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Generalized parton distributions (GPDs) have become a standard QCD tool for analyzing and

parametrizing the non perturbative parton structure of hadron targets. GPDs might be viewed as

non-diagonal overlaps of light-cone wave functions and offer the opportunity to study the partonic

content of the nucleon from a new perspective, allowing one to study the interplay between longi-

tudinal and transverse partonic degrees of freedom. In particular, we will review some of the new

information encoded in the GPDs through the definition of impact-parameter dependent parton

distributions and form factors of the energy-momentum tensor, by exploiting different dynamical

models for the nucleon state.
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1. Introduction

Generalized Parton Distributions (GPDs) have become a standard QCD tool for analyzing and
parametrizing the non perturbative parton structure of hadron targets, for reviews see [1, 2, 3, 4, 5].
GPDs have been introduced in the past in different contexts (see, e.g., [6, 7]), but have raised a large
interest in the hadron community only when their importance was stressed in studies of deeply
virtual Compton scattering (DVCS) [8, 9, 10] and hard meson production [11] in connection with
the possibility of factorizing their contribution and gaining information on the spin structure of
the nucleon [8]. Being defined in terms of nondiagonal matrix elements of the same correlation
functions entering the definition of the parton distribution (PDs), GPDs reveal the partonic content
of hadrons from a complementary perspective. They do not represent any longer a probability, but
rather the interference between amplitudes describing different parton configurations of the nucleon
so that they give access to momentum correlations of partons in the nucleon. Furthermore, the finite
momentum transfer to the proton makes a second space-time structure of the process possible, and
after the Fourier transform in the impact-parameter space allows one to define spin-dependent
densities which describe how partons are spatially distributed in the transverse plane [12].

The GPDs can also be viewed as the generating functions for the form factors of the twist-
two operators governing the interaction mechanisms of hard processes in the deep inelastic regime.
These generalized form factors do not couple directly to any known fundamental interactions, but
can be studied indirectly looking at moments of the GPDs. The most peculiar example are the form
factors of the energy-momentum tensor, which give information about the spatial distribution of
energy, angular momentum and forces experienced by quarks and gluons inside hadrons.

After summarizing in sect. 2 definition and basic properties of GPDs, in sect. 3 we show
results for the GPDs in the impact-parameter space using a light-cone quark model and discussing
in particular the correlations of spin and orbital angular momentum of the quarks in the nucleon.
Finally, in sect. 4 we review some results for the form factors of the energy-momentum tensor in
the framework of the chiral-quark soliton model.

2. Definition and basic properties of GPDs

Parton distributions are defined in terms of matrix elements of light-cone bilocal operators
between proton states of equal momenta. In general, with initial (final) momentum p (p ′) and
helicity λN (λ ′

N ) one defines a set of quark generalized quark distributions for a hadron with spin 1
2

〈p′,λ ′
N |O

Γ(x,0⊥) |p,λN〉, (2.1)

with

O
Γ(x,0⊥) =

∫
dz−

4π
eixP+z−ψ̄q(−

z−

2
,0⊥)Γψq(

z−

2
,0⊥). (2.2)

In Eq. (2.2) P = (p + p′)/2, and the operator Γ is a matrix in Dirac space which selects different
spin polarizations of the quark fields. For three particular matrices Γ one can classify eight lead-
ing twist GPDs: i) two unpolarized quark GPDs, H q and Eq, for Γ = γ+; ii) two longitudinally
polarized quark GPDs, H̃q and Ẽq, for Γ = γ+γ5; iii) four quark chiral-odd GPDs for Γ = iσ i+γ5,
i.e. Hq

T and Eq
T , which involve the density operator for transversely polarized quarks, and H̃q

T and
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Ẽq
T , defined in terms of a quark operator which flips the transverse spin of the quark. The tilded

distributions correspond to matrix elements between nucleon states with flip of the polarization,
while the untilded distributions refer to no-flip of the nucleon polarization. Analogous definitions
hold for the gluon GPDs.

Because of Lorentz invariance the eight GPDs can only depend on three kinematical variables,
i.e. the (average) quark longitudinal momentum fraction x = k+/P+, the invariant momentum
square t = ∆2 ≡ (p′− p)2, and the skewness parameter ξ given by ξ = −∆+/(2P+). In addition,
there is an implicit scale dependence in the definition of GPDs corresponding to the factorization
scale µ2 used to separate the (universal) matrix element defining a GPD inside the entire amplitude
describing the process under study.

