Atlas trigger for first physics and beyond

Teresa FONSECA MARTIN
Royal Holloway University of London, London
E-mail: teresa.fonseca.martin@cern.ch

On behalf of the ATLAS TDAQ Community

The full author list is given in the Appendix and in ATL-DAQ-PUB-2008-004

ATLAS is a multi-purpose spectrometer built to perform precision measurements of Standard Model parameters and is aiming at discovery of Higgs particle, Super Symmetry and possible other physics channels beyond Standard Model. Operating at 14 TeV center of mass energy ATLAS will see 40 million events per second at nominal luminosity with about 25 overlapping interactions. Most of the events are inelastic proton-proton interactions with only few W, Z bosons or t\bar{t} pairs produced each second, and expectations for Higgs or SUSY production cross-section are much smaller than that. ATLAS trigger has a difficult task to select one out of 10^5 events online and to ensure that most physics channels of interests are preserved for analysis. In this talk we will review the design of ATLAS trigger system, the trigger menu prepared for initial LHC run as well as for high luminosity run. The expected trigger performance of the base-line ATLAS physics programs will be reviewed and first results from the commissioning period will be given. The methods to measure trigger efficiencies and biases directly from data will be discussed.

Physics at LHC 2008
29 September - October 4, 2008
Split, Croatia

*Speaker.
1. Introduction, the ATLAS trigger

ATLAS is a general purpose particle physics detector which is described in [1] and [2]. It will detect proton-proton collisions in the Large Hadron Collider (LHC). Its primary goals are to understand the mechanism for electroweak symmetry breaking and to search for new physics beyond the Standard Model. The LHC will eventually provide proton-proton collisions at a center of mass energy of about 14 TeV, a design luminosity of $10^{34} cm^{-2}s^{-1}$ and a bunch-crossing rate of 40MHz. Due to the limits on our capability to store data the ATLAS trigger is expected to have a rejection power of $\sim 10^5$ while being efficient for the interesting events.

ATLAS trigger is structured in three levels. The First Level (L1) uses custom built electronics. It reduces the trigger rate in ~ 3 orders of magnitude, giving a response in less than $2.5\mu s$. It receives coarse data from the Calorimeter and muon sub-detectors. The so-called High Level Trigger (HLT) is software-based, it is composed by a Second Level Trigger (L2) and a third level trigger called Event Filter (EF). HLT has access to the full detector granularity data inside a Region of Interest (RoI) that has been defined by the previous trigger level. L2 uses algorithms specifically written for the trigger to accomplish the hard speed limits required at this level. EF uses offline reconstruction algorithms as much as possible in the online trigger environment.

2. The ATLAS Trigger Menu & Performance

The ATLAS trigger menus are built based in the identification of potential candidates for interesting objects as: electrons, photons, taus, muons, jets, b-tagged jets, B-physics objects, missing transverse energy, etc. Inclusive triggers for each of these objects are included in the menu as much as they are allowed by rate limitations. Main handle to limit rates are the selection of events above a given transverse energy (E_T) threshold and the possibility to apply isolation criteria. The trigger menus also contain more sophisticated signatures in which two or more of the previous mentioned trigger objects are combined (for example: tau + missing E_T signature). Detailed studies of trigger performance based on signal efficiency and background rejection have been performed using full detector Monte Carlo simulation. For details check the trigger chapter in Ref. [3], as an example, the trigger efficiency with respect to offline reconstructed objects versus their transverse energy is shown for muon triggers in Fig. 1.

3. Trigger efficiency determination from data

Methods are being developed to determine trigger efficiency from data, minimizing dependencies on Monte Carlo simulation. This is crucial for analysis, trigger data taking monitoring as well as Monte Carlo simulation validation and tuning. The key of these methods is to define a ‘clean’ data sample of a specific particle to be used as a reference to determine trigger efficiency for the corresponding trigger object. A typical example is the use of $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ decays. The control sample is defined by one lepton trigger plus the offline reconstruction of both leptons satisfying the Z invariant mass requirement. The second lepton is then used to study the trigger efficiency performance [4]. Studies are ongoing to extrapolate this measured trigger efficiency to
Figure 1: Trigger efficiency versus transverse momentum (p_T) curves for three of the lower muon trigger p_T thresholds.

