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The signal of neutron star (NS) mergers has the imprint of the EOS of dense nuclear matter, 

which is still not well known. A set of gravitational waves (GW) signals have been calculated 

from 3D hydrodynamical simulations of NS-NS mergers using the Smoothed Particle 

Hydrodynamics technique (SPH) with different EOS. By analyzing the morphology and time 

evolution of the signal we want to be able to discriminate among the variety of proposed EOS 

after a successful GW detection has been done.  
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Introduction 

Compact objects are systems with an unquestionable scientific interest due to their 

extreme physical properties: high densities, strong gravitational fields, quantum degeneration of 

the material. Among the scenarios that involve compact objects we are interested in double 

neutron star (DNS) mergers, which are powerful emitters of gravitational waves. This emission 

can be used to put strong constraints in one important unknown property of neutron stars: their 

equation of state (EOS hereafter). This is interesting not only to improve the knowledge about 

the astrophysical processes where neutron stars are involved in, but also to understand how 

matter behaves under extreme conditions of high pressure and density. 

 

It has been shown [1] that there are specific features in the gravitational wave emission 

that are connected to different hydrodynamical stages of the coalescence. The outcome depends 

on the compactness of the neutron stars involved during the merging and, therefore on their 

EOS. The relationship can be envisaged in a qualitative way as follows: gravitational emission 

is produced by the quadrupolar movement of mass distributions, but these mass distributions 

(and their hydrodynamical evolution) depend very sensitively on the equation of state of the 

stellar matter. Thus the fingerprint of the EOS is somehow encoded in the gravitational wave 

emission. How to decode that information has been the subject of intense research in the two 

last decades.  

 

The other side of the coin is, of course, the successful detection of gravitational waves. 

The expected amplitude of the displacement due to a gravitational wave produced by a DNS 

merger scenario is typically of the order of 10-21 m. This is an incredible low deformation which 

requires the development of high technology infrastructures devoted to achieve a successful 

detection. The most promising detectors for the gravitational wave emission from DNS mergers 

are ground based interferometers whose frequency band of detection is suitable for these 

scenarios. The main projects of interferometric detectors are summarized in Table 1. It is worth 

to say that the most interesting features of the gravitational wave spectra are expected at 

frequencies beyond 1 kHz, that is just beyond the range of sensibility of current detectors. Only 

with a third generation interferometric detectors like advanced LIGO that range of frequencies 

will be available to observation. Other possibility could be the use of resonant detectors that 

have specific high-frequency resonances. The main problem is that these detectors are narrow-

band instruments so they need to be “tuned” in the frequency of interest, which is not 

completely known a priori. 

 

The main purpose of this report is to highlight the most distinctive features in the 

gravitational waves that carry information of the EOS and to identify qualitatively the main 

differences that appear in the emission depending on the equation of state. To do that we have 

performed a series of numerical simulations using the Smoothed Particle Hydrodynamics 
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technique with eleven different EOS ranging from soft to stiff dependences between pressure 

and density. 

 

NAME (COUNTRY) LOCATION ARM SENS. PEAK 

LIGO (USA) Livingston 4 km 3·10
-23

 at 180 Hz 

LIGO (USA) Hanford 4 km Id 

TAMA 300 (JAPAN) Tokyo 300 m 5·10
-21

 (0.7-1 kHz) 

GEO 600 (GERMANY) Hannover 600 m 8·10
-23

 at 600 Hz 

VIRGO (ITALY) Pisa 3 km 10
-22

 at 500 Hz 

TABLE 1. Main characteristics of the operating ground-based interferometric detectors of gravitational 

waves. 

 

DNS coalescence and gravitational waves 

DNS scenarios are usually formed after the evolution of two massive stars in a binary 

system, with masses greater than 8 M
�

. Population synthesis models [2] have identified 14 

different evolutionary channels leading to the formation of a DNS system, being the dominant 

ones those producing tight short lived binaries with one recycled pulsar. Their merger times are 

typically about 1Myr and the predicted detection rates for LIGO I and II are 1·10-2 and 6·101  
yr

-1
 respectively. DNS systems have a high disruption rate during their formation because they 

have to survive to two supernova explosions and still remain gravitationally bound. At the 

moment there are 7 known DNS systems, all of them belonging to the dominant evolutionary 

channel. 

 

Numerical simulations of the coalescence of DNS systems have been performed by many 

groups and represent a unique tool to explore the hydrodynamical evolution of these scenarios. 

