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Deeply virtual Compton scattering has been recognized as a tool to obtain information about

hadronic wave functions from experimental data. Light-front dynamics provides boost-invariant

and process-independent wave functions, which makes it thepreferred theoretical tool to analyze

those data. The purpose of the present work is to apply it to a model of the pion and check its

usefulness in a situation where all ingredients of the calculations are fully under control.
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1. Motivation

Compton scattering is a powerful tool to study hadronic structure, because it probes hadrons
through a coupling to two electromagnetic currents, providing additional information compared to
e.g. form-factor data. Deeply virtual Compton scattering (DVCS) [1, 2] in particular furnishes
information on the structure of bound states, as the amplitudes at large momentum transfers can
be written as a convolution of a hard-scattering amplitude calculable in perturbative QCD, and a
process-independent ‘soft’ distribution function [3]:

A =

∫ 1

−1
dxT (x,ζ ,Q2)H (x,ζ , t), (1.1)

whereT is the hard scattering amplitude andH is the soft part. Those functions corresponding to
H are called generalized parton distributions (GPDs) in the case of DVCS. For a review see for
instance [4].

Light-front dynamics (LFD) is particularly suited to deal with such a situation, as it allows for a
factorization of the wave function of a system into a factor for its overall motion and a wave function
that describes its internal structure. Moreover, LFD makesuse of the Fock-space expansion, so the
role of higher-Fock sectors in a particular process can be studied.

However, a word of caution is appropriate, because in LFD some subtleties may prevent its
straightforward application. An example of such treacherous points [5] occurs in the GPD of the
pion too, namely anarc contribution [6].

For values of the momentum transfer going to infinity, the ‘handbag’ diagram is proven to be
dominant. In this work, we discuss this dominance for non-asymptotic values of the momentum
transfer in an analytically solvable scalar model for the pion GPD and remark on the reason why an
arc contribution does occur in a similar model where the quarks are treated as spin-1/2 constituents.

2. Model calculations

In order to avoid any unnecessary complications we study theGPD of the ‘pion’, decribed as
a scalar particle with scalar constituents [7] in 1+1 dimensions. (The limitation to 1+1 dimensions
can be lifted without complicating the calculations if a kinematics is chosen in which the external
particles have vanishing perpendicular momenta.)

2.1 Kinematics

Using the conventionp± = (p0± p3)/
√

2 we write the momenta of the absorbed virtual photon
(q), emitted real photon(q′), incoming pion (p) and outgoing pion(p′) as follows:

q =

(

−ζ p+,
Q2

2ζ p+

)

, q′ =

(

0,
1

2p+

(

−
ζ

1−ζ
M2 +

Q2

ζ

))

,

p =

(

p+,
M2

2p+

)

, p′ =

(

(1−ζ )p+,
M2

2(1−ζ )p+

)

, (2.1)

whereM is the mass of the pion andζ is the skewness parameter. For the Mandelstam variables
we then find

s = (1−ζ )M2 +
1−ζ

ζ
Q2, t = −

ζ 2

1−ζ
M2, u =

M2

1−ζ
−

Q2

ζ
. (2.2)
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Figure 1: Handbag, crossed handbag, and cats ears diagrams

In this kinematics, we calculate the three diagrams shown inFig. 1 that contribute to the
DVCS amplitude, below the breakup thresholds = 4m2 which limits Q2 to 0< Q2 < Q2

max with
Q2

max = 4ζm2/(1− ζ )− (1− ζ )M2 . In principle, the ‘seagull’ diagram is needed for the scalar
constituents interacting with the gauge bosons to fulfill the gauge invariance of the Compton ampli-
tude. However, the ‘seagull’ diagram does not contribute tothe GPD as shown in Ref. [9], therefore
we left it out.

2.2 Covariant calculation

In the covariant calculation, we followed the usual path of Feynman parametrization and Wick
rotation to analytically perform the integrals over the four momentum. If we write for the amplitude

A =

∫

d
2k

(2π)2

N
D

, D = (k2
1−m2+ iε)(k2

2−m2+ iε)(k2
3−m2+ iε)(k2

4−m2+ iε), (2.3)

then we end up with an integral over the Feyman parameters with the denominator(M2
cov)

3. For
the three diagrams we considered, we have

M2
st = m2−α1(α2 + α4)M2 + α2α3 Q2−α1α3 s−α2α4 t,

M2
ut = m2−α1(α2 + α4)M2 + α2α3 Q2−α1α3 u−α2α4 t,

M2
su = m2− (α1α2 + α3α4)M2 + α2α3Q2−α1α3 s−α2α4 u, (2.4)

wherem is the constituent mass. In the model with scalar constituents, N = 1.

2.3 LF time-ordered diagrams

The LF time-ordered diagrams are obtained by integrating over k− first and picking up the
residues of the poles in the denominatorD = ∏i(k

2
i −m2

i + iε) = ∏i 2k+
i (k−i −Hi).

x
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Figure 2: Valence (DGLAP) and nonvalence (ERBL) contributions to thehandbag diagram.
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Figure 3: Covariant amplitudes (left) and LF contributions to the Boxst (right), for ζ = 0.5 above and
ζ = 0.9 below.