In the forward case, p = p′, both ∆ and ξ are zero. In this case the functions H q, H̃q and Hq
T

reduce to the usual DIS parton distribution functions, i.e. the quark density, helicity and transversity
distributions, respectively. No corresponding relations exist for the functions E q, Ẽq, Eq

T and H̃q
T ,

because in the forward limit they decouple in their defining equations. However, they do not vanish.
In particular, Eq(x,0,0) carries important information about the quark orbital angular momentum.
In contrast, Ẽq

T (x,0,0) vanishes identically being an odd function of ξ by time reversal symmetry.
Moments in the momentum fraction x play an important role in the theory of GPDs. Weighting

Eq. (2.1) with integer powers of x and integrating over x, the correlation function O
Γ reduces to a

local operator and the corresponding matrix elements can be parametrized in terms of generalized
form factors (GFFs) related to Mellin moments of the GPDs. More specifically, one has

∫ +1

−1
dxxn−1

[
Hq(x,ξ , t)
Eq(x,ξ , t)

]
=

n−1

∑
i=0

even

[
Aq

n,i(t)

Bq
n,i(t)

]
(2ξ )i ±Mod(n+1,2)Cq

n(t) (2ξ )n (2.3)

for the unpolarized GPDs;

∫ +1

−1
dxxn−1H̃q(x,ξ , t) =

n−1

∑
i=0

even

(2ξ )iÃq
n,i(t),

∫ +1

−1
dxxn−1Ẽq(x,ξ , t) =

n−1

∑
i=0

even

(2ξ )iB̃q
n,i(t) (2.4)

for the polarized GPDs;

∫ +1

−1
dxxn−1Hq

T (x,ξ , t) =
n−1

∑
i=0

even

(2ξ )iAq
Tn,i(t),

∫ +1

−1
dxxn−1Eq

T (x,ξ , t) =
n−1

∑
i=0

even

(2ξ )iBq
Tn,i(t), (2.5)

∫ 1

−1
dxxn−1H̃q

T (x,ξ , t) =
n−1

∑
i=0

even

(2ξ )iÃq
Tn,i(t),

∫ 1

−1
dxxn−1Ẽq

T (x,ξ , t) = −
n−1

∑
i=0
odd

(2ξ )iB̃q
Tn,i(t) (2.6)

for the chiral-odd GPDs.
For the lowest moment n = 1 in Eqs. (2.3)-(2.4) one finds Aq

1,0(t) = Fq
1 (t), Bq

1,0(t) = Fq
2 (t),

Ãq
1,0(t) = gq

A(t) and B̃q
1,0(t) = gq

P(t) where Fq
1 , Fq

2 , gq
A and gq

P are the quark contribution to the Dirac,
Pauli, axial and induced pseudoscalar form factors, respectively. Furthermore, in the chiral-odd
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sector one finds Aq
T1,0(t) = gq

T (t) and 2Ã1
T1,0(0)+Bq

T1,0(0) = κq
T , where gq

T is the quark tensor form
factor and κq

T describes how far and in which direction the average position of quarks with spin in
the x̂-direction is shifted in the ŷ-direction in an unpolarized nucleon [13].

The second Mellin moments of unpolarized GPDs can be related to the form factors of the
energy-momentum tensor (EMT) of QCD by [14]

Aq
2,0(t) = Mq

2(t)+
4
5

dq
1(t)ξ 2, Bq

2,0(t) = 2Jq(t)−Mq
2(t)−

4
5

dq
1(t)ξ 2. (2.7)

The form factor M2(t) at t = 0 reduces to the second Mellin moment of unpolarized parton distri-
butions accessible in inclusive deep inelastic scattering, and represents the fraction of the nucleon
momentum carried by quarks. The form factor d1(t) provides information on the distribution of
strong forces in the nucleon, similarly as the electromagnetic form factors contain information
about the electric charge distribution. The form factor Jq(t) is relevant for the spin structure of the
nucleon thanks to the so called Ji’s sum rule[8, 10]

Jq(t = 0) = 〈J i
q〉 = Si

[
Aq

2,0(0)+Bq
2,0(0)

