
P
o
S
(
D
y
n
a
m
i
c
2
0
0
7
)
0
3
4

 

 

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

Innovative SETI by the KLT 

Claudio Maccone1 
Co-Vice Chair, SETI Permanent Study Group,  
International Academy of Astronautics (IAA) 
Home address:  Via Martorelli 43, I-10155 Torino (Turin), Italy 
E-mail: clmaccon@libero.it  

 
 SETI searches are, by definition, the extraction of very weak radio signals out of the cosmic 
background noise. When SETI was born in 1959, it was “natural” to attempt this extraction by 
the only detection algorithm well known at the time: the Fourier Transform (FT). In fact:  
1) SETI radio astronomers had adopted the viewpoint that a candidate ET signal would 

necessarily be a sinusoidal carrier, i.e. a very narrow-band signal. Over such a narrow band, 
the background noise is necessarily white. And so, the basic assumption behind the FT that 
the background noise must be white was “perfectly matched” to SETI for the next fifty 
years!  

2)  In addition, the Americans, J. W. Cooley and J. W. Tukey discovered in April 1965 that all 
the FT computations could be speeded up to N*ln(N) (rather than N2) (N is the number of 
numbers to be processed) by their own Fast Fourier Transform (FFT). Then, SETI radio 
astronomers all over the world gladly and unquestioningly adopted the new FFT forever. 

 In 1983, however, the French SETI radio astronomer, François Biraud, dared to challenge 
this view (ref. [6]). He argued that we only can make guesses about ET’s telecommunication 
systems, and that the shifting trend on Earth was from narrow-band to wide-band 
telecommunications. Thus, a new transform, other than the FFT, was needed that could detect 
signals over both narrow and wide bands, regardless of the colored noise distribution over any 
finite bandwidth. Such a transform had actually been pointed out as early as 1946 by the Finn 
mathematician, Kari Karhunen, and the French mathematician, Michel Loève, and is thus named 
KLT for them. In conclusion, François Biraud suggested to “look for the unknown in SETI” by 
adopting the KLT rather than the FFT. The same ideas were reached independently by this 
author also, and starting 1987, he too was “preaching the KLT”: first at the SETI Institute, then 
(since 1990) at the Italian CNR (now called INAF) SETI facilities at Medicina, near Bologna. 
Their director, Stelio Montebugnoli, was willing to pay attention to him. Little by little, bright 
students succeeded in programming the KLT algorithm for the Medicina radio telescopes. 
Finally, by the year 2000, the advent of programmable cards, mastered by Montebugnoli, made 
the “miracle” happen. The KLT for SETI is now a reality at the SETI-Italia facilities and for the 
first time in history. This paper describes the KLT with a final section devoted to the advantages 
of installing the KLT on LOFAR and the SKA, i.e. to detecting leakage from nearby stars.            

 
Bursts, Pulses and Flickering: Wide-field monitoring of the dynamic radio sky 
Kerastari, Tripolis, Greece 
12-15 June, 2007

                                                
1  Speaker 
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1. Introduction 

       The Karhunen-Loève Transform (KLT) is the most advanced mathematical algorithm 
available in the year 2007 to achieve both noise filtering and data compression in processing 
signals of any kind.  It took about two centuries (~ 1800÷2000) to mathematicians to create such 
a jewel of thought little by little, piece after piece, paper after paper. It is thus difficult to 
recognize who did what in building up the KLT, and to be fair to each contributing author. In 
addition, mathematicians, both pure and applied, often speak such a “clumsy” language of their 
own that even learned scientists find sometimes hard to understand them. This unfortunate 
situation hides the aesthetic beauty of many mathematical discoveries that were often 
historically made by their authors more for the joy of opening new lines of thought than for the 
sake of any immediate application to science and engineering.  
 In essence, the KLT is a rather new mathematical tool to improve our understanding of 
physical phoenomena, far superior to the classical Fourier Transform (FT). The KLT is named 
for two mathematicians, the (living) Finn, Kari Karhunen (ref. [1]) and the French-American, 
Michel Loève (1907-1979) (refs. [2] and [3]), who proved, independently and about the same 
time (1946), that the series (2) hereafter is convergent. Put this way, the KLT looks like a 
purely mathematical topic, but really this is hardly the case. As early as 1933 had the American 
statistician and economist Harold Hotelling (1895-1973) used the KLT (for discrete time, rather 
than for continuous time), so that the KLT is sometimes called the “Hotelling Transform”. Even 
much earlier than these three authors had the Italian geometer Eugenio Beltrami (1835-1899) 
discovered as early as 1873 the SVD (Singular Value Decomposition), that is closely related to 
the KLT in that area of applied mathematics nowadays called Principal Components Analysis 
(PCA). Unfortunately, a complete historical account about how these contributions developed 
since 1865 (when the English mathematician Arthur Cayley (1821-1895) “invented” matrices) 
simply does not exist. We only know about “fragments of thought” that impair an overall vision 
of both the PCA and the KLT. 
 In the first three sections of this paper, we’ll derive heuristically and step-by-step the 
many equations that make up for the KLT. We think that this approach is much easier to 
understand for beginners than what is found in most “pure” mathematical textbooks, and hope 
that the readers will appreciate our effort to explain the KLT as easily as possible to non-
mathematically trained people.   
 

