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The path integral quantization for the Abelian gauge fieldAµ in the null gauge condition:n·A= 0

with n2 = 0, is presented. The equal-time (ET) and the light-front (LF) formulations, whenx0 and

x+ = (x0 + x3)/
√

2 are taken respectively as temporal evolution parameters,are compared. The

Mandelstam-Leibbrandt (ML) prescription for non-covariant poles appears, when Wick’s rotation

is used for the ET path integrals. The LF path integrals need amodification of the Hamiltonian

density before introducing Wick’s rotation.
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1. Path integral for scalar field

In the equal-time (ET) path integral quantization of a free scalar fieldφ one defines the gener-
ating functional for all Green functions as the phase-spacepath integral

Z[s] ∝
∫

Dφ Dπ expi
∫

d4x[π∂0φ −Hcan]×expi
∫

d4x sφ =

∝
∫

Dφ Dπ expi
∫

d4x

{
π∂0φ −

1
2

[
π2 +m2φ2 +(~∇φ)2

]}
×expi

∫
d4x sφ . (1.1)

In a practical calculation one uses the fundamental path integral Gaussian formula

∫
Dφ exp

(
−

1
2

∫
d4x

∫
d4yφ(y)A(y,x)φ(x)+

∫
d4xφ(x)K(x)

)
=

= exp

{
1
2

∫ ∫
d4xd4yK(x)A−1(x,y)K(y)

}
×exp−

1
2

Tr lnA, (1.2)

thus if one has a local differential operatorA(y,x) = Ôδ 4(x−y) then one needs to know the inverse
integral operatorA−1(x,y). The path integrals in (1.1) can be transformed into a Gaussian form if
one analytically continues to the Euclidean space by the Wick rotation

x0 7→ τe−iθ , with 0≤ θ ≤ π/2 (1.3)

and then integrates over the canonical momentum path-integral variableπ

Z[s] ∝
∫

Dφ exp−
1
2

∫
d4xE

{
(∂τ φ)2 +m2φ2 +(~∇φ)2

}
exp+

∫
d4xE sφ , (1.4)

whered4xE = d3~xdτ . At last one may uniquely integrate overφ and then analytically continue
back to the Minkowski space-time, which gives the final expression

Z[s] ∝ exp
i
2

∫ ∫
d4xd4ys(x)

[
�+m2− iε

]−1
(x−y)s(y) (1.5)

where the Feynman propagator (withε > 0)

[
�+m2− iε

]−1
(x) =

∫
d4k

(2π)4

e−ik·x

−k2
0 +~k2+m2− iε

(1.6)

appears naturally. The same causal prescription for poles in the Feynman propagator can be ob-
tained without Wick’s rotations by adding the damping term to the path integral overφ

Z[s] ∝
∫

Dφ exp
i
2

∫
d4x

{
(∂0φ)2−m2φ2− (~∇φ)2 + iεφ2

}
×expi

∫
d4x sφ . (1.7)

Thus for this academic case of path integral one may either use the Wick rotations or add the
damping term - both lead to the causal propagator which agrees with the canonical quantization
procedure.
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2. ET formulation for the Abelian LC gauge

In the standard formulation of a path integral for a gauge field theory one uses the BRST
supersymmetry for establishing the proper form of effective action and functional integration vari-
ables (for example see [1]). Alternatively one may impose a gauge field condition as a classical
constraint and reduce the system into its independent degrees of freedom, which then lead to a path
integral over the effective phase space [2]. Thus if the gauge vector field componentA0, which due
to the gauge symmetry has no canonical momentum, is removed by a gauge fixing condition, then
one may work with a reduced unconstrained system.

