
P
o
S
(
G
M
C
8
)
0
6
2

Gravitational lensing along multiple light paths as a

probe of physics beyond Einstein gravity

Hideki Asada∗

Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

E-mail: asada@phys.hirosaki-u.ac.jp

The light propagation is reexamined, allowing for various models of modi�ed gravity. We clarify

the dependence of the time delay (and induced frequency shift) on modi�ed gravity models and

investigate how to distinguish those models, when light propagates in static spherically symmetric

spacetimes parameterized to express modi�ed gravity. Implications to gravitational lensing are

mentioned.
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1. Introduction

A certain modi�cation, in whatever form, in the standard cosmological model, is strongly

suggested by recent observations such as the magnitude-redshift relation of type Ia supernovae

(SNIa) and the cosmic microwave background (CMB) anisotropy by WMAP. We are forced to

add a new component into the energy-momentum tensor in the Einstein equation or modify the

theory of general relativity itself. Indeed, plenty of models have been proposed, such as scalar

tensor theories, string theories, higher dimensional scenarios and quantum gravity. Therefore, it is

of great importance to observationally test these models.

The theory of general relativity has passed �classical� tests, such as the de�ection of light,

the perihelion shift of Mercury and the Shapiro time delay, and also a systematic test using the

remarkable binary pulsar �PSR 1913+16�. In the twentieth century, these tests proved that the

Einstein's theory is correct with a similar accuracy of 0.1%.

The gravitational time delay effect along a light path has successfully tested the Einstein's the-

ory, where the gravitational time delay is supplementary to the gravitational lensing via Fermat's

principle. A signi�cant improvement was reported in 2003 from Doppler tracking of the Cassini

spacecraft on its way to the Saturn, with g−1= (2.1±2.3)×10−5 [2]. Here, g is one of parameters

in the parameterized post-Newtonian (PPN) formulation of gravity. The sensitivity in the Cassini

experiment approaches the level at which, theoretically, deviations 10−6 − 10−7 are expected in

some cosmological models [3, 4]. Therefore, it is important to investigate the Shapiro time delay

with such a high accuracy. We shall discuss the dependence of the time delay (and induced fre-

quency shift) on modi�ed gravity models and investigate how to distinguish those models by using

the Shapiro time delay ([1]; many references are therein). Introducing a new energy or length scale

(e.g. extra dimension scale) may make changes in functional forms of the gravitational �eld. Thus

it is worthwhile to investigate how to probe such a modi�ed functional form, by using the light

propagation. Throughout this paper, we take the units of G = c = 1.

2. Shapiro Time Delay

Assumption: the electromagnetic �elds propagate in four-dimensional spacetimes (even if the

whole spacetime is higher dimensional). Thus photon paths follow null geodesics (as the geomet-

rical optics approximation of Maxwell equation).

We shall consider a static spherically symmetric spacetime, in which light propagates, ex-

pressed as

ds2 = −A(r)dt2 +B(r)dr2 + r2dW2, (2.1)

where r and dW2 denote the circumference radius and the metric of the unit 2-sphere, respectively.

The functions A(r) and B(r) depend on gravity theories.
The time lapse along a photon path is obtained as

t(r,r0) =
∫ r

r0

dr

b

√
B(r)
A(r)

1√
A(r0)
r20

− A(r)
r2

, (2.2)
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where b and r0 denote the impact parameter and the closest point, respectively. Their relation is

b2 = r2
0
/A(r0).

For practical calculations, we keep only the leading term at a few AU in the corrections.

Namely, A(r) and B(r) are approximated as

A(r) ≈ 1− 2M

r
+Amr

m, (2.3)

B(r) ≈ 1+
2M

r
+Bnr

n, (2.4)

whereM denotes the mass of the central body.

Examples of modi�ed gravity theories: (1) n = 1/2, An = −2Bn = −2
√
M/r2c for DGP

model with rc that is the extra scale within which gravity becomes �ve dimensional. (2) n = 3/2,

An = (2/3)m2
g

√
2M/13 and Bn = −m2

g

√
2M/13 with graviton mass mg for one of massive gravity

models. (3) n = 2, An = −Bn = −L/3 for the Schwarzschild-de Sitter spacetime, that is, general

relativity with the cosmological constant L as a possible candidate for the dark energy.

Up to the linear order, the extra contribution to time delay due to modi�ed gravity is

d t = rn+1

0

(∫ RE

1

+
∫ RR

1

)
dR

×
(
−An

Rn+3−2Rn+1 +R

(R2−1)3/2
+Bn

Rn+1

√
R2−1

)
, (2.5)

where we de�ne R≡ r/r0.

It is convenient to use the relative change in the frequency, which is caused by the gravitational

time delay. This frequency shift is de�ned as y = −d(DT )/dt. For a receiver at rR > rE , the extra

frequency shift is

dy ∼ (An +Bn)rnR
b

rR

db

dt

∼ 10−17

(
10AU

r�

)n(
(An +Bn)rn�

10−10

)( rR

10AU

)n−1
(

b

r�

)(
db/dt

vE

)
, (2.6)

where 10AU/r� ∼ 2×103. The larger the index of n, the longer the delay dy.

Figure 1 shows that an extra distortion due to dy would appear especially in the tail parts of

y− t curves. One can distinguish modi�ed gravity models, which are characterized by various

values of n, An, Bn, from observations using receivers at very different distances from Sun, as

shown by Fig. 1.

We consider three light paths, for which the impact parameters of the photon paths are almost

the same (several times of the solar radius) for convenience sake. The locations of the receivers are

denoted as rR1, rR2 and rR3, where the subscripts from 1 to 3 denote each light path. We assume that

rE is constant in time for simplicity. It is a straightforward task to take account of the eccentricity

of the Earth orbit and a difference between the impact parameters. It can be shown that An +Bn

and n are separately determined by using at least three very different light paths [1].
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Figure 1: Dependence of the frequency shift on the distance rR and the index n. The long dashed, short

dashed and dotted curves denote the frequency shift for (n,rR) = (3/2,10AU), (n,rR) = (2,10AU), (n,rR) =
(2,1AU), respectively. The long dashed curve for n= 3/2 and rR = 10 AU is overlapped with the solid curve

denoting the general relativistic case. Here, we assume (An +Bn)rn� = 3×10−11.

3. Conclusion � Implications to gravitational lensing

The present result suggests that the tail part of gravitational lensing (and time delay) seems

sensitive to certain modi�cations to general relativity.

Statistical investigations of gravitational lensing with future micro-arcsec. astrometry missions

such as SIM, GAIA and JASMINE will probably become a probe of gravity theories. For instance,

the bending angle by the solar gravity is of the order of 1mas even at a different direction (∼ 90 deg.)

from Sun. The number of source stars for those missions, N, is quite large, say 106. Therefore,

one can make a rather optimistic estimate of the possible constraint on modi�ed gravity with the

accuracy as
1mas

1mas
× 1√

N
∼ 10−7. (3.1)

More detailed investigations on gravitational lensing including microlensing as a probe of modi�ed

gravity would be important.
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