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1. Path integral for scalar field

In the equal-time (ET) path integral quantization of a freglar fieldp one defines the gener-
ating functional for all Green functions as the phase-sjpatk integral

Z[g O /Q(p .@nexpi/d“x[n&orp—%an] X expi/d“xszp:

O /.@(p Qnexpi/d“x{m?ocp—% [ﬂ2+m2¢2+(i(p)2] } X expi/d"'x sp. (1.1)

In a practical calculation one uses the fundamental paglgiat Gaussian formula

[ 7000 [ [ atvomanxetg + [ etk -
= exp{ %//d"’xd“yK(x)A1(x,y)K(y)} X exp—%TrInA, (1.2)

thus if one has a local differential operatisfy, x) = O5%(x—y) then one needs to know the inverse
integral operatoA=1(x,y). The path integrals in (1.1) can be transformed into a Gangeirm if
one analytically continues to the Euclidean space by thé&VWdtation

X—1e®  with 0<6<m2 (1.3)

and then integrates over the canonical momentum pathraitegriablert
" 1 =
Zlg O / 79 exp— / d*xe {(6rrp)2+ mPg? + (Dco)2} exp+ / d*xe s, (1.4)

whered*xe = d3xdr. At last one may uniquely integrate overand then analytically continue
back to the Minkowski space-time, which gives the final egpian

Z[s| O explz//d“xd“ys(x) [O+nm?— is]_l(x—y)s(y) (1.5)
where the Feynman propagator (wih- 0)

d4k efik<x

(2m* K Z+k2+m2 —ig (19

[D+mz—i£]71(x) :/

appears naturally. The same causal prescription for pol#sei Feynman propagator can be ob-
tained without Wick’s rotations by adding the damping teonthie path integral ovep

Z[s O /Qcp exp%/d“x{(do(p)z—mchz— (ﬁcp)2+iscp2} X expi/d“x sp.  (1.7)

Thus for this academic case of path integral one may eitherthus Wick rotations or add the
damping term - both lead to the causal propagator which ageétd the canonical quantization
procedure.
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2. ET formulation for the Abelian LC gauge

In the standard formulation of a path integral for a gaugel ftkory one uses the BRST
supersymmetry for establishing the proper form of effectietion and functional integration vari-
ables (for example see [1]). Alternatively one may imposaiagg field condition as a classical
constraint and reduce the system into its independent eegfdreedom, which then lead to a path
integral over the effective phase space [2]. Thus if the gawggtor field componetg, which due
to the gauge symmetry has no canonical momentum, is remgvadyauge fixing condition, then
one may work with a reduced unconstrained system.

Within the ET formulation one may equivalently choose githge— Az =0 orAg+Az =0 as
the LC gauge fixing condition for the Abelian gauge field tlyedfor fixing our attention let us
take the first possibility and introdud® = Az into the Lagrangian density

1 1 1 1
A = 5(00A - AAg)? + > (dohs— Fahg)% — 2 (A — A )% — 5(0sA — AAg)?

+ Az(°+ 33 +AJ,  i=12 (2.1)
Then one easily finds that all canonical momenta are indegreraegrees of freedom

04
i 0(00A3)

T[i . dgLC

3(0A) oA 3

= 0pA3z — 03As, (2.2)

which lead to the nonvanishing ET canonical Poisson brackiestquak®
{0C.R).A,00.9) }pg = —8;0°(X=9), {0C.%),As(,9) }pg = —8°(X~Y). (23)

One may notice that the canonical Hamiltonian density, tvisdefined as

Hc = 1A + oA — Lic = %(ﬁ)% %(n3)2+ A+ CdsAs
+211(&.A,- — A + %(ﬁgAi — 3A3)? — A3(3°+ 3% — A (2.4)

is notpositively definiteeven for a free field case, whéH = 0.