]
, (2.8)

where 〈J i
q〉 is the total angular momentum along the direction î carried by quarks and antiquarks in

a proton with spin Si. In the case of a proton polarized in the positive ẑ-direction, one can further

split the Ji’s sum rules into spin and orbital angular momentum parts, i.e.
1
2

=
1
2

Σq +Lq where the
contribution from the quark spin can be obtained from the moments of the usual polarized quark
densities, i.e. Σq = Ãq

1,0(t = 0). The orbital angular momentum has recently been calculated in
lattice simulations by the LHPC [15] and QCDSF [16] collaborations. These calculations are for
pion masses as low as 350 MeV and volume as large as (3.5 fm)3, providing results in the MS
renormalization scheme. Extrapolation to the physical pion mass requires a combination of full
QCD lattice and Chiral Perturbation Theory [17]. Two remarkable features are found. The first
is that the magnitude of the orbital angular momentum contributions of the up and down quarks
are separately sizable, Lu ≈ −Ld ≈ 0.30, yet they cancel nearly completely at all pion masses,
Lu+d ≈ 0 [15, 18], indicating that the total angular momentum of quarks in the nucleon is of the
same size as the quark spin contribution. The second is the close cancellation between the orbital
and spin contributions of the down quarks for all pion masses, Jd ≈ 0 [15, 18]. However, before
drawing definite conclusions, one should be aware that these results do not include the contributions
from disconnected graphs. Such contributions cancel in the difference of u and d quark distributions
but may well be important in their sum.
From the experimental side, first model-dependent constraints on the angular momentum were
extracted from recent DVCS data. The analysis was performed comparing data from HERMES [19]
on transverse-target and beam-charge asymmetries, and cross section data from JLab [20] with
various GPD-models having Jq as free parameters [21, 22]. Although the extracted values are
strongly model-dependent, such analysis show for the first time that DVCS data have indeed the
potential to provide quantitative information about the spin content of the nucleon.

Whereas Eq. (2.8) provides the angular momentum carried by the quarks regardless of their
spin, one can also investigate how much each quark polarization component contributes to 〈J i

q〉.

Taking for example the case of transverse polarization in the x̂ direction, one can decompose J x
q

4
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with respect to quarks of definite transversity, i.e. J x
q = Jx

q,+ x̂+ Jx
q,− x̂ where Jx

q,± x̂corresponds to
the angular momentum in the x̂ direction carried by quarks with transverse polarization in the ±x̂-
direction [13]. The transversity components Jx

q,± x̂can be related to the second Mellin moments of
GPDs as follows

〈Jx
q,± x̂〉 =

Sx

2

[
Aq

2,0(0)+Bq
2,0(0)

]
±

1
4

[
Aq

T2,0(0)+2Ãq
T2,0(0)+Bq

T2,0(0)
]
. (2.9)

In the case of transversely polarized nucleon, J x
q,+ x̂+ Jx

q,− x̂ gives the sum rule (2.8), while for
unpolarized target only the second term in Eq. (2.9) contributes. Thanks to this decomposition
of the angular momentum in transversity components one can gain information on the correlation
between the transverse spin and the transverse angular momentum carried by the quarks in an
unpolarized target. Note that the same linear combination of GPDs (2H̃T (x,0,0)+ET (x,0,0)) that
appears in Eq. (2.9) also describes the transverse displacement of quarks with a given transversity
in an unpolarized target relative to the center of momentum (see sect. 3).

3. Spin densities in the impact-parameter space

A convenient way to make explicit which kind of information on hadron structure is contained
in the GPDs is the representation in terms of overlaps of light-cone wave functions (LCWFs) which
are the probability amplitudes to find a given N-parton configuration in the Fock-space expansion
of the hadron state. In the following, we will confine our analysis to the three-quark sector, by
truncating the light-cone expansion of the nucleon state to the minimal Fock-space configuration
and adopting a light-cone constituent quark model (CQM) which has been successfully applied in
the calculation of the electroweak properties of the nucleon [23].
As outlined in Ref. [24], the starting point is the three-quark wave function obtained as solution of
the Schrödinger-like eigenvalue equation in the instant-form dynamics. The corresponding solu-
tion in light-cone dynamics is obtained through the unitary transformation represented by product
of Melosh rotations acting on the spin of the individual quarks. In particular, the instant-form wave
function is constructed as a product of a momentum wave function which is spherically symmetric
and invariant under permutations, and a spin-isospin wave function which is uniquely determined
by SU(6) symmetry requirements. By applying the Melosh rotations, the Pauli spinors of the quarks
in the nucleon rest frame are converted to the light-front spinors. The relativistic spin effects are
evident in the presence of spin-flip terms in the Melosh rotations which generate non-zero orbital
angular momentum components and non-trivial correlations between spin and transverse momen-
tum of the quarks. On the other hand, the momentum-dependent wave function keeps the original
functional form, with instant-form coordinates rewritten in terms of light-front coordinates. Model
results for the non-polarized, polarized and chiral-odd GPDs in the momentum space have been
presented in Ref. [24, 25], with an extension of the model to include the contribution from higher-
Fock state components in Ref. [25]. Here we focus on the GPDs in the impact-parameter space,
which give complementary information to the transverse momentum dependent parton distributions
on the spin-spin and spin-orbit correlations of quarks in the nucleon [26].