For our kinematicsp′+ < p+, we find two domains that correspond to the well-known DGLAP
and ERBL regions: DGLAP,ζ p+ ≤ k+ < p+, ERBL, 0≤ k+ < ζ p+. For the covariant handbag
diagram, we show the corresponding LF diagrams in Fig. 2.

For the valuesζ = 0.5 and 0.9, we show the amplitudes in Fig. 3. We tookM = 0.14 for
the pion mass andm = 0.25 for the constituent mass. The results of the LF calculations for the
three diagrams considered coincide with the covariant results. We show that explicitly in the r.h.
panels of Fig. 3. The l.h. panels show that the handbag diagram denoted by ‘Box st’ is in this
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Figure 4: The GPDH (x,ζ )

kinematical region indeed dominant, but the cat’s ears diagram, ‘Cat su’ is by no means negligible
for Q2 ≫ M2,m2. For any value of the momentum transfer larger than the square of the largest
mass involved,m2, the crossed box ‘Box ut’ is negligible.

The contribution of the higher Fock statesAII, is clearly not negligible for small momentum
transfers, but it drops quickly for larger values ofQ2.

3. GPD

A straightforward calculation for the GPD gives

H =
1

4πx(1− x)(x−ζ )
(

M2− m2

x(1−x)

)(

M2

1−ζ − (1−ζ )m2

(1−x)(1−ζ )

) (3.1)

in the DGLAP region and

H =
1

4πx(1− x)(ζ − x)
(

M2− m2

x(1−x)

)(

M2

1−ζ − ζm2

x(ζ−x)

) (3.2)

in the ERBL region. (We use the notationk+ = xp+, wherek+ is the plus-component of the
constituent that absorbes the incident virtual photon.) The form factor is given by the sum rule

F(t) =
∫ 1

0
dxH (x,ζ ). (3.3)

(Note that in our 1+1 dimensional modelt andζ are not independent, see Eq. (2.2). In general,H

is a function ofx, ζ , andt, as indicated in Eq. (1.1).)

We show the form factor in Fig. 5 together with the result of a realistic model [8]. Although the
realistic calculation (3+1 dimensions, spinor quarks) differs quantitatively, the qualitative feature
that the nonvalence contribution to the form factor dominates for almost all values ofQ2 remains.
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Figure 5: The form factor from the GPD (left) and from a LF calculation in 3+1 dimensions[8] (right).

4. Spinor Quarks. 1+1 dimensions

If we take the spin of the constituents into account, the numerator of the integrand in Eq. (2.3)
is given by

Sµν = Tr[(k/1 + m1)(k/2 + m2)γµ(k/3 + m3)γν(k/4 + m4)]. (4.1)

In 1+1 dimensions, this reduces to a simple expression

S++ = 16k−1 k+
2 k+

3 k+
4 +8(m1m2k+

3 k+
4 + m1m4k+

2 k+
3 + m2m4k+

1 k+
3 ),

S+− = 4m1m2m3m4+8(m1m3k+
2 k−4 + m2m3k+

1 k−4 + m3m4k−1 k+
2 ),

S−+ = 4m1m2m3m4+8(m1m3k−2 k+
4 + m2m3k−1 k+

4 + m3m4k+
1 k−2 ),

S−− = 16k+
1 k−2 k−3 k−4 +8(m1m2k−3 k−4 + m1m4k−2 k−3 + m2m4k−1 k−3 ). (4.2)

If we would calculate these traces in 3+1 dimensions, additional terms that are of the same
or lower order ink− would occur. The threek−’s cause a LF singularity: An arc contribution is
needed. It occurs because the integral overk− is divergent, so naively the LF amplitudes cannot be
defined. In the context of application of the residue formula, one needs to subtract the contribution
from the arc at infinity from the naive residues. It appears that this subtraction produces the correct
form of LF amplitudes and the correct support [6]. As the minus components of the momenta are
proportional tok2

⊥, the same terms cause the log divergence of the amplitude in 3+1 dimensions.

5. Conclusion and outlook

Scalar case
We calculated the GPD of a scalar ‘pion’ with scalar constituents in a model that we have used
before in a calculation of the pion form factor. We showed explicitly that the LF and covariant
calculations coincide.
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The relative magnitudes of the LF diagrams corresponding toa covariant amplitude as well as
magnitudes of the covariant amplitudes themselves, dependstrongly on the value ofQ2. Because in
the kinematic range where we have done our calculations the values of the total momentum squares
s are limited tos < 4m2, which is not the typical deep-inelastic kinematics, definite conclusions
cannot be drawn at this point. We must check our results ats-values that are much larger thanm2

to draw definite conclusions.

Spinor case
The spin structure gives rise to an arc contribution, that must be taken into account to get full
agreement with the covariant amplitude. If we improve our simple model by taking into account
the spins of the constituents, we need to regularize in some way in order to render the amplitudes
finite. In Ref. [8] we have demonstrated that ‘smearing’ provides a regularization that is easy to
implement and gives realistic results for the pion form factor in a wide range of momentum transfer
values.
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