As presented above, the canonical field variables form aanst@ined system, thus one may
define the generating functional for the LC gauge as the pégigtial over the unconstrained phase
space

ZiclM O / IA DA 971 DT expi /d“x[ﬁaopq + TdoAs — Hic] (2.5)

and then integrate over the momentum varialsteand r1°

/9# 71 expi /d“x [ﬁaom + TP06As — %(ﬁ)z— %(zﬁ)z 1A — TPOsA
0 expi2 /d“x (900 — 99A)? + (30A — dAs)?]. (2.6)
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Thus effectively one obtains the path integral over the pedelent gauge fields and Az for the
LC gauge condition

Zcl3") O [ 9A FAcexpi [ d'x[Ag(2°+ %)+ AT]
><e><IOi / d4X 50A3—03A3) + (0oA — 0iA3) ] X
xexp——/d4 [ (BA] — 9iA)? + (33A — BAg) 2} (2.7)

where remaining integrals contain partial differentiaémgiors, which have to be inverted. Just like
in Eg.(1.3) one may introduce the ET Wick rotation, whichde#o the Euclidean space, where the
inverse differential operators are unique and then onerased back to the Minkowski space-time.

One finds that this prescription for the path integral ofgrcan be effectively expressed as the
following modification

Z1[9¥) O / 9A3expi/d4xA3 [39+ 3%+ (o — O5+i€d3))AA] x
xexp—'E / ' Ag [ (30 — dsieds)?] As, 2.8)

wheree > 0 is an infinitesimal parameter. Contrary to the scalar fiakkca different result will
follow if one introduces the damping termAg

Z:[0¥ O / PAzexpi / d*xAg [3°+ 33 + (0o — 9305) ) A ] x
X eXp— / ' As (30— )2 —ie] As, 2.9)

thus these two prescriptions are no longer equivalent. €waining path integral ovek by the
Wick rotation prescription becomes maodified as follows

Z,[J¥) O /_@Aiexp—i/d“xA- (0§ — 05— D, —ig] A
1

4 i 0 3
x expl/d XA {J Fog g (104 )]. (2.10)
Accordingly by introducing the ET Wick rotation one may effigely regularize all inverse dif-
ferential operators and finally one obtains the gauge figdgaugator in the LC gauge as the well-

defined distribution in the momentum space

(2.11)

n k, +nyk 1 1 1
450 = [on - 118

Nk | K+ie’ [nK ko—ks+igks

whereng = n3 =1, nj = 0. Evidently the above prescription for the noncovariarie p@equivalent
to the well-known ML prescription [3], [4]

[i} — 1 _ ko + k3
n-kly ko—ks+iesgnko+ks) (ko — ks)(ko+ka)+i€’

and the above path integral formulation agrees with thermiaabquantization procedure [5].

(2.12)
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3. LF Weyl (LFW) gauge

In the LF formulation one usually takes as the temporal evolution parameter, where for
any 4-vectora#: at = (a&® +a%)/v/2 anda™ = (a° — a3)/v/2. Thus one has two null axial gauge
conditions: the light-cone (LC) gauge. = A" = 0 and the LF Weyl (LFW) gaugd, = A~ =0.
The LF canonical quantization procedure shows that thesegauges are essentially different
and the ML prescription for non-covariant poles arises dolythe LFW gauge [6]. In the LF
formulation, due to gauge symmetry, the gauge field compofertas no canonical momentum,
thus one may impose the LFW gauge fixing conditfon= 0 directly into the Lagrangian density

1 1
Lrw = 5(04A )+ 0, A(0-A—OA) = Z(OA = OiA) + Aud, (3.1)

where for any 4-vectoa” = (at = 0,a”,a'). The LF canonical momenta are defined as follows
a.,iﬂLCW — a-=gLCW

= =0_A —dA_, m=—--

0(0.A) | 9(0,A)

which means that there are primary constraints:= m — d_A + A_ ~ 0. Further canonical

analysis shows that these constraintssa@nd clasand the independent nonvanishing LF Poisson
brackets at equai™ are

2{A(X",%),0_A| (X", V) }pp = 8] 8> (X—V), {(TT —A)(X",%),A_(X",¥) }pg = —03(X—Y).
(3.3)

The canonical Hamiltonian density can be evaluated as#sllo
_ i _ 1, 1
HMrw =TT =mo.A+T A — LArw = 5 )2+ 2(0A; — A2 —ALH, (3.4)

wherer? momenta are eliminated from the constraint relafior= 0 and evidentlyit is positively
definitefor J4 = 0.