When ξ = 0 and x > 0, by a two-dimensional Fourier transform to impact-parameter space,
GPDs can be interpreted as densities of quarks with longitudinal momentum fraction x and trans-
verse location b with respect to the nucleon center of momentum [12, 27]. Depending on the

5
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Figure 1: The spin-densities for (transversely) x̂-polarized quarks in an unpolarized proton (left panels) and
for unpolarized quarks in a (transversely) x̂-polarized proton. The upper (lower) row corresponds to the
results for up (down) quarks.

polarization of both the active quark and the parent nucleon, according to Refs. [27, 28] one de-
fines three-dimensional densities representing the probability to find a quark with transverse spin
sT in the nucleon with transverse spin ST . It reads

ρ(x,b,sT ,ST ) = 1
2

[
H(x,b2)+ si

T Si
T

(
HT (x,b2)−

1
4M2 ∆bH̃T (x,b2)

)

+
b jε ji

M

(
Si

T E ′(x,b2)+ si
T

[
E ′

T (x,b2)+2H̃ ′
T (x,b2)

])
+si

T (2bib j −b2δi j)S
j
T

1
M2 H̃ ′′

T (x,b2)

]
, (3.1)

where the derivatives are defined f ′ = ∂
∂b2 f , and ∆b f = 4 ∂

∂b2

(
b2 ∂

∂b2

)
f . In Eq. (3.1) enters the

Fourier transform of the GPDs in the impact-parameter space.
In Eq. (3.1), apart from the two orbitally symmetric monopole terms in the first line, there are
two dipole structures proportional to b jε jisi

T and b jε jiSi
T , and a quadrupole term proportional to

si
T (2bib j −b2δi j)S

j
T . The (derivatives of the) GPDs E(x,b2), ET (x,b2)+2H̃T (x,b2) and H̃T (x,b2)

thus determine how strongly the orbital symmetry in the transverse plane is distorted by the dipole
and quadrupole terms.

Lattice calculations accessing the lowest two x-moments of the quark transverse-spin densities
have recently been presented in Ref. [29]. Here we show some results in the light-cone CQM
for the first x-moment of the spin distributions in the cases of transversely polarized quarks in an
unpolarized nucleon and unpolarized quarks in a transversely polarized nucleon, referring to [30]
for the discussions of more complex spin configurations.

In the case of transversely polarized quarks in an unpolarized proton the dipole contribution
E ′

T (x,b2)+ 2H̃ ′
T (x,b2) introduces a large distortion perpendicular to both the quark spin and the

momentum of the proton, as shown in the left column of Fig. 1. Evidently, quarks in this situation
also have a transverse component of orbital angular momentum. This effect has been related [13]

6
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to a non-vanishing Boer-Mulders function h⊥
1 which describes the correlation between intrinsic

transverse momentum and transverse spin of quarks. Such a distortion reflects the large value of
the anomalous tensor magnetic moment κT for both flavors. Here, κu

T = 3.98 and κd
T = 2.60, to be

compared with the values κ u
T ≈ 3.0 and κd

T ≈ 1.9 of Ref. [29]. Since κT ∼−h⊥1 , the present results
confirm the conjecture that h⊥1 is large and negative both for up and down quarks [13].