All of them predict that the frequency spectrum of the gravitational wave emission has great 

relevance because it can be directly related to hydrodynamical stages. 

 

Initially both NS are orbiting around their center of mass at an orbital distance Dorb >> 

RNS. In this stage each star “sees” the other as a point source of gravitational force; hence the 

loss of angular momentum carried away by the gravitational waves obliges both NS to follow a 

spiral trajectory that gets them closer. In this point-mass inspiral trajectory the spectrum of the 

gravitational wave emission decreases monotonically as �	 �
⁄ � 

� �⁄ , a trend which is 

linked to the coalescence process: as the stars are inspiralling their orbital period decreases, 

hence they spend less time in a given frequency and therefore the amount of energy for that 

given frequency decreases too. As the stars get closer the point-mass approximation fails and a 

tidal torque appears deforming the stars. At this point the NS are rotating faster than what is 

predicted by the point-mass regime, a behaviour which leads to a gravitational wave spectrum 
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that falls below the �1 3⁄  slope. This is the onset of the hydrodynamical instability that leads to 

the actual merger of the stars. The frequency at which the spectrum departs from the point-mass 

inspiral regime is very sensitive to the EOS. Softer EOS produce more compact objects, with 

higher central densities. Therefore the point-mass approximation is valid at lower orbital 

distances than for stiffer EOS that produce larger and more homogeneous objects. Thus the 

frequency at which the spectrum departs from the point-mass inspiral regime is higher for soft 

EOS than for stiffer ones. 

 

When the stars get in contact they form a temporary barlike structure that has a high 

quadrupolar moment, producing a broad peak in the gravitational wave spectrum. This peak is 

higher for softer EOS because the merger is produced at higher orbital velocities and is more 

violent, whereas for stiffer EOS the merger is smoother. 

 

After this point the merging develops very quickly, within one orbit, and both stars form a 

massive fast rotating neutron star. The gravitational emission drops rather sharply but 

centrifugal forces prevent this newly born compact object to be spherically symmetric. Instead it 

remains triaxial with a mass distribution having a non-zero quadrupolar moment therefore it is 

still emitting gravitational waves, although they progressively fade as the remnant gains axial 

symmetry. The system recovers axial symmetry faster if the nuclear EOS is softer due to the 

higher compressibility of the material. Therefore the gravitational emission after the merger 

carries also a distinctive signature that is connected to the stiffness of the EOS via its rapidness 

to decay. 

 

Numerical Scheme 

The Smoothed Particle Hydrodynamics technique (SPH from now on) is widely known in 

the area of computational astrophysics and it has been successfully applied to a large amount of 

physical scenarios. SPH is a fully lagrangian hydrocode where a continuous system is 

discretized in a set of particles (actually, from a mathematical point of view, interpolation 

points, but with an associated mass) where the physical properties are evaluated as a weighted 

interpolation within the properties of neighbours particles. The main advantage is that there is 

no need of a grid to evaluate derivatives, avoiding the problems associated to knots and grid 

distortions. A review on this technique has been published recently [3]. 

 

The particular SPH code that we have used to perform the simulations is a standard one. It 

has a Leapfrog integrator, commutable to a Runge-Kutta, with adaptive time steps, cubic spline 

kernel, smoothing length spatial and temporally variable and gravity calculation by multipolar 

expansion. It is a fully Newtonian code thus the results of our simulations are only indicative. In 

order to make more precise quantitative predictions a post-newtonian [4] or fully relativistic [5] 

code should be used. The calculation of the gravitational waves is done following the receipt of 

[6]. This method is based in the quadrupole approximation which is valid for nearly Newtonian 

sources (see [7]). The reduced quadrupole is defined by [8] as: 
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 ��� � � � ����� � 1
3 �������� ��� (1)  

 

The metric perturbation is directly related to the second time derivatives of ��� in the 

transverse-traceless gauge: 

 

 ����� � 2
�

 
!"