2. A heuristic derivation of the Karhunen-Loève (KL) Expansion  

We start by saying that the KLT was born during the years of World War Two out of the need 
to merge two different areas of classical mathematics:  
1) The expansion of a deterministic periodic signal ( )tx  unto a basis of orthonormal functions 

(sines and cosines, in this case), typified by the classical Fourier series (firstly put forward by 
the French mathematician Jean Baptiste Joseph Fourier (1768-1830) around 1807),  

  ( ) ( ) ( )[ ]!
"

=

++=

1

0
sincos 

2
n

nnnn
tbta

a
tx ## .  (1) 

2) The need to extend to probability and statistics this too narrow and deterministic view. The 
much larger variety of phenomena called “noise” by physicists and engineers will thus be 
encompassed by the new transform. This enlarged view means to consider a random function 
( )tX  (notice that we denote random quantities by capitals, and that ( )tX  is also called a 

“stochastic process of the time”). We now seek to expand this stochastic process onto a set of 
orthonormal functions ( )t

n
!  according to the starting formula 
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that is called Karhunen-Loève (KL) expansion of X(t) over the finite time interval Tt !!0 .  

 What are then the 
n
Z  and the ( )t

n
!  in (2) ? To find out, le us start by recalling what 

“orthonormality” means for the Fourier series (1). The great Leonhard Euler (1707-1783) had 
already laid the first stone towards the Fourier series (1) by proving that coefficients an and bn in 
(1) are obtained from the known function (or “signal”) x(t) by virtue of the equations; 

if 
T

nttT
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!
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 If the same result is going to be true for the Karhunen-Loève expansion, the functions of 
the time, ( )t

n
!  in (2) must be orthornormal, i.e. both orthogonal and normalized to one. That is,  

 ( ) ( )
mn

T

nm
dttt !"" =#

0

 (4) 

where the 
mn

!  are the Kronecker symbols, defined by 0=
mn

!  for nm !  and 1=
nn

! . 
 But what are then the 

n
Z  appearing in (2) ?  Well, a random function ( )tX  can be thought 

of as something made by two parts: its behavior in time, represented by the functions ( )t
n
! , and 

its behavior with respect to probability and statistics, that must therefore be represented by the 
n
Z . In other words, the 

n
Z  must be random variables not changing in time, i.e. “just” random 

variables and not stochastic processes. By doing so we have actually made one basic, new step 
ahead: we have found that the KLT separates the probabilistic behavior of the random function 
( )tX  from it behavior in time, a kind of “untypical” separation that is achieved nowhere else in 

mathematics!  
 Having discovered that the 

n
Z  are random variables, some trivial consequences follow 

at once. Let us denote by  the linear operator yielding the average of a random variable or 
stochastic process. If one takes the average of both sides of the KL expansion (2), one then gets 
(we “freely” interchange here the average operator  with the infinite summation sign, 
bypassing the complaints of “subtle” mathematicians!) one gets 

 ( ) ( )!
"

=

=

1

  

n

nn
tZtX # . (5) 

Now, it is not restrictive to suppose that the random function ( )tX  has a zero mean value 
in time, namely that the following equation is identically true for all values of the time t 
within the interval Tt !!0 :      ( ) 0!tX   (6).    In fact, wasn’t this true, one could 
replace ( )tX  by the new random function ( ) ( )tXtX !  in all the above calculations, thus 
reverting to the case of a new random function with zero mean value. Thus, in 
conclusion, the random variables 

n
Z  too must have a zero mean value 0!

n
Z   (7).  

This equation has a simple consequence: since the variance 2

n
Z

!  of the random variables 
n
Z  is 

given by   222

nnZ
ZZ

n

!="    (8)  by inserting (7) into (8) we get   22

nZ
Z

n

=!    (9).  