As also noticed in Refs. [12, 29] the large anomalous magnetic moments κ u,d are responsible
for the dipole distortion produced in the case of unpolarized quarks in transversely polarized nucle-
ons (right column of Fig. 1). With the present model, κ u = 1.86 and κd = −1.57, to be compared
with the values κu = 1.673 and κd = −2.033 derived from data. This effect can serve as a dynami-
cal explanation of a non-vanishing Sivers function f ⊥1T which measures the correlation between the
intrinsic quark transverse momentum and the transverse nucleon spin. The present results, with the
opposite shift of up and down quark spin distributions, imply an opposite sign of f ⊥1T for up and
down quarks [31] as confirmed by the recent observation of the HERMES [32] and COMPASS [33]
collaborations. The results in Fig. 1 are also in qualitative agreement with lattice calculations [29].

4. Energy-Momentum Tensor

The nucleon EMT form factors were studied in lattice QCD [16], chiral perturbation the-
ory [34], and models such as the Skyrme model [35] and chiral quark soliton model (χQSM) [36,
37]. Here we summarize some interesting features investigated within the χQSM when looking
at the spatial distribution of the EMT form factors [14, 36]. The χQSM provides a field theoretic
description of the nucleon in the limit of a large number of colors Nc, where the nucleon appears as
chiral soliton of a static background field. Numerous nucleonic properties have been described in
this model, giving predictions in agreement with phenomenology within an accuracy of (10-30)%.
The spatial distribution of the EMT form factors can be obtained from the Fourier transform with

respect to ∆ of the matrix element of the static EMT calculated in the Breit frame [14]. The nor-
malized energy density 4πr2ρE(r)/MN is shown in Fig. 2a as a function of r in the chiral limit of
a vanishing pion mass and for the physical situation with a pion mass of 140MeV. In the center

Figure 2: (a) The normalized energy density 4πr2ρE(r)/MN from the χQSM as a function of r in the chiral
limit of mπ = 0 (dashed curve) and for mπ = 140MeV (solid curve). (b) The same for the normalized angular
momentum density 4πr2ρJ(r)/JN (taken from [36]).
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Figure 3: (a) The pressure p(r) from the χQSM as function of r for mπ = 0 (dashed curve) and 140MeV
(solid curve). (b) r2 p(r) as function of r at the physical value of mπ (taken from [36]).

of the nucleon the energy density is ρE(0) = 1.70 GeV/fm3 or 3.0× 1015 g cm−3, corresponding
roughly to 13 times the equilibrium density of nuclear matter. As the pion mass decreases, the
energy density is spread more widely. According to the role of the pion field in the χQSM, where
one can associate the contribution of the discrete level to the quark core and the contribution of the
negative continuum states to a pion cloud, this means that the range of the pion cloud increases and
the nucleon becomes larger. Actually, the mean square radius 〈r2

E〉 increases from 0.67 fm2 in the
case of the physical pion to 0.79 fm2 in the chiral limit. With increasing pion mass up to 1.2 GeV
this trend is confirmed with the nucleon becoming smaller and smaller [36].

The normalized radial distribution of angular momentum 4πr2ρJ(r)/JN , is shown in Fig. 2b
as a function of r for mπ = 0 and 140MeV. For any mπ at small r one finds ρJ(r) ∝ r2. The mean
square radius 〈r2

J 〉 decreases with increasing mπ [36] in agreement with the idea of a shrinking pion
cloud. For a physical pion one finds 〈r2

J 〉 = 1.32 fm2. At large r in the chiral limit ρJ(r) ∝ 1/r4

such that 〈r2
J 〉 diverges.

Fig. 3a shows the pressure p(r) as function of r. In the physical situation p(r) takes its global
maximum at r = 0 with p(0) = 0.23GeV/fm3 = 3.7 · 1034 Pa. This is O(10−100) higher than
the pressure inside a neutron star. Then p(r) decreases monotonically (becoming zero at r0 =

0.57fm) till reaching its global minimum at rp,min = 0.72fm, after which it increases monotonically
remaining, however, always negative. The positive sign of the pressure for r < r0 corresponds to
the repulsion among quarks imposed by Pauli principle, while the negative sign in the region r > r0

means attraction in agreement with the idea of a pion cloud responsible for binding the quarks to
form the nucleon. The subtle balance between repulsion and attraction, ultimately producing a
stable soliton, can be better appreciated from Fig. 3b showing r2 p(r), where the shaded regions
have the same surface areas but opposite sign and cancel each other within numerical accuracy.
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