays according to a
limb-darkening model. This flexibility usually comes at #wst of calculating many - mostly un-
necessary - rays. The method can be accelerated by isolhéirageas of the lens plane required
for each data point using targets distant from singulaitiéfter an initial estimation of param-
eters, a pre-calculated grid of magnification patterns han be searched for a global minimum
of chi-square.
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1. Introduction

The extraction of the physical properties of a microlensing event regjaireodel describing
the accurate shape of the light curve. The total magnification can be abtiadytically if the
Jacobian determinant of the lens equation is available at all image positicimskcases where
the image positions cannot be determined, numerical methods are requiedf them is the ray
shooting method, relying on a grid of rays that can be deflected accdaling lens equation. The
magnification is proportional to the number of rays reaching a defined @ogesponding to the
source star.

The ray shooting technique was introduced by Kayser et al. (1986)d@imulation of Quasar
microlensing, indicating that this method is especially suitable for the simulation of heuéipses.
Wambsganss (1997) showed that the ray shooting technique is alsdecafsimulating planetary
light curves in galactic microlensing.

2. Grid search on magnification maps

As a first approach, a grid of 400 binary magnification maps, eachiogvan area of 2BZ,
was calculated with 2500 rays per pixel. Because of the axisymmetric matjoificaaps, about
30% of the rays can be neglected and each ray is randomly set in ndappiag boxes.

For a grid of fixed mass ratig and lens separatio[6g|, the remaining parameters Einstein
time tg [d], impact parameteuiny (6], orientation anglg8[°], and time of maximum magnifica-
tiontmax[HJID— 245000 have been determined using the simplex method and simulated annealing
as implemented in the GSL

The simplex method was carried out using a grid of initial valueg3fer [10°,170°] and for
Umin € [—1: 1] [6g]. Additionally, simulated annealing with 1000 tries per step, 500 iterations per
fixed temperature, a step size of 3.0, a Boltzmann constant of 20, an initiadtatage of 0.6 and
2%o decrease of temperature has been tried. The success and spieisdh@thod depends also
sensitively on the configuration of the random walk. Finally, a single simplezésl to improve
the final parameter estimation. The size of the target pixel was kept fixe®@33 6, which
roughly matches the finite size of the event OGLE-2003-BLG-170 asrshowig.[].

Parameter uncertainties are estimated using the bootstrap method introdfeobl 979)
for 500 resampled light curves. For computational reasons only thesfimalex is searched re-
peatedly and provides estimations of uncertainties. The resulting scateraadgier estimations
are not normally distributed and the uncertainties reported in[Jab. 1 aze giv 0.84 and 0.16
guantile displacements from the mode.

Because the resampled lightcurves are created by drawing values wébeament from the
original dataset, features like a poorly sampled caustic crossing coullinieated. The his-
tograms that are shown in Fig. 2 indicate that a certain fraction of the firglessimplex settles in
different local minima caused by the structure and the resampling of the dataset.
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Remarks Umin te tmax B q d f

Publisheé -0.35 15.6 2794.1 133.66 0.789 1.213 0.75
Simplex grid -0.39 21.7 2793.6 122.4 0.85 13 0.6
Annealing -0.30 151 2793.8 134.1 0.55 1.2 0.74
Simplex ~ —0.34'393 157732 27933'Z7 1237733 08795 1257932 0.83709%3

aJaroszynski et al. (2004)

Table 1: Test fits for OGLE-2003-BLG-170 using a pre-calculated grid
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Figure 1: Fits for the binary microlensing event OGLE-2003-BLG-17i¢hdifferent minimization methods
along with the corresponding residuals are shown for grighitil parameters for a simplex fit (left); for a
single simplex fit (middle) and a simulated annealing fitt{t)g
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Figure 2: Histograms for the fitted parameters of the bootstrap rekh@GLE-2003-BLG-170 light curve
are shown along with the distribution of tix& of the linear fit with a mode of 4.28.
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3. Pointwise Ray shooting

The ray shooting method can be accelerated by confining the grid of ralye lans plane which
has to be deflected. Fif] 3 shows the deflected grid for a point lens. dliméoss of the lens
equation can be calculated analytically for the corners of a box in whiclotree is located. The
box size is chosen as in Rattenbury et al.(2002), assuring that the isaogatpletely covered by
rays. The definition of the corners fails near the lens position, which Has ¢tompensated by an
additional grid.

Defining the box vertices for binary lenses requires the solutions of teeslgumation. This can
be done by using the solutions of the 5th order polynomial as introduceditby&\Wlao (1994).
Alternatively the absolute deviation function for a defined source posiich is also be used
for adaptive contouring (Dominik 2007), can be used to reduce thessagegrid. In Fig[]3 the
minimum of a stack of deviation maps is plotted for source positions using the estipgaanmeters
of OGLE-2003-BLG-170.
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Figure 3: Pointwise Rayshooting for a point lens (left) and the mirisheviation function (Schramm &
Kayser 1987) of the source track of OGLE-2003-BLG-170 @igh

4. Results of MONET test observations

The feasibility of follow-up observations has been tested during the commisgiof the 1.2
m MONET/North telescope (30North, 104 West). For this purpose the objects OGLE-2007-
BLG-006 and OGLE-2007-BLG-050 were selected from the Planes I@ptimization page (cf.
Snodgrass 2008) and were observed through 2 airmasses with agegeeing of 2.2 arcsec for
OGLE-2007-BLG-006 and 2.6 arcsec for OGLE-2007-BLG-050e photometry of the MONET
follow-up observation is carried out using the Difference Image AnaRaikageé.

The OGLE-2007-BLG-006 light curve was fitted using the pre-calculgtedassuming a
constant finite source size. The event OGLE-2007-BLG-050 weageilevith the uniform finite
size model introduced by Witt & Mao (1994; for a detailed analysis of thisesee Batista
2008). The results of our fits are shown in Tigb. 2 and have been usedvert our data in Fig] 4
to the I-band magnitude reported by OGLE. The increased scatter of trebkesvations is
caused by lower fluxes and observations after astronomical twilight.

hased on Wozniak (2000)
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OGLE-2007-BLG-006

Umin e tmax B q d f
0.00 2 0. 0.3 0.02 0.0
0.0217505 339732 41726753 188593  0.27579022 1.05052 1.0
OGLE-2007-BLG-050

Umin e tmax rs f
0.00217055%5 659715 422197475302 0.0044709%%5  0.777553

Table 2: Estimated parameters for OGLE OGLE-2007-BLG-005 and O@DB7-BLG-006
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Figure 4: Light curves of OGLE-2007-BLG-006 (left) and OGLE-2007-8t050 (right)
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