 At this point, we can make a further step ahead, that has no counterpart in the classical 
Fourier series: we wish to introduce a new sequence of positive numbers 

n
!  such that every 

n
!  

is the variance of the corresponding random variable 
n
Z , that is   0

22
>==

nnZ
Z

n

!"   (10).  
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This equation provides the “answer” to the next “natural” question: do the random variables 
n
Z  

fulfill a new type of “orthonormality” somehow similar to what the classical orthonormality (4) 
is for the ( )t

n
!  ? Since we are talking about random variables, the “orthogonality operator” can 

only be understood in the sense of “statistical independence”. The integral in (4) must then be 
replaced by the average operator  for the random variables 

n
Z . In conclusion, we found that 

the random variables 
n
Z  must obey the very important equation  

  .
mnnnm

ZZ !"=  (11) 
In this equation, we were forced to introduce the positive 

n
!  in the right-hand side in order to 

let (11) reduce to (10) in the special case nm = . To sum up, we have actually achieved a 
remarkable generalization of the Fourier series by defining the Karhunen-Loève expansion (2) 
as the only possible statistical expansion in which all the expansion terms are uncorrelated from 
each other. This word “uncorrelated” comes from the fact that the “cross correlation” between 
any two random functions of the time, ( )tX  and ( )tY , is defined as the mean value of their 
product at two different instants 

1
t  and 

2
t : ( ) ( ) ( )2121, tYtXttR

XY
=   (12).  In particular, the 

autocorrelation of ( )tX  is given by ( ) ( ) ( ) ( )212121 ,, tXtXttRttR
XXX

=!   (13).  If we assume, 
according to (5), that the mean value of ( )tX  vanishes identically in the interval Tt !!0 , the 
autocorrelation (13) reduces to the variance of ( )tX  when the two instants are the same 

 ( ) ( ) ( ) ( ) ( )ttRtXtXtX
XtX
,

22 ===! . (14) 

 Let us add one final remark about the basic notion of statistical independence of the 
random viariables 

n
Z . It can be proven that, while the 

n
Z  in (2) always are uncorrelated (by 

construction), they also are statistically independent if they are Gaussian-distributed random 
variables. This is fortunately the case for the Brownian motion and for the background noise we 
face in SETI. So we are not concerned about this subtle mathematical distinction between 
uncorrelated and statistically independent random variables.  
 

3. Finding the best basis (the eigen-basis) for the Karhunen-Loève Expansion  

 Up to this point, we have not given any hint about how to find the orthonormal functions of 
the time, ( )t

n
! , and positive numbers 

n
!  i.e. the variances of the corresponding uncorrelated 

random variables 
n
Z . In this section, we solve this problem by showing that the ( )t

n
!  are the 

eigenfunctions of the autocorrelation ( ) ( ) ( )2121, tXtXttR
X

=  and that the 
n
!  are the 

corresponding eigenvalues. This is the correct mathematical phrasing of what we are going to 
prove. However, in order to ease the understanding of the further maths involved hereafter, a 
“translation” into the language of "common words" is now provided.  Consider an object, for 
instance a book, and a three-axes rectangular reference frame, oriented in an arbitrary fashion 
with respect to the book. Then, the classical Newtonian mechanics shows that all the 
mechanical properties of the book are described by a 3x3 symmetric matrix called the "inertia 
matrix" (or, more correctly, "inertia tensor") whose elements are, in general, all different from 
zero. Handling a matrix whose elements are all nonzero is obviously more complicated than 
handling a matrix where all entries are zeros except for those on the main diagonal (i.e. a 
"diagonal matrix"). Thus, one may be led to wonder whether a certain transformation of axes 
exists that changes the inertia matrix of the book into a diagonal matrix. Newtonian mechanics 
shows then that only one priviledged orientation of the reference frame with respect to the book 
exists yielding a diagonal inertia matrix: the three axes must then coincide with a set of three 
axes (parallel to the book edges) called "principal axes" of the book, or "eigenvectors" or 
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"proper vectors" of the inertia matrix of the book. In other words, each body posesses an 
intrinsic set of three rectangular axes  that describes at best its dynamics at best, i.e. in the most 
concise form. This was proven again by Euler, and one can always compute the position of the 
eigenvectors with respect to a generic reference frame by means of a certain mathematical 
procedure called "finding the eigenvectors of a square matrix".  
 In a similar fashion, one can describe any stochastic process ( )tX  by virtue of the 
statistical quantity called the autocorrelation (or simply the correlation), defined as the mean 
value of the product of the values of ( )tX  at two different instants 

1
t  and 

2
t , and formally 

written ( ) ( )
21
tXtX . The autocorrelation, obviously symmetric in 

1
t  and 

2
t , plays for the 

stochastic process ( )tX  just the same role as the inertia matrix for the book example above. 
Thus, if one firstly seeks for the eigenvectors of the correlation, and then changes the reference 
frame over to this new set of vectors, one achieves the simplest possible description of the 
whole (signal+noise) set.  
 Let us now translate the whole above description into equations. First of all, we must  
express the autocorrelation ( ) ( )

21
tXtX  by virtue of the KL expansion (2). This goal is 

achieved by writing down (2) for two different instants, 
1
t  and 

2
t , taking the average of their 

product, and then (freely) interchanging the average and the summations in the right hand side. 

The result is  ( ) ( ) ( ) ( )
nm

n

nm

m

ZZtttXtX !!
"

=

"

=

=

1

21

1

21
 ##  (15). Taking advantage of the statistical 

orthogonality of the 
n
Z , given by (11), (15) simplifies to ( ) ( ) ( ) ( )!