Within the ET formulation one may equivalently choose either A0−A3 = 0 or A0 +A3 = 0 as
the LC gauge fixing condition for the Abelian gauge field theory. For fixing our attention let us
take the first possibility and introduceA0 = A3 into the Lagrangian density

LLC =
1
2
(∂0Ai −∂iA3)

2 +
1
2
(∂0A3−∂3A3)

2−
1
4
(∂iA j −∂ jAi)

2−
1
2
(∂3Ai −∂iA3)

2

+ A3(J
0 +J3)+AiJ

i, i = 1,2. (2.1)

Then one easily finds that all canonical momenta are independent degrees of freedom

π i :=
∂LLC

∂ (∂0Ai)
= ∂0Ai −∂iA3, π3 :=

∂LLC

∂ (∂0A3)
= ∂0A3−∂3A3, (2.2)

which lead to the nonvanishing ET canonical Poisson brackets at equalx0

{
π i(x0,~x),A j(x

0,~y)
}

PB = −δi j δ 3(~x−~y),
{

π3(x0,~x),A3(x
0,~y)

}
PB = −δ 3(~x−~y). (2.3)

One may notice that the canonical Hamiltonian density, which is defined as

HLC := π i∂0Ai + π3∂0A3−LLC =
1
2
(π i)2 +

1
2
(π3)2 + π i∂iA3 + π3∂3A3

+
1
4
(∂iA j −∂ jAi)

2 +
1
2
(∂3Ai −∂iA3)

2−A3(J
0 +J3)−AiJ

i. (2.4)

is notpositively definiteeven for a free field case, whenJµ = 0.

As presented above, the canonical field variables form an unconstrained system, thus one may
define the generating functional for the LC gauge as the path integral over the unconstrained phase
space

ZLC[Jµ ] ∝
∫

DAi DA3 Dπ i
Dπ3 expi

∫
d4x

[
π i∂0Ai + π3∂0A3−HLC

]
(2.5)

and then integrate over the momentum variablesπ i andπ3

∫
Dπ i

Dπ3 expi
∫

d4x

[
π i∂0Ai + π3∂0A3−

1
2
(π i)2−

1
2
(π3)2−π i∂iA3−π3∂3A3

]

∝ exp
i
2

∫
d4x

[
(∂0A3−∂3A3)

2 +(∂0Ai −∂iA3)
2
]
. (2.6)
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Thus effectively one obtains the path integral over the independent gauge fieldsAi andA3 for the
LC gauge condition

ZLC[Jµ ] ∝
∫

DAi DA3 expi
∫

d4x
[
A3(J

0 +J3)+AiJ
i]×

×exp
i
2

∫
d4x

[
(∂0A3−∂3A3)

2 +(∂0Ai −∂iA3)
2
]
×

×exp−
i
2

∫
d4x

[
1
2
(∂iA j −∂ jAi)

2 +(∂3Ai −∂iA3)
2
]
, (2.7)

where remaining integrals contain partial differential operators, which have to be inverted. Just like
in Eq.(1.3) one may introduce the ET Wick rotation, which leads to the Euclidean space, where the
inverse differential operators are unique and then one continues back to the Minkowski space-time.
One finds that this prescription for the path integral overA3 can be effectively expressed as the
following modification

Z1[J
µ ] ∝

∫
DA3 expi

∫
d4xA3

[
J0+J3+(∂0−∂3+iε∂3))∂iAi

]
×

×exp−
i
2

∫
d4x A3

[
(∂0−∂3+iε∂3)

2
]

A3, (2.8)

whereε > 0 is an infinitesimal parameter. Contrary to the scalar field case a different result will
follow if one introduces the damping termiεA2

3

Z1[J
µ ] ∝

∫
DA3expi

∫
d4xA3

[
J0+J3+(∂0−∂3∂3))∂iAi

]
×

×exp−
i
2

∫
d4x A3

[
(∂0−∂3)

2−iε
]

A3, (2.9)

thus these two prescriptions are no longer equivalent. The remaining path integral overAi by the
Wick rotation prescription becomes modified as follows

Z2[J
µ ] ∝

∫
DAi exp−

i
2

∫
d4x Ai

[
∂ 2

0 −∂ 2
3 −∆⊥−iε

]
Ai

× expi
∫

d4xAi

[
Ji + ∂i

1
∂0−∂3+ iε∂3

(
J0 +J3)

]
. (2.10)

Accordingly by introducing the ET Wick rotation one may effectively regularize all inverse dif-
ferential operators and finally one obtains the gauge field propagator in the LC gauge as the well-
defined distribution in the momentum space

D
LC
µν (k) =

[
gµν −

nµkν +nνkµ

[n·k]

]
1

k2 + iε
,

1
[n·k]