�#�����
�$#  (2)  

 

For orthonormal spherical coordinates we can build two basis tensors that lead to the 

known plus and cross polarization modes of the gravitational waves: 

 

 �% � 1
�

 
!" &�'(( � �'))* (3)  

 �+ � 2
�

 
!" ,� '() , (4)  

 

The components of the reduced quadrupole in spherical coordinates are related to the 

Cartesian ones by [9]: 

 

 
�'(( � ,&�'-- cos# 1 2 �'33 sin# 1 2 �'-3 sin 21* cos# 6, 2 �'77 sin# 6

� &�'-7 cos 1 2 �'37 sin 1* sin 26 
(5)  

 �')) � �'-- sin# 1 2 �'33 cos# 1 � �'-3 sin 21 (6)  

 
�'() � ��

#&�'-- � �'33* cos 6 sin 21
2 �'-3 cos 6 cos 21 2 &�'-7 sin 1 � �'37 cos 1* sin 6 

(7)  

 

Once we have the relation between the quadrupolar mass distribution and the gravitational 

wave emission we can take advantage of the lagrangian nature of our code and implement SPH 

versions of �'��:  

 

 �'89 � 2
3 : ;� <2=8�=9� 2 >8��9� 2 �8�>9� 2 �89?=8�=9� 2 �8�>9� � @=A�@# � �A� · >A�BC

D

�E�
 (8) 

 

Where the subscripts refer to the three Cartesian components, the superscripts label the 

particle and the summation is over all the particles of the simulation. The �, = and > terms are 

the components of the position, velocity and acceleration vectors respectively, and ;� is the 

mass of the i
th
-particle.  

 

Now, using equation (8) we can find the amplitude of both polarizations of the 

gravitational wave emission directly from magnitudes calculated by the SPH code. 
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We have selected eleven realistic EOS
1
 commonly used in numerical simulations that 

involve neutron stars (fig. 1). Integrating the structure equations for a fixed mass of 1.4 M
�

 we 

obtain the 1D density profile. The 1D 

profile is mapped to 3D using 25000 

particles for each star. Then each star 

follows a relaxation process divided in 

two parts. In the first step particles are 

allowed to move within a sphere of 

fixed radius (i.e. the radial component 

of the velocity is artificially sup-

pressed). By this way the pressure 

gradients, which have appeared as a 

numerical artifact due to the random 

distribution of the particles, are damped 

out. In a second step particles are 

allowed to move freely in order to 

achieve hydrostatic equilibrium.  

Following that procedure we 

obtain the set of stable neutron stars 

depicted in figure 2. 

 

From that figure it is 

clear the influence of the 

EOS in the structure of a 

neutron star. Soft EOS lead 

to more condensed objects 

because of the high 

compressibility of the 

material, while stiff EOS 

produce a more homoge-

neous object with lower 

central densities and greater 

radius. The central densities 

ranged from 2.5·1014 to 

1.4·1015 g/cm
-3

, while the 

radius varied from 18 to 11 

km. 

Once we have the 

initial model of each star we 

simulate a double neutron 

star merger scenario with 

                                                 
1 A brief description of each EOS and a bibliographic reference can be found on table 2. 

Fig. 2. Equatorial section of the initial models of thirteen neutron stars 

obtained with different EOS after the hydrodynamical relaxation. 

Density is represented in colours and every model is labelled with the 

EOS used for its construction. All stars have 1.4 M
�

. 
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Fig.1. Graphic of the EOS used in this work focusing in 

the relevant range of densities for neutron stars. 
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mass ratio q�1 for each EOS. In each scenario the initial orbital distance was 1.5 times the 

Roche lobe overflow distance to ensure that the stars are still within the point-mass inspiral 

regime [9]. We have to simulate the effect of angular momentum loss due to the emission of 

gravitational waves in order to induce the coalescence. This is done through an artificial 

backreaction implemented following the recipe of [1]. This backreaction is simulated as a small 

but constant frictional deceleration which forces the centers of mass of the neutron stars to 

follow a point-mass inspiral trajectory. The backreaction term is applied until tidal effects 

dominate. At that point the hydrodynamics lead naturally to a faster inspiral and coalescence. 

 

Polytropic versus realistic EOS 

Polytropic equations of state are easy to implement and well-behaved, that is why they 

have been extensively used until now to carry out parametric studies like, for example, the 

dependence of gravitational wave features (luminosity, secondary peaks) on the stiffness of the 

EOS. Thus, it was expected that the results could be unambiguously correlated to those obtained 

with realistic EOS. In order to compare results we need to know if there is a correspondence 

between polytropic and realistic EOS or, in other words, to find which polytropic exponent Γ 

better describes a particular realistic EOS for the density range relevant for neutron stars. Next 

we will show three simple methods which attempts to give that correspondence between 

polytropic and realistic EOS. In all of them we have fixed the total mass of the NS to 1.4 M
�

 for 

simplicity. 