"

=

=

1

2121
 

m

mmm
tttXtX ##$ (16). 

Finally, we now want to let the ( )t
n
!  “disappear” from the right hand side of (16) by taking 

advantage of their orthonormality (4). To do so, we multiply both sides of (16) by ( )
1
t

n
!  and 

then take the integral with respect to 
1
t  between 0 and T. One then gets:  

( ) ( ) ( ) =!
T

n
dtttXtX

0

1121
" ( ) ( ) ( ) =!"

#

=

1

0

11

1

2
 dtttt

T

nm

m

mm
$$$% ( ) ( )

2

1

2
 tt

nnmn

m

mm
!"#!" =$

%

=

(17), that is 

  ( ) ( ) ( ) ( ).
2

0

1121
tdtttXtX

nn

T

n
!"! =#  (18) 

This basic result is an integral equation, called by mathematicians “of the Fredholm type”. 
Once the correlation ( ) ( )

21
tXtX  of ( )tX  is known, the integral equation (18) yields (upon its 

solution, that may not be easy at all to find analytically!) both the Karhunen-Loève eigenvalues 
n
!  and the corresponding eigenfunctions ( )

2
t

n
! . Readers familiar with quantum mechanics will 

also recognize in (18) a typical “eigenvalue equation” having the kernel ( ) ( )
21
tXtX .  

 Let us finally summarize what we have proven so far in sections 1 and 2, and let us use the 
language of  signal processing, that will lead us directly to SETI, the main theme of this paper.  
 By adding random noise to a deterministic signal one obtains what is called a "noisy signal" 
or, in case the signal power is much lower than the noise power, "a signal buried into the noise". 
The noise+signal is a random function of the time, denoted hereafter by ( )tX . Karhunen and 
Loève proved that it is possible to represent ( )tX  as the infinite series (called KL expansion) 
given by (2), and this series is convergent. Assuming that the (signal+noise) correlation 
( ) ( )

21
tXtX  is a known function of 

1
t  and 

2
t , then the orthonormal functions ( )t

n
!  ( ),...2,1=n  

turn out to be just the eigenfunctions of the correlation. These eigenfunctions ( )t
n
!  form an 

orthonormal basis in what physicists and mathematicians call the space of square-integrable 
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functions, also called the Hilbert space. The eigenfunctions ( )t
n
!  actually are the best possible 

basis to describe the (signal+noise), much better than any classical Fourier basis made up by 
sines and cosines only. One can conclude that the KLT automatically adapts itself to the shape 
of the (signal+noise), whatever behaviour in time it may have, by adopting as new reference 
frame in the Hilbert space the basis spanned by the eigenfunctions, ( )t

n
! , of the 

autocorrelation of the (signal+noise), ( )tX . 
 

4. Continuous vs. discrete time in the KLT  

 The KL expansion in continuous time, t, is what we have described so far. This may be 
more “palatable” to theoretical physicists and mathematicians inasmuch as it may be related to 
other branches of physics, or of science in general, in which the time obviously must be a 
continuous variable. For instance, this author spent fifteen years of his life (1980-1994) to 
investigate mathematically the connection between Special Relativity and KLT. The result was 
the mathematical theory of optimal telecommunications between the Earth and a relativistic 
spaceship either receding from the Earth or approaching it. Although this may sound like 
“mathematical science fiction” to some folks (that we would call “short sighted”), the 
possibility that, in the future, humankind will send out relativistic automatic probes or even 
manned spaceships, is not unrealistic. Nor it is science fiction to imagine that an alien spaceship 
might approach the Earth slowing down from relativistic speeds to zero speed. So, a 
mathematical physics book like ref. [4] can make sense. There, the KLT is obtained for any 
acceleration profile of the relativistic probe or spaceship. The result is that the KL 
eigenfunctions are Bessel functions of the first kind (suitably modified) and the eigenvalues are 
determined by the zeros of linear combinations of these Bessel functions and their derivatives.  

Other continuous-time applications of the KLT are to be found in other branches of 
science, ranging, for instance, from genetics to economics. But, whatever the application may 
be, if the time is a continuous variable, then one must solve the integral equation (18), and this 
may require considerable mathematical skills. In fact, (18) is, in general, an integral equation of 
the Fredholm type, and the usual “iterated nuclei” procedure used to solve Fredholm integral 
equations may be particularly painful to achieve. Much easier may be the task if one is able to 
reduce the Fredholm integral equation to a Volterra integral equation, just as shown in the book 
[4] for the time-rescaled Brownian motion in relation to Special Relativity.   
 But let us go back to the time variable t in the KL expansion (2). If this variable is discrete, 
rather than continuous, then the picture changes completely. In fact, the integral equation (2) 
now becomes… a system of simultaneous algebraic equations of the first degree, that can 
always be solved! The difficulty here is that this system of linear equations is huge, because the 
autocorrelation matrix is huge (hundreds or thousands of elements are the rule for 
autocorrelation matrices in SETI and in other applications, like image processing and the like). 
And huge also is the characteristic equation, i.e. the algebraic equations the roots of which are 
the KL eigenvalues. Can you imagine solving directly an algebraic equation of degree 10,000 ?  
 So, the KLT is practically impossible to find numerically, unless we resort to simplifying 
tricks of some kind. This is precisely what was done for the SETI-Italia program by this author 
and his students, strongly supported by Ing. Stelio Montebugnoli and his team (ref. [5]).    
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5. A Breakthrough about the KLT: “The Final Variance Theorem” 
 