=
1

k0−k3 + iε ′k3
, (2.11)

wheren0 = n3 = 1, ni = 0. Evidently the above prescription for the noncovariant pole is equivalent
to the well-known ML prescription [3], [4]

[
1

n·k

]

ML
=

1
k0−k3+ iεsgn(k0 +k3)

=
k0 +k3

(k0−k3)(k0 +k3)+ iε ′ (2.12)

and the above path integral formulation agrees with the canonical quantization procedure [5].
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3. LF Weyl (LFW) gauge

In the LF formulation one usually takesx+ as the temporal evolution parameter, where for
any 4-vectoraµ : a+ = (a0 + a3)/

√
2 anda− = (a0−a3)/

√
2. Thus one has two null axial gauge

conditions: the light-cone (LC) gaugeA− = A+ = 0 and the LF Weyl (LFW) gaugeA+ = A− = 0.
The LF canonical quantization procedure shows that these two gauges are essentially different
and the ML prescription for non-covariant poles arises onlyfor the LFW gauge [6]. In the LF
formulation, due to gauge symmetry, the gauge field component A+ has no canonical momentum,
thus one may impose the LFW gauge fixing conditionA+ = 0 directly into the Lagrangian density

LLFW =
1
2
(∂+A−)2 + ∂+Ai(∂−Ai −∂iA−)−

1
4
(∂iA j −∂ jAi)

2 +AµJµ , (3.1)

where for any 4-vectoraµ = (a+ = 0,a−,ai). The LF canonical momenta are defined as follows

π i =
∂LLCW

∂ (∂+Ai)
= ∂−Ai −∂iA−, π− =

∂LLCW

∂ (∂+A−)
= ∂+A−, (3.2)

which means that there are primary constraints:χ i = π i − ∂−Ai + ∂iA− ≃ 0. Further canonical
analysis shows that these constraints aresecond classand the independent nonvanishing LF Poisson
brackets at equalx+ are

2
{

Ai(x
+, x̄),∂−A j(x

+, ȳ)
}

PB = δi j δ 3(x̄− ȳ),
{
(π−−∂iAi)(x

+, x̄),A−(x+, ȳ)
}

PB = −δ 3(x̄− ȳ).
(3.3)

The canonical Hamiltonian density can be evaluated as follows

HLFW := T+− = π i∂+Ai + π−∂+A−−LLFW =
1
2
(π−)2 +

1
4
(∂iA j −∂ jAi)

2−AµJµ , (3.4)

whereπ i momenta are eliminated from the constraint relationχ i = 0 and evidentlyit is positively
definitefor Jµ = 0.

Since the system has second class constraints, then the generating functional is defined as the
path integral over the phase space variables [7]

ZLFW[J̄µ ] ∝
∫

DAi DA− Dπ i
Dπ−δ [π i −∂−Ai + ∂iA−]expi

∫
d4x

[
π i∂+Ai + π−∂+A−

]
×

×exp−i
∫

d4x

[
1
2
(π−)2 +

1
4
(∂iA j −∂ jAi)

2
]

expi
∫

d4x AµJµ , (3.5)

where the integration over the dependent momentaπ i can be trivially done

Z[J̄µ ] ∝
∫

DAi DA− Dπ− expi
∫

d4x
[
∂+Ai(∂−Ai −∂iA−)+ π−∂+A−

]
×

×exp−i
∫

d4x

[
1
2
(π−)2 +

1
4
(∂iA j −∂ jAi)

2
]

expi
∫

d4x AµJµ . (3.6)

Next the integral over momentumπ− is similar to Eq.(2.6), thus effectively one derives the path
integral over the independent gauge field componentsAi andA−

Z[Jµ ] ∝
∫

DAi DA−expi
∫

d4x[∂+Ai(∂−Ai −∂iA−)]×

×expi
∫

d4x

[
1
2
(∂+A−)2−

1
4
(∂iA j −∂ jAi)

2
]

expi
∫

d4x AµJµ . (3.7)
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Before integrating overAi one may introduce the LF Wick rotation:x+ 7→ τe−iθ with 0≤ θ ≤ π/2,
which effectively leads to the modified path integral (withε > 0)

Z[Jµ ] ∝
∫

DAi DA− expi
∫

d4x
[
∂+Ai(∂−Ai −∂iA−)+iεA2

i

]
× (3.8)