 

It is obvious that in a log-log graphic a polytropic EOS is represented by a straight line of 

slope Γ, while realistic EOS have a more complex structure. Thus the most basic approximation 

is to try a linear fit within a determined range of the realistic EOS which will give the 

corresponding polytropic exponent Γadj. The main problem here is that the limits of the 

adjustment are arbitrary, so we choose ρc and ρ95 (central density and the density that 

corresponds to the shell containing the 95% of the total mass of the NS respectively) as limits 

for the fit. 

 

A second approach could be to find a mass-weighted “local” polytropic exponent. Hence 

we have divided the NS in concentric shells and found the local Γ through a linear fit of the 

realistic EOS between the ranges of densities defined by each shell. After that we found the 

mass that encloses each shell and used it as a weight to average all the local Γs. The resulting 

polytropic exponent is labelled Γwgt.  

 

The last, and probably more realistic, approach could be to adjust the actual structure of 

the NS for both types of EOS. However this is not straightforward so we calculated a dense grid 

of polytropic models with constant mass but varying Γ and the central density. With the total 

mass fixed, we integrated the well-known Lane-Emden equation for each value of Γ and found 

the corresponding radii and polytropic constant. The resulting 3D surface of polytropic models 

of 1.4 M
�

 can be seen in figure 4. Once the grid was built we used a realistic EOS to obtain the 
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In table 2 the resulting polytropic exponents for the three exposed methods can be

In the first column the realistic EOS have been ordered from softer to stiffer, u

density of the model in hydro

corresponds to a more compressible material, are situated in the first rows of the table and stiffer 

EOS in the last ones. Hence we expect to obtain values of Γ ordered from low to high with the 

three methods explained before. These results can be found in the three last col

 

In first place we can see that none of the

realistic EOS. Secondly, at first glance, if we halve horizontally the table it can be seen that the 

three methods have roughly lower values of Γ in th

expected. But if we look closely we can see values that are misplaced. For example, in the last 

column we can see that the realistic EOS labeled 

label SH (Γ = 2.36) which is clearly not the case from 

 

Therefore, questions arise about the credibility of pure polytropic EOS to mimic 

hydrodynamical behavior and the gravitational wave emission observed when more complicated 

EOS are used. Even the notion of soft and stiff EOS, which naturally arises from polytropic 

EOS, becomes blurred. Nowadays there are good databases concerning realistic EOS so more 

Fig. 4. Mesh of polytropic models for a fixed mass of 1.4 

corresponding Γstr for given central density and radii from
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for that mass. Then we could find which polytropic model of the grid 

had the same radii and central density, obtaining Γstr for that given realistic EOS.

In table 2 the resulting polytropic exponents for the three exposed methods can be

In the first column the realistic EOS have been ordered from softer to stiffer, u

hydrostatic equilibrium as criteria. As we can see, softer EOS, which 

re compressible material, are situated in the first rows of the table and stiffer 

EOS in the last ones. Hence we expect to obtain values of Γ ordered from low to high with the 

three methods explained before. These results can be found in the three last col

In first place we can see that none of these methods gives the same result for a given 

t first glance, if we halve horizontally the table it can be seen that the 

three methods have roughly lower values of Γ in the upper half than in the lower, as it would be 

expected. But if we look closely we can see values that are misplaced. For example, in the last 

column we can see that the realistic EOS labeled AU has a higher value (Γ = 2.50) than the one 

) which is clearly not the case from the models in hydrostatic equilibrium

Therefore, questions arise about the credibility of pure polytropic EOS to mimic 

hydrodynamical behavior and the gravitational wave emission observed when more complicated 

Even the notion of soft and stiff EOS, which naturally arises from polytropic 

Nowadays there are good databases concerning realistic EOS so more 

Fig. 4. Mesh of polytropic models for a fixed mass of 1.4 M
�

. Red lines denote the procedure to find the 

for given central density and radii from a realistic EOS. 

Ruben M. Cabezon 

we could find which polytropic model of the grid 

for that given realistic EOS. 

In table 2 the resulting polytropic exponents for the three exposed methods can be found. 

In the first column the realistic EOS have been ordered from softer to stiffer, using the central 

criteria. As we can see, softer EOS, which 

re compressible material, are situated in the first rows of the table and stiffer 

EOS in the last ones. Hence we expect to obtain values of Γ ordered from low to high with the 

three methods explained before. These results can be found in the three last columns of table 2. 

methods gives the same result for a given 

t first glance, if we halve horizontally the table it can be seen that the 

e upper half than in the lower, as it would be 

expected. But if we look closely we can see values that are misplaced. For example, in the last 

has a higher value (Γ = 2.50) than the one 

the models in hydrostatic equilibrium. 