 The importance of the KLT as a superior mathematical tool than the FFT was already 
pointed out. However, the implementation of the KLT by a numerical code running on 
computers has always been a difficult problem. Both François Biraud in France (ref. [6]) and 
Bob Dixon in the USA (ref. [16]) failed to do in the 1980s because all computers then available 
got stuck by the solution of the N2 calculations required to solve the huge system of 
simultaneous algebraic equations of the first degree corresponding (in the discrete case) to the 
integral equation (18). At the SETI Italia facilities at Medicina we faced the same problem, of 
course. But we did better than our predecessors because this author discovered the new theorem 
about the KLT that we demonstrate in this section and call “The Final Variance Theorem”. This 
new theorem seems to be even more important than the rest of research work about the KLT 
since it solves directly the problem of extracting a weak sinusoidal carrier (a tone) from the 
noise of whatever kind (both colored and white).  
 The key idea of the Final Variance theorem is to differentiate the first eigenvalue 
(briefly called the “dominant eigenvalue”) of the autocorrelation of the (noise+signal) with 
respect to the final instant T of the general KLT theory. We remind here that this final 
instant T simply does not exist in the ordinary Fourier theory, because this T equals 
infinity by definition in the Fourier theory. Therefore, the final instant T in itself is 
possibly the most important “novelty” introduced by the KLT with respect to the classical 
FFT. With respect to T, we may take derivatives (called “final derivatives” in the sequel of 
this book because they are time derivatives taken with respect to the final instant T) and 
integrals that have no analogues in the ordinary Fourier theory. The “error” that was 
made in the past even by many KLT scholars was to set T=1, thus obscuring the 
fundamental novelty represented by the finite, real positive T as a new continuous variable 
playing in the game! This error made by other scholars clearly appears, for instance, in 
the Wikipedia site about the “Karhunen-Loève Theorem”  
 http://en.wikipedia.org/wiki/Karhunen-Lo%C3%A8ve_theorem. So by removing this silly 
T=1 convention we opened up new prospects in the KLT theory, as we now show by 
proving our “final variance theorem”.    

Consider the eigenfunction expansion of the autocorrelation again, eq. (16), with the traditional 
dummy index n rewritten instead of m. Upon replacing  ttt ==

21
, this equation becomes  

    ( ){ } ( )!
"

=

=
1

22
 

n

nn
ttXE #$ . (19) 

Since the eigenfunctions ( )t
n
!  are normalized to one, we are prompted to integrate both sides of 

(19) with respect to t between 0 and T, so that the integral of the square of the ( )t
n
!  becomes 

just one: 

    ( ){ } ( ) !! ""
#

=

#

=

==
11 0

2

0

2
  

n

n

n

T

nn

T

dttdttXE $%$ .   (20) 

On the other hand, since the mean value of ( )tX  is identically equal to zero, one may now 
introduce the variance 2

)(tX
!  of the stochastic process ( )tX   defined by  

 ( ) ( ){ } ( ){ } ( ){ }tXEtXEtXE
tX

2222 =!=" .   (21) 
Replacing (21) into (20), one gets 

  !"
#

=

=

10

2
)(  

n

n

T

tX
dt $% .  (22) 
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This formula was already given by this author in his 1994 book, and it is eq. (1.13) on page 12 
of ref. [4]. At that time, however, (22) was regarded as interesting inasmuch as (upon 
interchanging the two sides) it proves that the series of all the eigenvalues 

n
!  is indeed 

convergent (as one would intuitively expect) and its sum is given by the integral of the variance 
between 0 and T.  
 Back in 1994, however, this author had not yet understood that (22) has a more profound 
meaning, that is: since the final instant T is the upper limit of the time integral on the left-hand 
side, the right-hand side also must depend on T. In other words, all the eigenvalues 

n
!  must be 

some functions of the final instant T: 
 )(T

nn
!! " .  (23) 

This new remark is vital in order to make new progress. In fact, one is now prompted to let the 
integral on the left-hand side of (22) disappear by differentiating both sides with respect to the 
final instant T. One thus gets: 

 ( )
. 

1

2
)( !