Figure 2: Comparison of L1 isolated electron trigger efficiency as a function of E_T for different Monte Carlo simulation samples ($Z \rightarrow e^+e^-$, t$t\bar{t}$, and susy).

different event topologies, as can be seen in Fig. 2. Trigger efficiency will also be determined with respect to offline identified objects using as control samples ‘Boot-strap’ techniques (use looser trigger selections to study performance of tighter ones) and ‘Orthogonal’ triggers (Ex. use muon trigger to study performance of missing E_T trigger).

4. Commissioning

The trigger system is now continuously used during cosmic ray runs to exercise the full trigger chain and read-out of sub-detectors. Since few months the L1 central trigger has been running in its final configuration receiving all foreseen trigger inputs and providing trigger signals to all sub-detectors. HLT is periodically integrated in the cosmic runs. ATLAS received the first single beam in September 2009. The proton bunch sent onto the beam collimators originated the very first beam events to trigger on. Next phase was to have beam circulating for several turns. The time alignment for different trigger items was studied taking the Beam Pick-ups trigger as the time reference of the passage of a bunch in the ATLAS detector. The L1 decision of each trigger item in a time window of ± 15 bunch crossing has been recorded and analyzed.

5. Conclusions

The ATLAS trigger is on a good track to have a successful performance for proton collisions at LHC. Methods are being developed to determine trigger efficiency from data. The full trigger system is used in cosmic ray runs. The L1 trigger performed successfully with single beam.

References

A. The ATLAS TDAQ Community

PoS(2008LHC)123

Atlas trigger for first physics and beyond

Teresa FONSECA MARTIN

Atlas trigger for first physics and beyond

Teresa FONSECA MARTIN

1 Argonne National Laboratory, Argonne, Illinois
2 University of Amsterdam, Amsterdam
3 University of Arizona, Tucson, Arizona
4 Brookhaven National Laboratory (BNL), Upton, New York
5 Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona, Bellaterra (Barcelona)
6 University of Bergen, Bergen
7 Laboratory for High Energy Physics, University of Bern, Bern
8 School of Physics and Astronomy, The University of Birmingham, Birmingham
9 Universidad Antonio Narino, Bogotá, Colômbia
10 Università di Bologna, Dipartimento di Fisica, Bologna
11 National Institute of Physics and Nuclear Engineering, Bucharest
12 UPB - ‘Politehnica’ University of Bucharest, Bucharest
13 Universidad de Buenos Aires, Buenos Aires
14 European Laboratory for Particle Physics (CERN), Geneva
15 Dipartimento di Fisica dell’ Università della Calabria e I.N.F.N., Cosenza
16 University of Chicago, Enrico Fermi Institute, Chicago, Illinois
17 Laboratório de Instrumentação e Física Experimental de Partículas, Coimbra
18 Nevis Laboratory, Columbia University, Irvington, New York
19 Institute of Nuclear Physics, Polish Academy of Sciences, Cracow
20 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow
21 Deutsches Elektronen-Synchrotron (DESY), Hamburg and Zeuthen
22 University of Debrecen
23 Technical University Dresden, Dresden
24 Joint Institute for Nuclear Research, Dubna
25 Laboratori Nazionali di Frascati dell’ I.N.F.N., Frascati
26 Section de Physique, Université de Genève, Geneva
27 Dipartimento di Fisica dell’ Università di Genova e I.N.F.N., Genova
28 Department of Physics and Astronomy, University of Glasgow, Glasgow
29 Laboratoire de Physique Subatomique et de Cosmologie de Grenoble (LPSC), IN2P3-CNRS-Université Joseph Fourier, Grenoble
30 University of Hamburg, Germany
31 Kirchhoff Institut für Physik, Universität Heidelberg, Heidelberg
32 ZITI Ruprecht-Karls-University Heidelberg
33 Hiroshima Institute of Technology, Hiroshima
34 Department of Physics, Royal Holloway, University of London, Egham
35 Institut für Physik, Humboldt-Universität zu Berlin
36 I.N.F.N. Bologna
37 I.N.F.N. Lecce
38 I.N.F.N. Napoli
39 I.N.F.N. Pavia

