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1. Motivation

Compton scattering is a powerful tool to study hadronicctme, because it probes hadrons
through a coupling to two electromagnetic currents, priogichdditional information compared to
e.g. form-factor data. Deeply virtual Compton scatteriByCS) [1, 2] in particular furnishes
information on the structure of bound states, as the anddgat large momentum transfers can
be written as a convolution of a hard-scattering amplitualewdable in perturbative QCD, and a
process-independent ‘soft’ distribution function [3]:

o= [ T A KLY, 1)

whereT is the hard scattering amplitude agd is the soft part. Those functions corresponding to
¢ are called generalized parton distributions (GPDs) in #imeaf DVCS. For a review see for
instance [4].

Light-front dynamics (LFD) is particularly suited to deaitkvsuch a situation, as it allows for a
factorization of the wave function of a system into a factwris overall motion and a wave function
that describes its internal structure. Moreover, LFD malgesof the Fock-space expansion, so the
role of higher-Fock sectors in a particular process can umie.

However, a word of caution is appropriate, because in LFDeseabtleties may prevent its
straightforward application. An example of such treacherpoints [5] occurs in the GPD of the
pion too, namely arc contribution [6].

For values of the momentum transfer going to infinity, thentlaag’ diagram is proven to be
dominant. In this work, we discuss this dominance for nomgsotic values of the momentum
transfer in an analytically solvable scalar model for trenpsPD and remark on the reason why an
arc contribution does occur in a similar model where the kgiare treated as spin-1/2 constituents.

2. Modd calculations

In order to avoid any unnecessary complications we studytB of the ‘pion’, decribed as
a scalar particle with scalar constituents [7] in 1+1 dim@ms (The limitation to 1+1 dimensions
can be lifted without complicating the calculations if admatics is chosen in which the external
particles have vanishing perpendicular momenta.)

2.1 Kinematics

Using the conventiop™ = (p°+ p3)/\/2 we write the momenta of the absorbed virtual photon
(g), emitted real photoy), incoming pion ) and outgoing piong) as follows:

_ PN v (ot (e,
a= (60 ) 1= (05 (55 T))

(02w (a-gp @.1)
p_ p 72p+ Y p - p 72(1_Z)p+ 9 -
whereM is the mass of the pion arflis the skewness parameter. For the Mandelstam variables
we then find

s=(1- M+ —2Q% t=—"_M% u=——

1-¢ M2 %2 (2.2)
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Figure1: Handbag, crossed handbag, and cats ears diagrams

In this kinematics, we calculate the three diagrams showhign 1 that contribute to the
DVCS amplitude, below the breakup threshsle 4nm? which limits Q? to 0 < Q? < Q3,,, with
QZax = 4{?/(1— ) — (1—2)M? . In principle, the ‘seagull’ diagram is needed for the scala
constituents interacting with the gauge bosons to fulfdlglauge invariance of the Compton ampli-
tude. However, the ‘seagull’ diagram does not contributbédGPD as shown in Ref. [9], therefore
we left it out.

2.2 Covariant calculation

In the covariant calculation, we followed the usual path@jiman parametrization and Wick
rotation to analytically perform the integrals over theffmomentum. If we write for the amplitude

~ d’k N
o= | (;T)z L. D=(@- P tie) 0GP +i) (G — P +ie)(G P rie), (23
then we end up with an integral over the Feyman parametefstiégt denominatofM2,,)3. For
the three diagrams we considered, we have

Mszt = n12 — 01(0{2 + 04) |\/|2 “+ 0203 Q2 — 0103S— a204t,

M2 = m? — ai(a2 4 as) M? + 203 Q% — a103U— 204t

M2, = m? — (a102 + a304) M? + 203 Q% — 01035 — 204 U, (2.4)

wherem s the constituent mass. In the model with scalar constigyéh= 1.

2.3 LF time-ordered diagrams

The LF time-ordered diagrams are obtained by integratirey kv first and picking up the
residues of the poles in the denominabe= [1;(k?* — P +ig) = [ 2k" (k™ — Hj).

Figure 2: Valence (DGLAP) and nonvalence (ERBL) contributions tollhedbag diagram.
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Figure 3: Covariant amplitudes (left) and LF contributions to the Baxright), for{ = 0.5 above and
{ = 0.9 below.