"

=
#

#
=

n

n

TX
T

T$
%   (24) 

 
This result we call the Final Variance Theorem. It is the key new result put forward in this 
section. It states that for any (either non-stationary or stationary) stochastic process ( )tX , the 
Final Variance 2

)(TX
!  is the sum of the series of the first-order partial derivatives of the 

eigenvalues )(T
n
!  with respect to the final instant T.      

 Let us now consider a few particular cases of this theorem that are especially interesting.  
1) In general, only the first N terms of the decreasing sequence of eigenvalues will be retained 

as “significant” by the user, and all the other terms, from the (N+1)-th term onward, will be 
declared to be “just noise”. Therefore the infinite series in (24) becomes in the practice the 
finite sum 

 ( )
!
=

"

"
#

N

n

n

TX
T

T

1

2
)(  

$
% .  (25) 

In numerical simulations, however, one always wants to cut as short as possible with the 
computation time! Therefore one might be led to consider the first (or dominant) eigenvalue 
only in (25), that is 

 ( )
T

T

TX
!

!
" 12

)(

#
$ .  (26) 

This clearly is “the roughest possible” approximantion to the full )(tX process since we are 
actually replacing the full )(tX  by its first KLT term ( )tZ

11
! . However, using (26) instead of 

the N-term sum (25) is indeed a good short-cut for the application of the KLT to the 
extraction of very weak signals from noise, as we now stress in the very important practical 
case of stationary processes.    

2) If we restrict our considerations to stationary stochastic processes only, i.e. processes for 
which both the mean value and the variance are constant in time, then (25) simplifies even 
further. In fact, by definition, the stationary processes have the same final variance at any 
time, i.e. for stationary processes 2

X
!  is a constant. Then (22) immediately shows that, for 

stationary processes only, all the KLT eigenvalues are linear functions of the final instant T:  
 
 onlyprocessesstationaryforTTn !)(" .  (27) 
 



P
o
S
(
D
y
n
a
m
i
c
2
0
0
7
)
0
3
4

Innovative SETI by  the KLT Claudio Maccone 

 
     9 

 
 

As a consequence, the first-order partial derivatives of all the
n
!  with respect to T for 

stationary processes are just constants. In other words still, for stationary processes only, (25) 
becomes 

 ( )
!

"

"
#
=

N

n

n

T

T

1

 
$ a constant with respect to T.  (28) 

In particular, if one sticks again to the first, dominant eigenvalue only (i.e. to the roughest 
possible approximation), then (28) reduces to 

 ( )
!

"

"

T

T
1
# a constant with respect to T.  (29) 

In the next section we’ll discuss the deep, practical implications of this result for SETI, 
extrasolar planet detection, asteroidal radar and other KLT applications.  

3) Please notice that, for non-stationary processes, the dependence of the eigenvalues on T 
certainly is non-linear. For instance, for the well-known Brownian motion (that is, so as to 
say, “the easiest of the non-stationary processes”), one has  

 ,...).2,1(
)12(

4
)(

22

2

=
!

= n

n

T
T

n

"
#    (30) 

and so the dependence on T is quadratic. For the proof, just replace the Brownian motion 
variance t

tB
=

2
)(!  into (22) and perform the integration, yielding the 2

T  directly. Of course, 
this is in agreement with (30), as shown in Chapter 12 of [4] when finding the KLT of the 
standard Brownian motion (see, in particular, (12.35)). .  

4) Even higher than quadratic is the dependence on T for the eigenvalues of other highly non-
stationary processes. For instance, for the zero-mean square of the Brownian motion, the 
KLT eigenvalues depend cubically on the final instant T, as it is shown in Chapter 15 of  [4] 
by (15.59). And so on for more complicated processes, like the time-rescaled squared 
Brownian motions whose KLT can be found in Chapter 15 of [4].  

 
6. BAM (“Bordered Autocorrelation Method”) to find the KLT of  
 STATIONARY Processes only 
 
 The BAM (an acronym for “Bordered Autocorrelation Method”) is an alternative  
numerical technique to evaluate the KLT of stationary processes (only) that may run faster on 
computers than the traditional full-solving KLT technique described in Section 11.5 of [4]. The 
BAM has its mathematical foundation in the Final Variance theorem already proved in the 
previous section. In this section we described the BAM in detail. Finally, in the next section, 
we’ll provide the results of numerical simulations showing that, by virtue of the BAM, the KLT 
succeeds in extracting a sinusoidal carrier embedded in lot of noise when the FFT utterly fails.    
 Let us start by reminding that the standard, traditional technique to find the KLT of any 
stochastic process (whether stationary or not) numerically amounts to solving N simultaneous 
linear algebraic equations whose coefficient matrix is the (huge) autocorrelation matrix. This N2 
amount of calculations is much larger than the N*ln(N) amount of calculations required by the 
FFT ans that’s just why the FFT was preferred to the KLT in the last 50 years!  
 Because of the Final Variance theorem proved in the previous section, one is tempted to 
confine himself to the study of the dominant eigenvalue only by virtue of use of (29). This 
means to study (29) for different values of the final instant T, i.e. as a function of the final 
instant T. 
 Also, we now confine ourselves to a stationary ( )tX  over a discrete set of instants t = 0, 
…, N.  
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In this case, the autocorrelation of ( )tX  becomes the Toeplitz matrix (for an introduction to the 
research field of Toeplitz matrices, see the Wikipedia site 
http://en.wikipedia.org/wiki/Toeplitz_matrix) that we denote by ToeplitzR  