6
Atlas trigger for first physics and beyond

Teresa FONSECA MARTIN

40 Dipartimento di Fisica dell' Università di Pisa e I.N.F.N., Pisa
41 I.N.F.N. Roma
42 I.N.F.N. Tor Vergata
43 Indiana University, Bloomington, Indiana
44 Institute for Astro- and Particle Physics, Leopold-Franzens-Universit Innsbruck
45 Iowa State University, Ames, Iowa
46 KEK, High Energy Accelerator Research Organisation, Tsukuba
47 Kobe University, Kobe
48 Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), IN2P3-CNRS, Annecy-le-Vieux
49 Laboratorio de Instrumentação e Fisica Experimental, Lisboa
50 Universidad Nacional de La Plata, La Plata
51 Department of Physics, Lancaster University, Lancaster
52 Università degli Studi del Salento, Dipartimento di Fisica, Lecce
53 University Católica-Figueira da Foz and University Nova de Lisboa, Lisbon
54 University of Liverpool, Liverpool
55 Max-Planck-Institut für Physik, München
56 Michigan State University, Department of Physics and Astronomy, East Lansing, Michigan
57 Institut für Physik, Universität Mainz, Mainz
58 School of Physics and Astronomy, University of Manchester, Manchester
59 Centre de Physique des Particules de Marseille, IN2P3-CNRS, Marseille
60 Department of Physics, McGill University, Montreal
61 University of Michigan, Department of Physics, Ann Arbor, Michigan
62 University of Montreal, Montreal
63 Moscow State University, Moscow
64 Niels Bohr Institute, University of Copenhagen, Copenhagen
65 Department of Physics, New York University, New York
66 Nagasaki Institute of Applied Science, Nagasaki
67 Nagoya University, Nagoya
68 Università di Napoli ’Federico II’, Dipartimento di Scienze Fisiche, Napoli
69 Nikhef National Institute for Subatomic Physics, Amsterdam
70 University of Oregon, Eugene, Oregon
71 Osaka University, Osaka
72 Department of Physics, Oxford University, Oxford
73 Petersburg Nuclear Physics Institute (PNPI), St. Petersburg
74 Università di Pavia, Dipartimento di Fisica Nucleare e Teorica, Pavia
75 Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania
76 Physics Department, Queen Mary, University of London, London
77 STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon
78 University of Regina, Regina
79 Universidade Federal do Rio de Janeiro, COPPE/EE/IF, Rio de Janeiro
80 Università di Roma I ‘La Sapienza’, Dipartimento di Fisica, Roma
81 Dipartimento di Fisica dell’ Università di Roma II ‘Tor Vergata’
82 Stanford Linear Accelerator Center (SLAC), Stanford
83 Department of Physics, Southern Methodist University, Dallas, Texas
84 Pontificia Universidad Católica, Santiago
85 Faculty of Science, Shinshu University, Matsumoto
86 Fysikum, Stockholm University, Stockholm
87 Department of Physics, Technion, Haifa
88 School of Physics and Astronomy, Tel Aviv University, Tel Aviv
89 International Center for Elementary Particle Physics, University of Tokyo, Tokyo
90 Physics Department, Tokyo Metropolitan University, Tokyo
91 Department of Physics and Astronomy, University of California, Irvine, California
92 Department of Physics and Astronomy, University College London, London
93 University of Sydney, Sydney
94 Department of Physics, The University of Texas at Arlington, Arlington, Texas
95 Université de Technologie de Belfort-Montbéliard
96 Instituto de Física Corpuscular (IFIC) Universidad de Valencia
97 Universidad Técnica Federico Santa María, Valparaíso
98 University of Victoria, Victoria
99 Department of Particle Physics, The Weizmann Institute of Science, Rehovot
100 Department of Physics, University of Wisconsin, Madison, Wisconsin
101 Università di Napoli 'Parthenope'