×expi
∫

d4x

[
1
2
(∂+A−)2−

1
4
(∂iA j −∂ jAi)

2 +AµJµ
]
. (3.9)

However this means that the LF Wick rotation leaves[∂ 2
+]−1 without any regularizationand unfor-

tunately the gauge field propagator stays ill-defined in the path integral formulation. The problem
arises since the noncovariant pole atk+ = 0 is not avoided by the LF Wick rotation, contrary to
the covariant pole atk+ = k2

⊥/2k−, which obtains the standardiε prescription. This suggests the
possible solution of the problem - one should push the position of noncovariant pole staying within
the LFW gauge. This seems to be self-contradictory within the standard path integral formulation,
thus one may resort to its modification

Zα [J̄µ ] ∝
∫

DAi DA− Dπ i
Dπ−δ [π i −∂−Ai + ∂iA−]×

×expi
∫

d4x
[
π i∂+Ai + π−∂+A−−Hα

]
(3.10)

with the new Hamiltonian densityHα = T+− + αT++, whereα > 0 is a small regularization
parameter, which should be removedα → 0 only for the final expressions. One may notice that
this modified Hamiltonian densityHα is not positively definite, since the Lagrangian density (3.1)
gives the energy-momentum tensor component

T++ = π−∂−A− +(∂−Ai)
2−∂iA−∂−Ai . (3.11)

When one integrates overπ i in (3.10), then one finds the unconstrained modified phase space
integral, which is written explicitly as follows

Zα [J̄µ ] ∝
∫

DAi DA− Dπ− expi
∫

d4x
[
∂+Ai(∂−Ai −∂iA−)+ π−∂+A−

]
×

×exp−iα
∫

d4x
[
π−∂−A− +(∂−Ai)

2−∂iA−∂−Ai
]
×

×exp−i
∫ [

1
2
(π−)2 +

1
4
(∂iA j −∂ jAi)

2
]

expi
∫

d4x AµJµ (3.12)

and further integration over momentumπ− leads to the path integral over the independent gauge
fieldsAi andA−

Zα [Jµ ] ∝
∫

DAi DA−expi
∫

d4x[∂+Ai(∂−Ai −∂iA−)]×

×expi
∫

d4x

[
1
2

[(∂+ −α∂−)A−]2−
1
4
(∂iA j −∂ jAi)

2
]
×

×exp−iα
∫

d4x
[
(∂−Ai)

2−∂iA−∂−Ai
]
expi

∫
d4x AµJµ . (3.13)
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This last path integral can be rewritten as

Zα [Jµ ] ∝
∫

DAi DA−expi
∫

d4x
[
∂̃+Ai(∂−Ai −∂iA−)

]
×

×expi
∫

d4x

[
1
2

(
∂̃+A−

)2
−

1
4
(∂iA j −∂ jAi)

2
]

expi
∫

d4x AµJµ (3.14)

where∂̃+ := ∂+ −α∂−. Now the LF Wick rotationx+ 7→ τe−iθ , with 0≤ θ ≤ π/2, modifies the
partial differential operator as

∂+−α∂− 7−→ ∂+−α∂−+ iεα∂− (3.15)

and finally the path integrals lead to modified gauge field propagator in the LFW gauge

D
LFW
µν (k) =

[

gµν −
nW

µ k̃ν +nW
ν k̃µ[

nW · k̃
]

]
1

k̃2 + iε
,

1[
nW · k̃

] =
1

k+−αk3 + iε ′αk3
(3.16)

wherek̃+ = k+ −αk−, k̃− = k−, k̃i = ki , andnW
− = 1,nW

+ = nW
i = 0. Evidently this propagator has

a non-standard form, but nevertheless it can be used for the perturbative calculations of Feynman’s
diagrams. One may expect that when the limitα → 0 is taken after integrating overk+, then one
obtains the same results as in the ET approach with the ML prescription.

4. Conclusions

• within the ET path integral formulation Wick’s rotation leads to the ML prescription for
noncovariant poles contrary to the damping factor

• for α > 0 the LF Wick rotation leads to the causal prescription for noncovariant poles, which
is similar to the ML prescription

• the causal prescriptions for noncovariant poles follow from Hamiltonians, which are not
positive definite
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