 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
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!
!
!
!
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'

'

'
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XXXXXXXX
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Toeplitz

RRNRNR

R

NRRRR

NRRRR

NRRRR

R  (31) 

 
This theorem was already proven by Bob Dixon and Mike Kline back in 1991 (ref. [16]), and 
will not be proven here again. We may choose N at will but, clearly, the higher N, the more 
accurate the KLT of X(t) is. On the other hand, the final instant T in the KLT can be chosen at 
will and now is T=N. So, we can regard T=N as a sort of “new time variable” and even take 
derivatives with respect to it, as we’ll do in a moment.  
 But let us now go back to the Toeplitz autocorrelation (31). If we let N vary as a new free 
variable, that amounts to bordering it, i.e. adding one (last) column and one (last) row to the 
previous correlation T. This means to solve again the system of linear algebraic equations of the 
KLT for N+1, rather than for N. So, for each different value of N, we get, a new value of the 
first eigenvalue 

1
!  now regarded as a function of N, i.e. ( )N

1
! . Doing this over and over 

again, for how many values of which as we wish (or, more correctly, for how many values of 
N out computer can still handle!) is our  BAM, the Bordered Autocorrelation Method.  
But then we know from the Final Variance Theorem that ( )N

1
!  is proportional to N. And 

such a function ( )N
1
!  of course has a derivative, ( )

N

N

!

!
1
" , that can be computed numerically 

as a new function of N. And this derivative turns out to be a constant with respect to N. This 
fact paves the way to a new set of applications of the KLT to all fields of science! 
 In fact, numeric simulations lead to the results shown in 4 plots below. The first plot is the 
ordinary Fourier spectrum of a pure tone at 300 Hz buried in noise with a signal-to-noise ratio 
of 0.5, abbreviated hereafter as SNR=0.5. For a definition of the SNR see the Wikipedia site 
http://en.wikipedia.org/wiki/Signal-to-noise_ratio. Please notice two facts: 1) This is about the 
lowest SNR below which the FFT starts failing to denoise a signal, a well-known fact to 
electrical and electronic engineers. 
2) This Fourier spectrum is obviously computed by taking the Fourier transform of the 
stationary autocorrelation of X(t), as well-known from the 
Wiener-Khinchin Theorem (for a concise description of this theorem, see 
http://en.wikipedia.org/wiki/Wiener%E2%80%93Khinchin_theorem). Notice, however, that this 
procedure would not work for non-stationary X(t) because the Wiener-Khinchin Theorem does 
not apply to non-stationary processes. For non-stationary processes there are other “tricks” to 
compute the spectrum from the autocorrelation, like the Wigner-Ville Transform, but shall not 
consider them here.    
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Figure 1:  Fourier spectrum of a pure tone (i.e. just a sinusoidal carrier) with frequency at 300 
Hz buried in stationary noise with a signal-to-noise ratio of 0.5. 

The second plot shows the first (i.e. the dominant) KLT eigenvalue ( )N
1
!  over N=1000 time 

samples. Clearly, this ( )N
1
!  is proportional to N, as predicted by our Final Variance Theorem 

(27).  
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Figure 2: The KLT dominant eigenvalue ( )N

1
!  over N=1000 time samples, computed by virtue 

of the BAM, the Bordered Autocorrelation Method. 

So, its derivative, ( )
N

N

!

!
1
" , is a constant with respect to N. But we may then take the Fourier 

transform of such a constant and clearly we get a Dirac delta function, i.e. a peak just at 300 Hz. 
In other words, we have KLT-reconstructed the original tone by virtue of the BAM. The third 
plot below shows such a BAM-reconstructed peak.  
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Figure 3: The spectrum (i.e. the Fourier Transform) of the CONSTANT derivative of the KLT 
dominant eigenvalue ( )N

1
!  with respect to N as given the BAM. This is clearly a Dirac delta 

function, i.e. a peak, at 300 Hz, as expected. 

Finally, this plot is of course identical to the following fourth plot, showing the ordinary FFT of 
first KLT eigenfuction as obtained not by the BAM, but by solving the full and long system of 
N algebraic first-degree equations.  
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Figure 4: The spectrum (i.e. the Fourier Transform) of the first KLT eigenfunction NOT 
obtained by the BAM, but rather by the very long procedure of solving the N linear algebraic 
equations corresponding, in  discrete time, to the integral equation (18). Clearly, the result is 
the same as obtained in Figure 11.3 by the much less time-consuming BAM. So, one can say 
that the adoption of the BAM actually made the KLT “feasible” on small computers by 
circumventing the diffuculty of the N2 calculations requested by the “straight” KLT theory.    