Since the system has second class constraints, then theatiegpdunctional is defined as the
path integral over the phase space variables [7]

Ziewl3F) O / 9N DA 978 D B[ — A + GA_expi /d“x (o A+ 0,A] x
« exp—i /d4x E(n)2 + %(dAj - a,-/sq)z] expi /d4x ALdH, (3.5)
where the integration over the dependent momenhtzan be trivially done
) O / IA DA DT expi / A [0, A (O_A — BA) + 1T 0, A_] x
X exp—i/d“x E(n)er %(dAj - dei)z] expi /d"’x ALdH. (3.6)

Next the integral over momentumr is similar to Eq.(2.6), thus effectively one derives thehpat
integral over the independent gauge field componanndA_

Z[oH) O / I TA_expi / A*X [0 A (DA — A)] X

><exp|/d4 [ (0LA_)? —%(aiAj—ﬁin)z] expi/d“xAuJ“. (3.7)
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Before integrating ove; one may introduce the LF Wick rotatiort — te~'¢ with 0 < 8 < 11/2,
which effectively leads to the modified path integral (wath- 0)

Z[a4) O / DA DA_ expi / A% [0, A (O_A — OA_)+igAZ] (3.8)

X expi /d4x B(&+A)2—%(dAj — A2+ ALIH|. (3.9)

However this means that the LF Wick rotation Iea{@?ﬁ‘l without any regularizatiorand unfor-
tunately the gauge field propagator stays ill-defined in i@ ptegral formulation. The problem
arises since the noncovariant polekat= 0 is not avoided by the LF Wick rotation, contrary to
the covariant pole d, = ki/Zk_, which obtains the standard prescription. This suggests the
possible solution of the problem - one should push the mwsaf noncovariant pole staying within

the LFW gauge. This seems to be self-contradictory withinstandard path integral formulation,
thus one may resort to its modification

Zq[3%] O / DA A DT DT S[T — O_A + BA] X

X expi / A [0, A+ 1T 0, A — ] (3.10)

with the new Hamiltonian density?y = T™~ +aT**, wherea > 0 is a small regularization
parameter, which should be removed— 0 only for the final expressions. One may notice that
this modified Hamiltonian density?; is not positively definitesince the Lagrangian density (3.1)
gives the energy-momentum tensor component

TH=md A +(0_A)>-3A d_A. (3.11)

When one integrates ovet in (3.10), then one finds the unconstrained modified phaseespa
integral, which is written explicitly as follows

Zg[JH O / DA DA DT expi / d*% [0;A(O_A — GA_) + 1T 0.A_] x
xexp—ia/d“x[n*a_A_+(0_A;)2—&.A_6_A,-] X
(11 1 [
xexp—l/ [é(n‘)2+z(dAj —ain)z} expl/d“xAuJ“ (3.12)

and further integration over momenturn leads to the path integral over the independent gauge
fields A andA_

Z,[3M O /QAi DA expi/d4x[a+Ai(a,Ai —3A )] x
X expi /d"’x E (s — ad_)A_ 2~ %(aiA,- - dej)z] x

><exp—ia/d”'x[(d_Ai)z—diA_d_Ai]expi/d”'xA“J“. (3.13)
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This last path integral can be rewritten as
Zq[34] O /QAi IA_ expi/d"’x [ELAi(a,Ai —0ik)] x
g ~ 2
X expi / d4x[% (3.4) —%(aiAj —a,-/sq)Z] expi / dxAH (3.14)

whered, :=d, — ad_. Now the LF Wick rotationx* — te~¢, with 0 < 8 < 711/2, modifies the
partial differential operator as

0, —ad_ r+——0,—0ad_+icao_ (3.15)

and finally the path integrals lead to modified gauge field agaypor in the LFW gauge

ik, +nl'ky
[Nk

1 1 1
k2 +ig’ [MW.k] ki —aks+ig’aks

D" (K) = [guv - (3.16)

wherek, =k, —ak_,k_ =k_,k =k, andn’ = 1,n%¥ = n" = 0. Evidently this propagator has
a non-standard form, but nevertheless it can be used forttierpative calculations of Feynman’s
diagrams. One may expect that when the limi— 0O is taken after integrating ovér,, then one
obtains the same results as in the ET approach with the Micppgisn.

4. Conclusions

e within the ET path integral formulation Wick’s rotation s to the ML prescription for
noncovariant poles contrary to the damping factor

e for a > 0 the LF Wick rotation leads to the causal prescription fareuvariant poles, which
is similar to the ML prescription

e the causal prescriptions for noncovariant poles follownfrelamiltonians, which are not
positive definite
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