Therefore, questions arise about the credibility of pure polytropic EOS to mimic the 

hydrodynamical behavior and the gravitational wave emission observed when more complicated 

Even the notion of soft and stiff EOS, which naturally arises from polytropic 

Nowadays there are good databases concerning realistic EOS so more 

 
. Red lines denote the procedure to find the 
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precise studies of gravitational waves radiation can be done with not too much effort in 

implementation. 

 

In fig. 3 there is a series of snapshots of the plus polarization of the gravitational wave 

emission of the simulated mergers, obtained with our code, in function of time in dynamical 

time units, defined by $R � ?S�  T⁄ B� #⁄ . The letters label the EOS used in the simulation. 

 

 M = 1.4 M
�

 

EOS Ref. Many-body theory ρρρρc (10
14
)
 R (10

6
) ρρρρ95 (10

14
) ΓΓΓΓadj ΓΓΓΓwgt ΓΓΓΓstr 

B AB Variational Principle 13.69 1.12 2.56 2.50 2.77 2.14 

A AB Variational Principle 9.17 1.19 2.24 2.79 3.78 2.44 

AU WFF AV14 + UVII (VM) 8.12 1.22 2.22 2.93 3.32 2.50 

F AB Bueckner G-matrix 7.77 1.31 1.70 2.64 2.57 2.24 

FPS LRP UV14 + TNI (VM) 7.16 1.31 1.94 2.98 2.90 2.34 

WS WFF UV14 + TNI (VM) 7.01 1.30 2.21 3.22 3.06 2.40 

UU WFF UV14 + UVII (VM) 6.91 1.30 1.92 2.99 3.12 2.44 

O AB Relativistic density Green func. 4.65 1.44 1.41 3.37 3.99 2.60 

N AB Relativistic mean field 3.94 1.53 1.24 3.44 3.64 2.59 

SH S Relativistic mean field 3.74 1.63 0.93 2.82 2.76 2.36 

L AB Mean field; Variational method 2.49 1.82 0.83 3.01 3.47 2.47 

 

Table 2.  Realistic EOS ordered from softer (top) to stiffer (bottom). The references are AB: [10], WFF: 

[11], LRP: [12] and S: [13]. The last three columns show the “effective” polytropic exponents obtained 

with the three methods explained in the text. 

 

As it can be seen each merger has different features. For example, soft EOS like B, A or 

FPS, have higher maximum amplitudes of the waveform in the merger phase than stiffer EOS 

like UU, N or SH. This property leads to a natural ordering of the EOS by its stiffness that is 

almost coincident with the ordering performed before, based on the models in hydrostatic 

equilibrium, (columns 4 and 5 of table 2). Also the decay of the gravitational emission after the 

merger is faster for softer EOS than for stiffer as the formers gain axial symmetry faster due to 

their higher compressibility, as expected. After a successful gravitational wave detection has 

been done, all these features could help us to put constraints in the nuclear EOS. Also a helpful 

tool to interpret future GW detections could be to devise a set of waveform templates calculated 

through hydrodynamical simulations. That will allow us to learn about microphysics and the 

behaviour of matter under extreme conditions. 
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Conclusions 

Gravitational waves can represent an important tool to impose strong constraints in one 

important cornerstone of modern astrophysics: the nuclear EOS. Taking profit of the existence 

of scenarios like double neutron star systems, which are powerful emitters of gravitational 

waves, and that there is a serious promise that current GW observatories will allow to look for a 

successful detection, a connection between the EOS of NS matter and its gravitational waves 

emission though the hydrodynamics involved during a coalescence can be made. To accomplish 

this, 3D numerical simulations are an important tool to explore the parameter space and to build 

a complete set of waveforms to use as templates to interpret the observations. In this respect we 

have demonstrated that the use of polytropic EOS is not recommended if we want consistent 

physical results in numerical simulations. The dependence of the gravitational waves on the 

complex structure of the realistic EOS cannot be related to the results obtained with polytropic 

EOS because there is no correspondence between both types of EOS and we did not find a 

reliable method to obtain an “effective” polytropic EOS able to mimic the realistic EOS sample. 

Therefore the utilization of realistic EOS is strongly recommended in any numerical simulation 

oriented to build waveform templates or study the EOS influence in the gravitational wave 

emission. Several examples of waveforms obtained through hydrodynamical simulations (in 

Newtonian approximation) using eleven different realistic EOS were provided in this work. 
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