 
 
Let us now do the same again… but with an incredibly low SNR of 0.005.  
 
Poor Fourier here is in a mess!  
Just look at the next plot!  
No classical FFT spectrum can be identified at all for such a terribly low SNR!  
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Fourier spectrum of signal + noise X(t) with SNR = 0.005 

 
Figure 5:  Fourier spectrum of a pure tone (i.e. just a sinusoidal carrier) with frequency at 300 
Hz buried in stationary noise with the terribly low signal-to-noise ratio of 0.005. This is clearly 
beyond the reach of the FFT, since we know there should just be one peak only at 300 Hz. 
Fourier FAILS at such a low SNR.     

But for the KLT… no problem!  
 
The next plot shows that ( ) NN !

1
" , as predicted by our Final Variance Theorem (27).  
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 Growth (linear) of dominant eigenvalue ( )N

1
!  with SNR = 0.005 

 x 107 

 
Figure 6: The KLT dominant eigenvalue ( )N

1
!  over N=1000 time samples, computed by virtue 

of the BAM, for the very low SNR=0.005. 

 
The third plot (KLT FAST way via the BAM) is the neat KLT spectrum of the 300 Hz tone 

obtained by computing the FFT of the constant  ( )
N

N

!

!
1
" .  
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Figure 7: The spectrum (i.e. the Fourier Transform) of the CONSTANT derivative of the KLT 
dominant eigenvalue ( )N

1
!  with respect to N as given the BAM. This is a neat Dirac delta 

function, i.e. a peak, at 300 Hz, as expected.  

And this is just the same as the last plot of the dominant KLT eigenfunction obtained by KLT 
SLOW way of doing N2 calculations.  
This proves the superior behavior of the KLT.  
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Figure 8: The spectrum (i.e. the Fourier Transform) of the first KLT eigenfunction NOT 
obtained by the BAM, but rather by the very long procedure of solving the N linear algebraic 
equations corresponding, in  discrete time, to the integral equation (18). Clearly, the result is 
the same as obtained in Figure 11.7 by the much less time-consuming BAM. So, one can say 
that the adoption of the BAM actually made the KLT “feasible” on small computers by 
circumventing the difficulty of the N2 calculations requested by the “straight” KLT theory.    

7. Conclusions 
 

 Let us firstly summarize the results mathematically described in the last, key section for 
practical applications of the KLT to stationary processes.  

 When the stochastic process X(t) is stationary (i.e. it has both mean value and variance 
constant in time), then there are two alternative ways to compute the first KLT dominant 
eigenfunction (that is the roughest approximation to the full KLT expansion, that may be 
“enough” for practical applications!): 

1) (Long Way) Either you compute the first eigenvalue from the autocorrelation and Fourier-
transform it to get the first eigenfunction, or 

2) (Short Way = BAM) You compute the derivative of the first eigenvalue with respect to T=N 
and then Fourier-transform it to get the first eigenfunction.  

In practical numerical simulations of the KLT it may be much less time-consuming to choose 
option 2) rather than option 1).  

Secondly, and most important, in either case, the KLT of a given stationary process can retrieve 
a sinusoidal carrier out of the noise for values of the signal-to-noise ratio (SNR) that are three 
orders of magnitude lower than those that the FFT can still filter out. In other words, while the 
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FFT (at best) can filter out signals buried in a noise that as a SNR of about 1 or so, the KLT can, 
say, filter out signals that have a SNR of, say, 0.001 or so.  

 This is the superior achievement of the KLT with respect to the FFT.   

8. SETI for LOFAR and the SKA by virtue of the KLT 

 Let us finally look at the future of SETI. Two important projects are under development: 
LOFAR, described at the Wikipedia site http://en.wikipedia.org/wiki/LOFAR and the SKA, see   
http://en.wikipedia.org/wiki/Square_Kilometre_Array. Both will probably be used for SETI too.  

 
 

Table 1 on the left is taken from 
ref. [21], page 989. We see that, 
assuming a detection threshold 
of 10-29 W/m2, the SKA will be 
able to detect TV signals, i.e. 
“leakage”, from four nearby 
stars. This will be a great step 
ahead, since no leakage has ever 
been detectable by SETI so far. 
But here is this author’s claim: 
by replacing the KLT to the FFT 
in both LOFAR and the SKA, 
we’ll be able to detect leakage 
from many more nearby stars! 
In fact, the KLT is able to 
extract signals from SNRs much 
lower than 1 (as the FFT does), 
even, say, from SNR of 10-3.  
 So, it’s high time to take 
the KLT seriously!  
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