For our kinematicg' " < p*, we find two domains that correspond to the well-known DGLAP
and ERBL regions: DGLAR] p™ < k™ < p*, ERBL, 0< k™ < {p". For the covariant handbag
diagram, we show the corresponding LF diagrams in Fig. 2.

For the valueg = 0.5 and 09, we show the amplitudes in Fig. 3. We tobk= 0.14 for
the pion mass anth = 0.25 for the constituent mass. The results of the LF calculatior the
three diagrams considered coincide with the covariantitlesWe show that explicitly in the r.h.
panels of Fig. 3. The L.h. panels show that the handbag diagkenoted by ‘Box st’ is in this
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Figure4: The GPDs#(x,{)

kinematical region indeed dominant, but the cat’s earsrdiag‘Cat su’ is by no means negligible
for Q% > M2 mP. For any value of the momentum transfer larger than the sqofathe largest
mass involvedn?, the crossed box ‘Box ut’ is negligible.

The contribution of the higher Fock statas, is clearly not negligible for small momentum
transfers, but it drops quickly for larger values@f.

3. GPD

A straightforward calculation for the GPD gives

T im0 (W) (2 o) &

in the DGLAP region and

%:4nx(1—x)(Z—x) (Mz—x(l—”fx)> (%—xfz—"fxﬂ (3.2)

in the ERBL region. (We use the notatidi = xp*, wherek™ is the plus-component of the
constituent that absorbes the incident virtual photong foinm factor is given by the sum rule

1
F(t) :/O dx A (%, 7). 3.3)

(Note that in our 1+1 dimensional modednd{ are not independent, see Eq. (2.2). In genetl,
is a function ofx, ¢, andt, as indicated in Eq. (1.1).)

We show the form factor in Fig. 5 together with the result odalistic model [8]. Although the
realistic calculation (3+1 dimensions, spinor quarks)eds quantitatively, the qualitative feature
that the nonvalence contribution to the form factor dongador almost all values @@? remains.
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Figure5: The form factor from the GPD (left) and from a LF calculatior8i+1 dimensions[8] (right).

4. Spinor Quarks. 1+1 dimensions

If we take the spin of the constituents into account, the matoe of the integrand in Eq. (2.3)
is given by

S = Tr((Ky + M) (Kp -+ mp) yH (K +mg) v (K 4+ my)]. (4.1)
In 1+1 dimensions, this reduces to a simple expression
S = 16k; kj ki ki +8(mumpky ki + mumaks kg + mpmuk; k3 ),
S™ = dmumumgmy + 8(mumsky k; + mpemsk Kk, + mamuk; k3 ),
S = 4mumpmgmy + 8(mMumgsky Ky + mpmsky Ky + memuk ks ),
ST = 16k{ ky kg kg +8(mumpks ky + mumuk; kg + mpmuky k3). (4.2)

If we would calculate these traces in 3+1 dimensions, amtthli terms that are of the same
or lower order ink~ would occur. The thre&—’s cause a LF singularity: An arc contribution is
needed. It occurs because the integral éveis divergent, so naively the LF amplitudes cannot be
defined. In the context of application of the residue formalse needs to subtract the contribution
from the arc at infinity from the naive residues. It appeaas this subtraction produces the correct
form of LF amplitudes and the correct support [6]. As the rsicamponents of the momenta are
proportional toki, the same terms cause the log divergence of the amplitudelidiBnensions.

5. Conclusion and outlook

Scalar case

We calculated the GPD of a scalar ‘pion’ with scalar conetits in a model that we have used

before in a calculation of the pion form factor. We showedliekly that the LF and covariant
calculations coincide.
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The relative magnitudes of the LF diagrams correspondirggdmvariant amplitude as well as
magnitudes of the covariant amplitudes themselves, degtemagly on the value od?. Because in
the kinematic range where we have done our calculationsallues of the total momentum squares
s are limited tos < 4m?, which is not the typical deep-inelastic kinematics, déimionclusions
cannot be drawn at this point. We must check our resulésvatues that are much larger thag
to draw definite conclusions.

Spinor case

The spin structure gives rise to an arc contribution, thastniie taken into account to get full
agreement with the covariant amplitude. If we improve oar@é model by taking into account
the spins of the constituents, we need to regularize in soayeinvorder to render the amplitudes
finite. In Ref. [8] we have demonstrated that ‘smearing’ jpfeg a regularization that is easy to
implement and gives realistic results for the pion formdaat a wide range of momentum transfer
values.
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